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Abstract

A new generalized asymmetric logistic distribution is defined. In some cases, existing
three parameter distributions provide poor fit to heavy tailed data sets. The
proposed new distribution consists of only three parameters and is shown to fit a
much wider range of heavy left and right tailed data when compared with various
existing distributions. The new generalized distribution has logistic, maximum and
minimum Gumbel distributions as sub-models. Some properties of the new
distribution including mode, skewness, kurtosis, hazard function, and moments are
studied. We propose the method of maximum likelihood to estimate the parameters
and assess the finite sample size performance of the method. A generalized logistic
regression model, based on the new distribution, is presented. Logistic-log-logistic
regression, Weibull-extreme value regression and log-Fréchet regression are special
cases of the generalized logistic regression model. The model is applied to fit failure
time of a new insulation technique and the survival of a heart transplant study.

Keywords: Beta-family, Symmetric distribution, Hazard function, Moments, Censored
data
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Introduction
The use of logistic distribution in various disciplines can be found in (Johnson et al.

1995) and the references therein. The logistic distribution has the cumulative distribu-

tion function (CDF) defined as

F xð Þ ¼ 1þ exp −
x − μ
σ

� �� � − 1
; − ∞ < x; μ < ∞; σ > 0: ð1Þ

Note that the logistic distribution is the limiting distribution of the average of largest
and smallest values of random samples of size n from a symmetric distribution of ex-

ponential type (Gumbel 1958).

The CDF of the standard logistic distribution is F(y) = (1 + e−y)−1, − ∞ < y <∞. The

standard logistic density function with kurtosis 4.2 is symmetric about zero, and is

more peaked and has heavier tails than the normal density function. These properties

make logistic distribution a popular choice for fitting symmetric non-normal data.
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The first type of extreme value distribution is commonly known as the Gumbel-type

distribution due to Gumbel (1958), who made several significant contributions to the

extreme value analysis and practical applications of extreme value statistics in distribu-

tions of human lifetimes, radioactive emissions, and flood analysis (see, e.g., Johnson

et al. 1995). Gumbel used the distribution to model the maximum and minimum values

of samples from various distributions. The CDFs of maximum and minimum Gumbel

distributions are defined, respectively, as

FGu-max x; μ; σð Þ ¼ exp − exp −
x − μ
σ

� �n o
; − ∞ < x < ∞; − ∞ < μ < ∞; σ > 0;

ð2Þ

FGu-min x; μ; σð Þ ¼ 1 − exp − exp
x − μ
σ

� �n o
; −∞ < x < ∞; −∞ < μ < ∞; σ > 0;

ð3Þ

where μ and σ are location and scale parameters, respectively. Gumbel distribution is

good to fit skewed data while logistic distribution is for symmetric data. It is interesting

to note that there is a relation between these two distributions. If X ~ Gumbel(μX, σ)

and Y ~ Gumbel(μY, σ), then, (X − Y) ∼ logistic(μX − μY, σ).

In order to improve the goodness of fit of the logistic and Gumbel distributions,

many generalizations of these distributions have been studied in the literature. For ex-

ample, Prentice (1976) proposed logistic type IV to model binomial regression data.

Stukel (1988) proposed logistic regression model. Balakrishnan and Leung (1988) pro-

posed three types of generalized logistic distribution. Johnson et al. (1995) summarized

several generalizations of the logistic distribution. Wahed and Ali (2001) proposed the

skew logistic distribution (SLD). An extension of SLD was presented and studied by

Nadarajah (2009) by introducing a scale parameter. Gupta and Kundu (2010) defined

two generalizations of logistic distribution, namely the skew logistic using the skew

normal method proposed by Azzalini (1985) and defined the Type-II logistic distribu-

tion as a member of the proportional reversed hazard family with the baseline distribu-

tion as the logistic distribution. The T-X framework proposed by Alzaatreh et al.

(2013), which was further expanded by Aljarrah et al. (2014) are two general methods

that have been applied to derive various generalization of distributions, including logis-

tic distribution. Recently, Ghosh and Alzaatreh (2018) defined the exponentiated-

exponential logistic (EEL) distribution as a generalization of the logistic distribution

and various properties were studied by the authors.

Similar to the logistic distribution, several generalizations of the Gumbel distribution

have appeared in the literature. For a review of generalizations of the Gumbel extreme

value distribution, one may refer to Pinheiro and Ferrari (2016).

There is already a long list of literatures for generalized logistic and Gumbel distribu-

tions. Why are we developing yet another family of generalized logistic distributions?

As pointed out by Johnson et al. (1994, p. 15) “For most practical purposes, it is suffi-

cient to use four parameters. There is no doubt that at least three parameters are

needed; for some purposes this is enough.” The main motivation is to develop highly

flexible three-parameter distributions that can fit wide range of right and left skewed

data. The method proposed here has several advantages that are not available among

the existing generalizations:
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(a) The method proposed is not to develop a single generalized logistic distribution, it

can be applied to generate different families of generalized logistic distributions. A

generalized normal distribution using similar technique was studied in Aljarrah

et al. (2019), which was shown to be a much more flexible distribution than the

skewed normal proposed by Azzalini (1985) and its generalizations.

(b) A member of the family of the generalized logistic distributions, the exponential-

logistic {Generalized Weibull} distribution (E-L {GW}) is defined and studied in de-

tail in this article. This distribution has three parameters: location, scale and a

shape parameter. As shown in the article, the E-L {GW} distribution is a

generalization of both logistic and Gumbel distributions.

(c) The E-L {GW} is shown to be more flexible than existing generalizations of logistic

and Gumbel distributions in two ways: (i) It fits very well left and right skewed

data. Existing generalized logistic or Gumbel distributions can fit heavy right-

skewed data, but not able to fit heavy left-skewed data. (ii) It fits very well data with

a wider range of skewness and kurtosis when compared with existing generaliza-

tions such as skew logistic (Gupta and Kundu 2010), beta-logistic distribution

(Nassar and Elmasry 2012), generalized logistic distribution (Ghosh and Alzaatreh

2018), generalized Gumbel (Cooray 2010), as well as skew normal (Azzalini 1985)

and its five-parameter generalized distribution (Choudhury and Abdul 2011).

(d) The generalized regression model derived by assuming the response follows E-L

{GW} distribution is a very flexible model that takes logistic-log-logistic regression,

Weibull-extreme value regression and log-Fréchet regression as special cases.

In Section 2, we define the E-L {GW} distribution. Some properties of the E-L {GW}

distribution including the shapes of the probability density function (PDF) and hazard

function, and quantile function are studied. An expression for the moment, properties

of the hazard function, and the relationship between the mean, variance, skewness, kur-

tosis and the shape parameter are investigated in Section 3. In Section 4, the method of

maximum likelihood is presented for estimating the parameters of the distribution, and

a simulation study is performed to assess the small sample performance of the method.

In Section 5, a generalized logistic regression model based on E-L {GW} distribution is

developed. In Section 6, applications to several real data sets are given to demonstrate

the flexibility and usefulness of the new distribution and its regression model. Summary

and conclusions are given in Section 7.

