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Abstract
Aim: To compare fit statistics for the Rasch model based on estimates of
unconditional or conditional response probabilities.

Background: Using person estimates to calculate fit statistics can lead to problems
because the person estimates are biased. Conditional response probabilities given the
total person score could be used instead.
Methods: Data sets are simulated which fit the Rasch model. Type I error rates are
calculated and the distributions of the fit statistics are compared with the assumed
normal or chi-square distribution. Parametric bootstrap is used to further study the
distributions of the fit statistics.
Results: Type I error rates for unconditional chi-square statistics are larger than
expected even for moderate sample sizes. The conditional chi-square statistics
maintain the significance level. Unconditional outfit and infit statistics have asymmetric
distributions with means slighly below 1. Conditional outfit and infit statistics have
reduced Type I error rates.
Conclusions: Conditional residuals should be used. If only unconditional residuals are
available parametric bootstrapping is recommended to calculate valid p-values.
Bootstrapping is also necessary for conditional outfit statistics. For conditional infit
statistics the adjusted rule-of-thumb critical values look useful.

Keywords: Rasch model, Chi-square test statistics, Outfit and infit statistics,
Conditional probability

Introduction
Rasch models are increasingly used for the examination and development of measure-
ment instruments in the health and psychological sciences (Belvedere and de Morton
2010; Bond and Fox 2015). They facilitate the detection of measurement problems like
item bias or local dependence that may be overseen by traditional validation methods
such as factor analysis and Cronbach’s alpha coefficient. If the data from a questionnaire
fit to the model expectations, a transformation of the ordinal score into an interval-level
variable is available. To achieve all this, rigorous tests are essential, because the Rasch
model makes some strong assumptions on the item response process.
To assess whether individual items fit the Raschmodel fit statistics are widely used. Soft-

ware like Winsteps (Linacre 2019), DIGRAM (Kreiner and Nielsen 2013) or the R packge

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-020-00108-7&domain=pdf
http://orcid.org/0000-0002-6087-029X
mailto: marianne.mueller@zhaw.ch
http://creativecommons.org/licenses/by/4.0/


Müller Journal of Statistical Distributions and Applications             (2020) 7:5 Page 2 of 12

eRm (Mair et al. 2019) calculate infit and outfit mean squares. RUMM2030 (Andrich et
al. 2010) uses item and total item-trait interaction chi-square statistics. To detect mis-
fitting items the fit statistics are either compared to rule-of-thumb critical values or
transformed to test statistics which can be compared