The exponential-logistic {generalized Weibull} (E-L {GW}) distribution
Let the random variable R be a standard logistic distribution. Using a shape parameter

ξ > 0, location parameter −∞ < μ <∞, scale reflection parameter σ ≠ 0, and following

the technique that Aljarrah et al. (2019) used to define the combined exponential-

normal {GW} distribution, we define the combined E-R {GW} family as

FX xð Þ ¼ 0:5þ sgn σð Þ 0:5 − exp − FR
x − μ
σ

� �� � − ξ
− 1

� �
=ξ

� �� �
; ð4Þ

where sgn(σ) is the sign of the parameter σ. Note that the CDF defined in (4) reduces

to FRðx − μ
jσj Þ distribution as ξ→ 0. The corresponding PDF to (4) is given by
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f X xð Þ ¼
f R

x − μ
σ

� �
j σ j FR

x − μ
σ

� 	� 	ξþ1 exp −
FR

x − μ
σ

� 	� 	 − ξ
− 1

ξ

 !
: ð5Þ

The E-L {GW} distribution can be defined from Eq. (4) by letting R be the logistic

random variable as follows:

Definition (E-L {GW} distribution): The CDF and PDF of the E-L {GW} distribution

are defined, respectively, as

FX xð Þ ¼ 0:5þ sgn σð Þ 0:5 − exp 1 − 1þ exp
x − μ
σ

� �� �ξ� �
=ξ

� �� �
; ð6Þ

and

f X xð Þ ¼ 1
j σ j exp

x − μ
σ

� �
1þ exp

x − μ
σ

� �� �ξ − 1
exp 1 − 1þ exp

x − μ
σ

� �� �ξ� �
=ξ

� �
;

− ∞ < x; μ < ∞; σ≠0; ξ > 0:

ð7Þ

Note the E-L {GW} is derived as a generalization of the symmetric logistic distribu-
tion for fitting highly skewed data. This provides a good comparison of performance

when comparing with various existing three-parameter distributions. The following

Corollary presents some special sub-models.

Corollary 1: The PDF of E ‐ L{GW}(μ, σ, ξ) in (7) reduces to the following sub-

models:

a) When ξ→ 0, the PDF in (7) reduces to a logistic distribution in (1).

b) When ξ = 1 and σ < 0, the PDF in (7) reduces to the PDF of maximum

Gumbel distribution in (2) with location and scale parameters μ and ∣σ∣,

respectively.

c) When ξ = 1 and σ > 0, the PDF in (7) reduces to the PDF of minimum Gumbel

distribution in (3) with location and scale parameters μ and σ, respectively.

Proof: a) lim
ξ→0

f XðxÞ ¼
1

j σ j exp

�
x − μ
j σ j
�
=

�
1þ exp

�
x − μ
j σ j
��2

; that is X � Logistic

ðμ; jσjÞ. The cases (b) and (c) are obtained directly by substituting ξ = 1 in (7). □
Quantile functions are useful for generating pseudo-random numbers from a prob-

ability distribution. Proposition 1 gives the quantile function for the E-L {GW}

distribution.

Proposition 1: The quantile function for the E-L {GW} distribution is given by

QX uð Þ ¼ μþ σ log 1 − ξ log
1
2
− sgn σð Þ u −

1
2

� �� �� �1=ξ

− 1

 !
; u∈ 0; 1ð Þ: ð8Þ

Proof: By setting FX(QX(u)) = u in Eq. (6) and solving for QX(u) in terms of u, the
quantile function in (8) is obtained. □
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Proposition 2:

a) If T is a standard exponential random variable, then X = μ+ σ log((1 + ξT)1/ξ − 1)

follows the E-L {GW} (μ, σ, ξ) distribution in Eq. (6).

b) If X~ E-L {GW} (μ, σ, ξ), then (2μ − X)~ E-L {GW} (μ, −σ, ξ).

Proof: Using the CDF method, the results in (a) and (b) follow. □
The hazard rate function (HRF) of the E-L {GW} distribution is obtained after using

the CDF in (6) and PDF in (7), and it is given by

h xð Þ ¼

1
σ

exp
x − μ
σ

� �
exp

x − μ
σ

� �
þ 1

n oξ − 1
; σ > 0;

exp
x − μ
σ

� �
exp x − μ

σ

� 	þ 1

 �ξ − 1

j σ j exp
1
ξ

exp
x − μ
σ

� �
þ 1

n oξ
− 1

� 
� �
− 1

� � ; σ < 0:

8>>>>><
>>>>>:

ð9Þ

Figures 1 and 2 show the plots of PDF and HRF for E-L {GW} distribution. The PDF
can be positively or negatively skewed, while the HRF shows increasing with J shape, in-

creasing with S shape, and increasing-decreasing shapes. The graphs in Fig. 1 indicate

that the distribution tends to be symmetric as ξ→ 0, skewed to the left when σ > 0, and

skewed to the right when σ < 0. When the sign of parameter σ is changed, the curve of

the PDF is reflected about the line x = 0. Also as ξ increases, the mode decreases when

σ > 0, and as ξ increases, the mode increases when σ < 0. The graphs in Fig. 2 show the

hazard function in (9) is increasing when σ > 0. When σ < 0, the hazard function in-

creases or first constant, increases and then decreases.

Properties of exponential-logistic {generalized Weibull} distribution
In this section, some properties of the E-L {GW} distribution are studied. These prop-

erties include, mode, shape property of the HRF, moments and moment generating

function.
Fig. 1 Plots of PDF of E-L {GW} distribution with μ = 0



Fig. 2 Plots of HRF of E-L {GW} distribution with μ = 0
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Mode:

Theorem 1: The E-L {GW} distribution is unimodal. The mode is at the point x∗ = μ

whenever ξ = { 0, 1}. Otherwise the mode is at the point x∗ = μ + σ log(u∗), where u∗ satis-

fies the equation

ξuþ 1 ¼ u uþ 1ð Þξ ; u > 0: ð10Þ

Proof: See Appendix.

Corollary 2: The HRF is increasing whenever σ > 0, and asymptotic to the line y = 1/

∣ σ∣ as x→∞ whenever σ < 0.

Proof: See Appendix.

It is noteworthy to mention that the graphs in Fig. 2 are consistent with the above re-

sults and the asymptotic feature of the curves in Corollary 2.

Moments: The moments are valuable for describing and identifying distribution

properties such as the center, variance, skewness and kurtosis. In order to derive the

moments of E-L {GW}, we first provide a series expansion of PDF of E-R {GW} in Eq.

(5), by applying the exponential series, as follows.

f X xð Þ ¼
f R

x − μ
σ

� �
exp 1=ξð Þ

j σ j
X∞
i¼0

− 1ð Þi FR
x − μ
σ

� 	� 	 − ξiþξþ1ð Þ

i!ξ i
:

By applying negative binomial series expansion ð1 − xÞ − r ¼ P∞
j¼0

Γðrþ jÞ
Γð jþ1ÞΓðrÞ x

j , ∣x ∣ < 1

on ðFRððx − μÞ=σÞÞ − ðξiþξþ1Þ
, we get

f XðxÞ ¼ f Rðx − μ
σ Þ expð1=ξÞ

jσj
P∞
i¼0

P∞
j¼0

ð − 1ÞiΓðξiþξþ jþ1Þ
ξii!Γð jþ1ÞΓðξiþξþ1Þ ðFRðx − μ

σ ÞÞ j, which can be written as

f X xð Þ ¼
X∞
i¼0

X∞
j¼0

ωi; j

j σ j k jþ1ð Þ x − μð Þ=σÞð Þ: ð11Þ

where
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ωi; j ¼ − 1ð Þi exp 1=ξð ÞΓ ξiþ ξ þ jþ 1ð Þ
ξ ii!Γ jþ 2ð ÞΓ ξiþ ξ þ 1ð Þ ; ð12Þ

and k(j + 1)(x) = (j + 1)fR(x)(FR(x))
j denotes the PDF of exponentiated R random variable

with power parameter j + 1.

Theorem 2: The nth absolute moment of the E-L {GW} distribution exists for any μ,

σ ≠ 0, ξ > 0 and satisfies the inequality

E Xj jnð Þ≤e − 1 1þ ξð Þ1þ1=ξ
Xn
i¼0

n
i

� �
μj jn − i σj jiE Lj ji� 	

; ð13Þ

where L is a standard logistic random variable.

Proof: See Appendix.

Moments of E-L {GW} as a series expression is given in the following theorem.

Theorem 3: The rth moment, E(Xr), of the E-L {GW} distribution is given by

E Xrð Þ ¼
Xr
n¼0

X∞
i¼0

X∞
j¼0

r
n

� �
μr − nσnωi; jE Lnjþ1

� �
; ð14Þ

where ωi, j is defined in (12) and EðLniþ1Þ is the nth moment of the exponentiated logis-

tic distribution with power parameter j + 1 and given by Ali et al. (2007) as

E Lnjþ1

� �
¼ jþ 1ð Þn!

X∞
k¼0

ð−j−2ÞPk

k! k þ 1ð Þnþ1 þ − 1ð Þn
X∞
k¼0

ð−j−2ÞPk

k! k þ jþ 1ð Þnþ1

!
:

 

Proof: See Appendix.

Proposition 3: Suppose X has the PDF in (6), then the moment generating function

(MGF) of X is given by

MX tð Þ ¼ eμtþ1=ξ
X∞
i¼0

Γ σt þ 1ð Þ − 1ð Þi
Γ σt − iþ 1ð ÞΓ iþ 1ð Þ ξ

σt − ið Þ=ξΓ σt − ið Þ=ξ þ 1; 1=ξð Þ; ð15Þ

where
Fig. 3 Graphs of mean, and variance for E-L {GW} distribution for μ = 0, σ = {1, −1}, and various values of ξ



Fig. 4 The skewness and kurtosis for E-L {GW} distribution for μ = 0 and σ = {1, −1} for various values of ξ
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t∈ − ∞; 1=jσjð Þ; ξ≥1; σ < 0
t∈ − 1=σ;∞ð Þ; ξ≥1; σ > 0
t∈ − 1=jσj; 1=jσjð Þ; ξ < 1; σ≠0:

8<
:

Proof: See Appendix.

In Fig. 3, the mean and variance of E-L {GW} distribution are plotted in terms of the

parameter ξ for μ = 0 and σ = {1, −1}. Figure 3(a) shows that when σ > 0, the mean de-

creases as ξ increases, When σ < 0, the mean increases as ξ increases. Also, Fig. 3(b)

shows that the variance decreases as ξ increases.

In Fig. 4, we plot the skewness and kurtosis of E-L {GW} distribution in terms

of the parameters ξ when μ = 0 and σ = {1, −1}. Figure 4(a) shows that when σ > 0,

the skewness decreases as ξ increases and the E-L {GW} distribution is left skewed,

and when σ < 0, the skewness increases as ξ increases and the E-L {GW} distribu-

tion is right skewed. The distribution is symmetric as ξ→ 0. We note that the degree of

skewness of the E-L {GW} distribution is measured by ξ, and the parameter σ plays two roles:

characterizing the scale property and determining left skewed (σ > 0) or right skewed (σ < 0).

Figure 4(b) shows the kurtosis increases as ξ increases, and it is not affected by σ.
Table 1 A comparison of skewness and kurtosis of some generalized logistic and Gumbel
distributions

Distribution Skewness Kurtosis

SN −0.995 to 0.995 3.000 to 3.869

ESGN −0.995 to 0.995 3.000 to 7.238

GN −3.000 to 3.000 3.000 to 20.000

BGL −2.000 to 2.000 3.000 to 6.000

PRHL −2.000 to 1.140 1.138 to 6.000

GG −1.500 to 1.500 4.245 to 6.200

EEL −1.080 to 1.889 2.393 to 8.553

E-L {GW} −4.000 to 4.000 3.956 to 35.000
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The flexibility of the E-L {GW} is compared with skew normal (SN) (Azzalini

1985), extended skew generalized normal (ESGN) (Choudhury and Abdul 2011),

generalized normal (GN) (Aljarrah et al. 2019), beta-generalized logistic (BGL)

(Nassar and Elmasry 2012), proportional reversed hazard logistic (PRHL) (Gupta

and Kundu 2010), generalized Gumbel (GG) (Cooray 2010) and EEL (Ghosh and

Alzaatreh 2018). Table 1 summarizes the ranges of skewness and kurtosis of these

distributions. It is shown that the E-L {GW} fits the widest range of skewness and

kurtosis with the exception that the PRHL can fit platykurtic distributions.

Estimation and simulation
Estimation

In this subsection, we discuss the maximum likelihood estimation method for the pa-

rameters of E-L {GW} distribution. Let x1, x2, …, xn be a random sample from E-L

{GW} distribution with parameters θ = (ξ, μ, σ)t, the log-likelihood function is given by

ℓ θ; xð Þ ¼ − n log j σ j þ
Xn
i¼1

xi − μ
σ

� �
þ ξ − 1ð Þ

Xn
i¼1

log 1þ exp
xi − μ
σ

� �h i

þ n
ξ
−
1
ξ

Xn
i¼1

1þ exp
xi − μ
σ

� �h iξ
:

Letting zi = exp((xi − μ)/σ), the score function of the distribution parameters is given

by Un(θ) = (∂ℓ/∂ξ, ∂ℓ/∂μ, ∂ℓ/∂σ), where

∂ℓ
∂ξ

¼ −
1
ξ

Xn
i¼1

zi þ 1ð Þξ log zi þ 1ð Þ
h i

þ 1

ξ2
Xn
i¼1

zi þ 1½ �ξ − n

ξ2
þ
Xn
i¼1

log zi þ 1ð Þ; ð16Þ

∂ℓ
∂μ

¼ 1
σ

Xn
i¼1

zi zi þ 1ð Þξ − 1
h i

−
1
σ

Xn
i¼1

ξzi þ 1
zi þ 1

; ð17Þ

∂ℓ
∂σ

¼ 1
σ

Xn
i¼1

zi logzi zi þ 1ð Þξ − 1
h i

−
Xn
i¼1

1þ ξ logzið Þzi þ 1þ logzi
σ zi þ 1ð Þ : ð18Þ

The maximum likelihood estimates (MLEs) of the parameters can be obtained by
solving the nonlinear Eqs. (16), (17) and (18). The initial values of μ and σ are taken to

be the mean and ± standard deviation of the data respectively. The initial value of σ is

taken as s (or -s) if the data is skewed left (or right). The initial value of ξ is taken to be

1.

Simulation

A simulation study is conducted to explore the performance of the MLE for the param-

eters of the E-L {GW} distribution. Many combinations of the parameters of the E-L

{GW} model, namely, highly, moderately, and weakly left (or right) skewed, are consid-

ered and represent all possible shapes of the model. Different sample sizes n = {50, 100,

200, 500, 1000} are also considered. The MLE of the parameters ξ, μ and σ are com-

puted for 200 repetitions in order to calculate the bias and the standard deviation (SD)

for each set of parameter combinations and sample size. Table 2 shows the results of

the simulation, and Figs. 5 and 6 present the illustrations. The results show that the

bias and SD decrease as the sample size increases. The estimated PDF curve also moves



Table 2 Bias and SD of the parameter estimates using MLE method

Parameters Sample
size

Bias SD

ξ μ σ ξ̂ − ξ μ̂ − μ σ̂ − σ SDðξ̂Þ SDðμ̂Þ SDðσ̂Þ
0.5 −1 − 1 50 0.2585 −0.1125 −0.0425 0.5947 0.3552 0.2162

100 0.0979 −0.0386 − 0.0160 0.3570 0.2413 0.1550

200 0.0654 −0.0278 −0.0142 0.2278 0.1587 0.1187

500 0.0265 −0.0070 − 0.0050 0.1357 0.0999 0.0687

1000 0.0102 0.0003 −0.0010 0.0928 0.0662 0.0474

2 0 −2 50 1.0074 −0.4525 −0.1085 2.5277 1.3595 0.6366

100 0.3699 −0.1655 − 0.0345 1.4639 0.8721 0.4376

200 0.3072 −0.1583 −0.0494 1.1224 0.6916 0.3598

500 0.1615 −0.0767 − 0.0279 0.8690 0.5048 0.2375

1000 0.0439 −0.0156 −0.0061 0.4078 0.2709 0.1442

6 2 −3 50 −1.3031 0.9211 0.4806 2.9698 1.5575 0.7229

100 −0.8896 0.6087 0.2896 2.6342 1.3797 0.6079

200 −0.4115 0.3154 0.1566 2.2743 1.1780 0.5040

500 −0.4251 0.2871 0.1219 1.8211 0.9216 0.3595

1000 −0.4952 0.2921 0.1137 1.3108 0.6636 0.2506

0.5 −1 1 50 0.2017 0.0813 0.0291 0.5106 0.3185 0.2133

100 0.0981 0.0387 0.0161 0.3569 0.2412 0.1550

200 0.0659 0.0283 0.0141 0.2289 0.1591 0.1189

500 0.0271 0.0074 0.0054 0.1364 0.1004 0.0688

1000 0.0116 0.0004 0.0018 0.0920 0.0662 0.0475

2 0 2 50 0.9262 0.4091 0.0931 2.3871 1.2927 0.6084

100 0.3652 0.1627 0.0334 1.4761 0.8769 0.4393

200 0.3072 0.1585 0.0513 1.1224 0.6939 0.3609

500 0.1562 0.0713 0.0251 0.9162 0.5125 0.2358

1000 0.0365 0.0106 0.0034 0.4089 0.2720 0.1444

6 4 3 50 1.0664 0.0219 −0.1725 6.0035 2.5586 0.9517

100 0.8875 0.1094 −0.0699 5.0824 2.2413 0.8278

200 0.6818 0.1183 −0.0310 3.9748 1.7626 0.6446

500 0.4806 0.0767 −0.0105 3.7760 1.6030 0.5314

1000 0.1190 −0.0384 − 0.0374 2.7782 1.2040 0.3957
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closer to the actual curve with the increase in the sample size. These results indicate

that the MLE method can be used to estimate the parameters of the E-L {GW}

distribution.

Generalized logistic regression model based on E-L {GW}
In this section, we propose a generalized logistic regression model by assuming the re-

sponse Y follows E-L {GW} distribution. If the variable of interest is non-negative such

as survival time, T, then the response Y is defined as log(T). In the following, we derive

a generalized logistic regression model for modeling life-time data. Univariate survival

functions and censored data regression problems can be estimated using parametric

models for covariate effects. Parametric models produce precise estimates of the quan-

tities of interest when they provide a good fit to the lifetime data set. The reason is that



Fig. 5 Graphs of the E-L {GW} simulated and theoretical PDF’s ( 200 fitted densities,
density of mean of all fits, theoretical density) for sample sizes n = 50, 100, 200, 500 and 1000.
The left column parameters: ξ = 0.5, μ = − 1 and σ = − 1. The middle column parameters: ξ = 2, μ = 0 and
σ = − 2. The right column parameters: ξ = 6, μ = 2 and σ = − 3
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these estimates are based on few parameters in this way. On the basis of the E-L {GW}

distribution, the following regression model is considered:

yi ¼ vTi βþ σzi; i ¼ 1;…; n; ð19Þ

where the response variable yi = log(ti) is the logarithm of the survival time ti, β = (β0,

β1,…, βp)
T, and σ ≠ 0 are unknown parameters. Each yi has a covariate vector vTi ¼ ð1;

vi1;…; vipÞ that models the linear predictor μi ¼ vTi β. The random error zi has the E-L

{GW} density (7). The shape parameter ξ can be treated as a nuisance parameter, which

may be tested against special cases of the E-L {GW} distribution. It can also be modeled

with a vector of covariates ξ i ¼ expðvTi γÞ that depends on the covariate vector vTi and

parameter vector γ = (γ0, γ1,…, γp)
T. The corresponding survival function is

S yijμ vð Þ; σ; ξ vð Þð Þ ¼ 0:5 − sgn σð Þ 0:5 − exp 1 − 1þ exp
yi − vTi β

σ

� �� � exp vTi γð Þ !
= exp vTi γ

� 	( ) !
: ð20Þ

The corresponding PDF to the survival function in (20) is given by



Fig. 6 Graphs of the E-L {GW} simulated and theoretical PDF’s ( 200 fitted densities,
density of mean of all fits, theoretical density) for sample sizes n = 50, 100, 200, 500 and 1000.
The left column parameters: ξ = 0.5, μ = − 1 and σ = 1. The middle column parameters: ξ = 2, μ = 0 and σ =
2. The right column parameters: ξ = 6, μ = 4 and σ = 3
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f yið Þ ¼ 1
j σ j exp

yi − vTi β
σ

� �
1þ exp

yi − vTi β
σ

� �� � exp vTi γð Þ − 1

exp 1 − 1þ exp
yi − vTi β

σ

� �� � exp vTi γð Þ !
= exp vTi γ

� 	( )
:

ð21Þ

The generalized logistic regression model consists of many popular regression models
as nested models. Some special regression models are as follows:

1. Logistic-log-logistic regression model: this model is obtained as a special case from

(20) when γ1 = γ1 =… = γp = 0 and γ0→ − ∞ (or ξ→ 0). The survival function is

y − vTβ
� �� � − 1
S yð Þ ¼ 1þ exp j σ j ;

which is the logistic-log-logistic regression model, Lawless (2003, p. 303).

2. Weibull-extreme value regression model: this model is obtained as a special case

from (20) when γ0 = γ1 =… = γp = 0 (or ξ = 1), and σ > 0. The survival function is
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y − vTβ
� �� �
S yð Þ ¼ exp − exp
σ

;

which is the classical Weibull regression model, Lawless (2003, p. 296).

3. Log-Fréchet regression model: this model is obtained as a special case from (20)

when γ0 = γ1 =… = γp = 0 (or ξ = 1), and σ < 0. The survival function is

S yð Þ ¼ 1 − exp exp −
y − vTβ
j σ j

� �� �
;

which is the log-Fréchet regression model (Alamoudi et al. 2017).

A sample (y1, v1), …, (yn, vn) of n independent observations is considered, where each

random response is defined by yi =min {log(ti), log(ci)}, where ci is the censoring time.

We assume non-informative censoring and independent observed lifetimes and censor-

ing times. Let Ω and C denote the sets of individuals for which yi is the log-lifetime

and log-censoring respectively. The total log-likelihood function for the model parame-

ters θ = (σ, βT, γT)T is given as

ℓ θð Þ ¼
X
i∈Ω

log f yið Þ½ � þ
X
i∈C

log S yið Þ½ �; ð22Þ

where S(yi) is the survival function in (20) and f(yi) is the PDF of S(yi) in (21). The MLE

θ̂ of the parameter vector θ = (σ, βT, γT)T of the E-L {GW} regression model can be ob-

tained by maximizing the log-likelihood function in (22).

Applications
In this section, we apply the E-L {GW} distribution to fit two skewed data and apply

the generalized logistic regression to model two censored lifetime data. For the first

two data sets, the fits of the E-L {GW} distribution are compared with those of other

recent generalizations of logistic and Gumbel distributions, namely, the EEL distribu-

tion by Ghosh and Alzaatreh (2018), PRHL distribution by Gupta and Kundu (2010),

GG by Cooray (2010), and transmuted extreme value (TEV) by Aryal and Tsokos

(2009). Maximum likelihood method is used to estimate the model parameters in these

applications.

The fitted distributions are compared by using the Akaike information criterion

(AIC) and Kolmogorov-Smirnov (KS) statistic and its p-value. Data have a good fit

when the values of AIC and KS are small, and the p-value of KS is large. The plots of

the fitted PDFs of some models are demonstrated for visual comparison. Table 3 gives

the descriptive statistics of the two data sets. For the third and fourth applications, the

generalized logistic regression models are compared with some nested sub-models. The

goodness of fits are compared using AIC, the corrected AIC (AICC), and Bayesian
Table 3 The summary statistics of the data sets

Data set No. of Obs. mean Std. Dev. Skewness Kurtosis

Adiponectin 116 10.1809 6.8433 1.7942 6.7108

Turbocharger 40 6.2525 1.9555 −0.6626 2.6410
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information criterion (BIC) statistics. The estimation process is straightforward, and

the R programming language is used for the first two data sets, while SAS program-

ming language is used for the third and fourth data sets.
Adiponectin data

The data consist of 116 measurements of Adiponectin from Patrício et al. (2018). The

data set is fitted to the E-L {GW} model presented in Section 2 and EEL, PRHL, GG,

and TEV distributions. Table 4 indicates that the p-values of KS statistics of the distri-

butions provide adequate fit to the data. While the five distributions all have three pa-

rameters, E-L {GW} provides the best fit to the data set. Therefore, the E-L {GW}

distribution is a better alternate distribution to EEL, PRHL, GG, and TEV distributions.

The large skewness and kurtosis of the sample data in Table 3 and the wide range of

theoretical skewness and kurtosis in Table 1 suggest that E-L {GW} should fit better

than other comparable distributions. Figure 7 shows the estimated PDFs of the fitted

distributions.
Turbocharger data

This data set contains the time to failure (103 h) of turbocharger of a type of engine

from Xu et al. (2003). These data were studied by Alzaatreh et al. (2016) and Cordeiro

et al. (2019) using Weibull-gamma {log-logistic} and odd Lomax-Lomax distributions,

respectively. For this data set, we fit E-L {GW}, EEL, PRHL, GG, and TEV models. The

sample data is slightly left-skewed and slightly flatter than normal. It is anticipated that

all distributions should fit properly. Table 5 shows all models fit the data set properly,

while E-L {GW} has a better fit according to the p-values of the KS test statistics. As

noticed, the shape parameter estimates of the four distributions that fit better to the

data are not statistically significant. This is not surprising since the degree of left-

skewness is minor. However, without shape parameter, symmetric distributions do not

fit the data properly. Figure 8 shows the fitted models to the turbocharger data set.
Generalized logistic regression model applied to censored class-H insulation data

The data are hours to failure of 40 motorettes with a new Class-H insulation run at

190 °C, 220 °C, 240 °C, and 260 °C by Nelson (2004). Midway between the inspection

time when the failure is found, and the time of the previous inspection is considered

the failure time. The test aims to estimate the median life of such insulation at its de-

sign temperature of 180 °C. A median life of over 20,000 h is desired. The data consist
Table 4 MLEs, their standard errors (SEs) (in parentheses) and goodness of fit measures for the
Adiponectin’s data set

MLE − ℓðθ̂Þ AIC KS (p-value)

E‐L{GW}(μ, σ, ξ) −3.3614 (9.6673) −8.4609 (3.0491) 8.6885 (8.9183) 354.2757 714.5514 0.0447 (0.9746)

EEL(α, λ, θ) 3.6630 (0.6037) 0.2230 (0.0215) 1.1250 (0.0070) 357.1828 720.3655 0.0834 (0.3950)

PRHL(μ, λ, α) −12.5762 (7.7934) 0.2316 (0.0179) 102.6242 (177.9828) 360.8723 727.7447 0.0829 (0.4019)

GG(μ, σ, β) 7.7414 (0.4331) −2.6167 (0.3881) − 0.5155 (0.0982) 356.2521 718.5042 0.0886 (0.3224)

TEV(μ, σ, α) 8.3690 (0.7213) 4.7540 (0.4903) 0.3981 (0.2281) 359.6354 725.2708 0.0717 (0.5908)



Fig. 7 Adiponectin data set: a Fitted E-L {GW}, GG and TEV PDFs. b Fitted E-L {GW}, GG and TEV CDFs
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of (n = 40) observations (observed or right censored). The censoring indicator is 0 for

censoring and 1 for observed. Each motorette is assigned one of the four test stress

levels (10 motorettes in each level). Seven motorettes (1 in level 220, 1 in level 240, and

5 in level 260) are lost to follow-up and considered censored. The response variable yi =

log(ti) is the logarithm of failure times (hours) ti or the logarithm of the censoring time

ci, and the covariate vi refers to the test stress levels (190, 220, 240, and 260).

The data are analyzed to determine the relationship between y and the level of test

stress (v). The following regression model is considered:

yi ¼ β0 þ β1v
�
i þ σzi;

where v�i ¼ ðvi − 180Þ is the centered stress level obtained by subtracting the design

stress value 180, and yi follows the E-L {GW} distribution in (21) with the shape param-

eter ξ i ¼ expðγ0 þ γ1v
�
i Þ for i = 1, …, 40. The model parameters in these applications

are estimated by maximum likelihood method. Table 6 indicates that the AIC, AICC,

and BIC statistic values of the E-L {GW} regression model are smaller than those of the

other fitted models. The estimates β1 and γ1 are significant at the 5% level, and the

levels of test stress have significant differences. The likelihood ratio (LR) statistic is

used to compare the E-L {GW} regression model with some nested models. As shown

in Table 6, the E-L {GW} model gives better fit to these data than the other nested

models. Table 7 shows the LR statistics and the corresponding p-values. The
Table 5 MLEs, their SEs (in parentheses) and goodness of fit measures for the turbocharger data
set

MLE − ℓðθ̂Þ AIC KS (p-value)

E‐L{GW}(μ, σ, ξ) 7.7777 (1.1696) 1.8229 (0.5912) 1.9295 (1.8198) 80.0798 166.1595 0.0741 (0.9807)

EEL(α, λ, θ) 161.0992 (725.8089) 4.0828 (6.0810) 5.8891 (6.8837) 87.1234 180.2468 0.1315 (0.4930)

PRHL(μ, λ, α) 8.6753 (0.3141) 0.1959 (0.1672) 0.0801 (0.0769) 80.4757 166.9513 0.1141 (0.6750)

GG(μ, σ, β) −66.6650 (299.6159) −199.3733 (817.4937) −128.7707 (528.6058) 83.7637 173.5274 0.0899 (0.9038)

TEV(μ, σ, α) 4.5182 (0.4648) 1.9043 (0.2130) −0.6244 (0.2855) 87.8765 181.7530 0.1421 (0.3942)



Fig. 8 Turbocharger data set: a Fitted E-L {GW}, GG and PRHL PDFs. b Fitted E-L {GW}, GG and PRHL CDFs
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implication of the results in Table 7 is that the E-L {GW} outperforms all the sub-

models. Thus, one should use the E-L {GW} regression model to analyze the data.

Generalized logistic regression model applied to censored heart transplant data

The data consist of n = 103 heart transplant patients of which 69 patients received

transplants and 34 did not. The data were from Crowley and Hu (1977) and reported

by Kalbfleisch and Prentice (2002). The data can be used to assess the effect of trans-

plantation on patients’ survival. The response variable yi = log(ti) is the logarithm of

survival time in days (the time from the enrollment until death or until the study

ended). The covariates are vi1 (age in years at acceptance) and vi2 (transplant status:

1 = transplanted, 0 = not transplanted). The survival status or censoring indicator is 0

for alive and 1 for dead. Thus, the data are analyzed to investigate the relationship be-

tween survival time and the covariates age and transplant status. The following regres-

sion model is considered:

yi ¼ β0 þ β1vi1 þ β2vi2 þ σzi;
Table 6 MLEs of the parameters (SE in parentheses), p-values bellow SE, and goodness of fit
measures for the Class-H Insulation Data

Model σ β0 β1 γ0 γ1 −ℓ(θ) AIC AICC BIC

E-L {GW} −0.2459
(0.0551)

8.5954
(0.2845)
<.0001

−0.0165
(0.0046)
0.0008

4.6284
(1.0436)
<.0001

−0.1272
(0.0299)
<.0001

5.3258 20.6516 22.4163 29.0960

Logistic 0.1823
(0.0257)

9.1328
(0.1024)
<.0001

−0.02463
(0.0020)
<.0001

– – 14.1221 34.2442 34.9108 39.3108

Weibull 0.2529
(0.0352)

9.2304
(0.0739)
<.0001

−0.0239
(0.0014)
<.0001

– – 13.8300 33.6600 34.3267 38.7266

Fréchet −0.3042
(0.0387)

9.0075
(0.1418)
<.0001

−0.02501
(0.0028)
<.0001

– – 14.5422 35.0845 35.7511 40.1511



Table 7 LR statistics for the Class-H Insulation Data

Model Hypotheses LR statistic p-value

E-L {GW} vs Logistic H0 : γ0 = − ∞ , γ1 = 0 17.5925 0.0002

E-L {GW} vs Weibull H0 : γ0 = γ1 = 0, σ > 0 17.0084 0.0002

E-L {GW} vs Fréchet H0 : γ0 = γ1 = 0, σ < 0 18.4328 0.0001
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where yi follows the E-L {GW} distribution in (21) with the shape parameter ξi =

exp(γ0 + γ1vi1) for i = 1, …, 103. The model parameters in these applications are esti-

mated by maximum likelihood method. Table 8 indicates that the AIC, AICC, and BIC

statistic values of the E-L {GW} regression model are smaller than those of the other

fitted models. The estimates β1, β2, and γ1 are significant at the 5% level, and the status

of transplant have significant differences. The LR statistic is used to compare the E-L

{GW} regression model with some nested models. Table 9 shows the LR statistics and

the corresponding p-values. As shown in Table 8, the E-L {GW} model gives the best

goodness of fit statistic among all models.

Summary and conclusions
The logistic and Gumbel (maximum and minimum) distributions have been widely

studied, and many generalizations have been considered to model real-life applica-

tions. We propose a new generalization for the logistic and Gumbel distributions

called the generalized exponential-logistic distribution. We study the structural

properties of this new distribution and the relationships between the parameters

and the mean, variance, skewness, and kurtosis. With only three parameters, the E-

L {GW} can fit data with a very wide range of skewness (left and right) and kur-

tosis. The proposed method for developing generalized distributions has a high

potential for practitioners. A generalized logistic regression model based on the E-

L {GW} distribution is developed. Some existing regression models are sub-models,

which makes the generalized logistic regression model a good choice for modeling

a wide variety of response variables. Four real data sets are applied to illustrate the

usefulness of the new distribution and its regression for fitting skewed data. The

applications suggest that these generalized logistic and Gumbel distributions can fit

highly skewed data sets effectively.
Table 8 MLEs of the parameters (SEs in parentheses), p-values bellow SE and goodness of fit
measures for the Heart transplant data set

Model σ β0 β1 β2 γ0 γ1 −ℓ(θ) AIC AICC BIC

E-L {GW} −1.4147
(0.2824)

7.2609
(1.3543)
< 0.0001

− 0.1050
(0.0314)
0.0012

2.9103
(0.3407)
< 0.0001

−5.7436
(2.6844)
0.0347

0.1108
(0.0461)
0.0180

165.5161 343.0322 343.9072 358.8406

Logistic 1.0231
(0.0971)

6.0800
(0.9129)
< 0.0001

−0.0682
(0.0197)
0.0008

2.8609
(0.3922)
< 0.0001

– – 170.4686 348.9372 349.3454 359.4761

Weibull 1.4897
(0.1348)

8.1193
(0.9845)
< 0.0001

−0.0951
(0.0215)
< 0.0001

2.8112
(0.3698)
< 0.0001

– – 173.9400 355.8800 356.5050 364.8164

Fréchet −1.7496
(0.1501)

4.2179
(0.9094)
< 0.0001

−0.0398
(0.0187)
0.0361

2.5461
(0.3695)
< 0.0001

– – 170.6174 349.2348 349.8598 359.7737



Table 9 LR statistics for the Heart transplant data set

Model Hypotheses LR statistic p-value

E-L {GW} vs Logistic H0 : γ0 = − ∞ , γ1 = 0 9.9050 0.0071

E-L {GW} vs Weibull H0 : γ0 = γ1 = 0, σ > 0 16.8478 0.0002

E-L {GW} vs Fréchet H0 : γ0 = γ1 = 0, σ < 0 10.2026 0.0061
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Appendix
Proof of Theorem 1

The derivative of fX(x) in (7) is given by

f
0
X xð Þ ¼ −

1
σ j σ j exp

x − μ
σ

� �
þ 1

� �ξ − 2
exp

x − μ
σ

� �
þ 1 − exp

x − μ
σ

� �
þ 1

� �ξ
− 1

� �
=ξ

� �
w xð Þ;

where wðxÞ ¼ expðx − μ
σ Þð expðx − μ

σ Þ þ 1Þξ − ξ expðx − μ
σ Þ − 1; −∞ < x < ∞ . By setting

w(x) to zero and replacing expðx − μ
σ Þ by u, we obtain (10). If ξ = { 0, 1}, then from (10)

the mode is at u = 1, equivalently, x = μ. When ξ ≠ { 0, 1}, then the curve on the right

hand side of (10), k(u) = u(u + 1)ξ is convex in u (k″(u) > 0 for all u > 0). Therefore, the

curve k(u) and the line ξu + 1 on the left hand side of (10) can intersect at most twice.

This means w(x) = 0 has at most two solutions, and so is f′(x) = 0. Now, since lim
x→ − ∞

f Xð
xÞ ¼ lim

x→∞
f XðxÞ ¼ 0, then fX(x) has exactly one mode. Note that if we assume that fX(x)

has two modes (or more), then w(x) = 0 will have three solutions (two modes and local

minimum). This is a contradiction with w(x) = 0 has at most two solutions, therefore,

fX(x) is unimodal. □

Proof of Corollary 2

When σ > 0, the derivative of the hazard function in (9) is given by

h
0
xð Þ ¼ 1

σ2
exp

x − μ
σ

� �
ξ exp

x − μ
σ

� �
þ 1

n o
exp

x − μ
σ

� �
þ 1

n oξ − 2
: ð23Þ

From (23), h′(x) ≥ 0 for all − ∞ < x <∞, therefore, h(x) is increasing whenever σ > 0.
When σ < 0 and by using L’Hopital’s rule, we find that

lim
x→∞

hðxÞ ¼ lim
x→∞

1
σ expðx − μ

σ Þf expðx − μ
σ Þ þ 1gξ − 1 þ ðξ − 1Þ expð2 x − μ

σ Þf expðx − μ
σ Þ þ 1gξ − 2

1
σ j σ j expðx − μ

σ Þf expðx − μ
σ Þ þ 1gξ − 1 expð1ξ ½f expðx − μ

σ Þ þ 1gξ − 1�Þ
¼ 1

j σ j. □

Proof of Theorem 2

Let Z = (X − μ)/σ, and using binomial expansion, yields

E Xj jnð Þ≤
Xn
i¼0

n
i

� �
μj jn − i σj jiE Zj ji; ð24Þ

where Z is E-L {GW} random variable with μ = 0 and σ = 1.

Now, using definition, we have

E Zj ji� 	 ¼ Z∞
− ∞

zj ji exp zð Þ 1þ exp zð Þð Þξ − 1 exp − 1þ exp zð Þð Þξ − 1
h i

=ξ
n o

dz;
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¼
Z∞
− ∞

zj ji exp zð Þ
1þ exp zð Þð Þ2 g zð Þdz; ð25Þ

where g(z) = (1 + exp(z))ξ + 1 exp {−[(1 + exp(z))ξ − 1]/ξ}. By using the elementary calcu-

lus, we find that sup
− ∞<z<∞

fgðzÞg ¼ e − 1ð1þ ξÞ1=ξþ1. From (25) we obtain,

E Zj ji� 	
≤e − 1 1þ ξð Þ1=ξþ1E Lj ji� 	

; ð26Þ

where EðjLjiÞ ¼ R∞
− ∞

jzji expðzÞ
ð1þ expðzÞÞ2 dz is the ith absolute moment of standard logistic

distribution.

Using (26) in (24), the result in (13) is obtained. □

Proof of Theorem 3

Let Z = (X − μ)/σ. We have

E Xrð Þ ¼
Xr
n¼0

r
n

� �
μr − nσnE Znð Þ:

Using Eq. (11), the moments E(Zn) are obtained as
E Znð Þ ¼
X∞
i¼0

X∞
j¼0

ωi; jE Lnjþ1

� �
: ð27Þ

Therefore, the result in (14) is obtained from (27) directly. □

Proof of Proposition 3

Let Z = (X − μ)/σ, then the MGF of Z can be written as

MZ tð Þ ¼
Z ∞

− ∞
exp zt þ zð Þ 1þ exp zð Þð Þξ − 1 exp − 1þ exp zð Þð Þξ − 1

h i
=ξ

� �
dz:

ð28Þ

On setting u = [(1 + exp(z))ξ − 1]/ξ in (28), we obtain
MZ tð Þ ¼
Z ∞

0
1þ ξuð Þ1=ξ − 1

� �t
exp − uð Þdu: ð29Þ

α P∞ Γðαþ1Þ i α − i
Using the generalized binomial theorem ðxþ yÞ ¼
i¼0

Γðα − iþ1ÞΓðiþ1Þ x y ; j x j<j y j,

(29) can be written as

MZ tð Þ ¼
X∞
i¼0

Γ t þ 1ð Þ − 1ð Þi
Γ t − iþ 1ð ÞΓ iþ 1ð Þ

Z ∞

0
1þ ξuð Þ t − ið Þ=ξ exp − uð Þdu:

By using formula (3.382–4) in Gradshteyn and Ryzhik (2000), we obtain

MZ tð Þ ¼
X∞
i¼0

Γ t þ 1ð Þ − 1ð Þi
Γ t − iþ 1ð ÞΓ iþ 1ð Þ ξ

t − ið Þ=ξ exp 1=ξð ÞΓ t − ið Þ=ξ þ 1; 1=ξð Þ: ð30Þ

Now, the MGF of the X = μ + σZ is defined as

MX tð Þ ¼ E exp Xtð Þð Þ ¼ exp μtð ÞMZ σtð Þ: ð31Þ

Using (31) with (30), the result in (15) is obtained.
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Note that the values of the augment t that makes (15) exist can be obtained directly

from (29) by noting that u < ((1 + ξu)1/ξ − 1) < eu when u > 0, 0 < ξ < 1, and

0 < ((1 + ξu)1/ξ − 1) < u when u > 0, ξ ≥ 1. □

Abbreviations
AIC: Akaike information criterion; AICC: Corrected AIC; BGL: Beta-generalized logistic; BIC: Bayesian information criterion;
CDF: Cumulative distribution function; EEL: Exponentiated-exponential logistic; E-L {GW}: Exponential-logistic
{Generalized Weibull}; ESGN: Extended skew generalized normal; GG: Generalized Gumbel; GN: Generalized normal;
HRF: Hazard rate function; KS: Kolmogorov-Smirnov; LR: Likelihood ratio; MGF: Moment generating function;
MLEs: Maximum likelihood estimates; PDF: Probability density function; PRHL: Proportional reversed hazard logistic;
SD: Standard deviation; SEs: Standard errors; SLD: Skew logistic distribution; SN: Skew normal; TEV: Transmuted extreme
value

Acknowledgements
The authors are very grateful to the handling Editor and the two anonymous reviewers for various constructive
comments and suggestions that have greatly improved the presentation of the paper.

Authors’ contributions
The authors, viz. MAA, FF and CL with the consultation of each other carried out this work and drafted the manuscript
together. All authors read and approved the final manuscript.

Funding
There is no funding support for the research work.

Availability of data and materials
Interested readers can contact the first author.

Competing interests
On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author details
1Department of Mathematics, Tafila Technical University, Tafila 66110, Jordan. 2Department of Statistics, Actuarial &
Data Sciences, Central Michigan University, Mt. Pleasant, MI 48859, USA.

Received: 11 March 2020 Accepted: 6 August 2020

References
Alamoudi, H.H., Mousa, S.A., Baharith, L.A.: Estimation and application in log-Fréchet regression model using censored data.

Int. J. Adv. Stat. Probability. 5(1), 23–31 (2017)
Ali, M.M., Pal, M., Woo, J.: Some Exponentiated distributions. Korean Commun. Stat. 14(1), 93–109 (2007)
Aljarrah, M.A., Famoye, F., Lee, C.: A new generalized normal distribution: properties and applications. Commun. Stat. Theory

Methods. 48(18), 4474–4491 (2019)
Aljarrah, M.A., Lee, C., Famoye, F.: On generating T-X family of distributions using quantile functions. J. Stat. Distrib. Appl. 1, 2

(2014)
Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. Metron. 71(1), 63–79

(2013)
Alzaatreh, A., Lee, C., Famoye, F.: Family of generalized gamma distributions: properties and applications. Hacettepe J. Math.

Stat. 45, 869–886 (2016)
Aryal, R., Tsokos, P.: On the transmuted extreme value distribution with application. Nonlin. Anal. 71(12), 1401–1407 (2009)
Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985)
Balakrishnan, N., Leung, M.Y.: Order statistics from the type I generalized logistic distribution. Commun. Stat. Simul. Comput.

17(1), 25–50 (1988)
Choudhury, K., Abdul, M.M.: Extended skew generalized normal distribution. Metron. 69, 265–278 (2011)
Cooray, K.: Generalized Gumbel distribution. J. Appl. Stat. 37(1), 171–179 (2010)
Cordeiro, G.M., Afify, A.Z., Ortega, E.M.M., Suzuki, A.K., Mead, M.E.: The odd Lomax generator of distributions: properties,

estimation and applications. J. Comput. Appl. Math. 347, 222–237 (2019)
Crowley, J., Hu, M.: Covariance analysis of heart transplant data. J. Am. Stat. Assoc. 72, 27–36 (1977)
Ghosh, I., Alzaatreh, A.: A new class of generalized logistic distribution. Commun. Stat. Theory Methods. 47(9), 2043–2055

(2018)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)
Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)
Gupta, R.D., Kundu, D.: Generalized logistic distributions. J. Appl. Stat. Sci. 18, 51–66 (2010)
Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions: Vol. 1, 2nd edn. John Wiley and Sons, New York

(1994)
Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions: Vol. 2, 2nd edn. Wiley, New York (1995)
Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, New York (2002)
Lawless, J.F.: Statistical Models and Methods for Lifetime Data, 2nd edn. Wiley, Hoboken New York (2003)
Nadarajah, S.: The skew logistic distribution. Asta Adv. Stat. Anal. 93, 187–203 (2009)
Nassar, M.M., Elmasry, A.: A study of generalized logistic distributions. J. Egypt. Math. Soc. 20(2), 126–133 (2012)



Aljarrah et al. Journal of Statistical Distributions and Applications             (2020) 7:7 Page 21 of 21
Nelson, W.B.: Accelerated testing: statistical models, test plans, and data analyses. Wiley, New York (2004)
Patrício, M., Pereira, J., Crisóstomo, J., Matafome, P., Gomes, M., Seiça, R., Caramelo, F.: Using Resistin, glucose, age and BMI to

predict the presence of breast cancer. BMC Cancer. 18, 29 (2018). https://doi.org/10.1186/s12885-017-3877-1
Pinheiro, E.C., Ferrari, S.L.: A comparative review of generalizations of the Gumbel extreme value distribution with an

application to wind speed data. J. Stat. Comput. Simul. 86(11), 2241–2261 (2016)
Prentice, R.L.: A generalization of the Probit and Logit methods for dose response curves. Biometrics. 32(4), 761–768 (1976)
Stukel, T.: Generalized logistic models. J. Am. Stat. Assoc. 83(402), 426–431 (1988)
Wahed, A.S., Ali, M.M.: The skew-logistic distribution. J. Stat. Res. 35, 71–80 (2001)
Xu, K., Xie, M., Tang, L.C., Ho, S.L.: Application of neural networks in forecasting engine systems reliability. Appl. Soft Comput.

2(4), 255–268 (2003)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s12885-017-3877-1

	Abstract
	Introduction
	The exponential-logistic {generalized Weibull} (E-L {GW}) distribution
	Properties of exponential-logistic {generalized Weibull} distribution
	Estimation and simulation
	Estimation
	Simulation

	Generalized logistic regression model based on E-L {GW}
	Applications
	Adiponectin data
	Turbocharger data
	Generalized logistic regression model applied to censored class-H insulation data
	Generalized logistic regression model applied to censored heart transplant data

	Summary and conclusions
	Appendix
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 3
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

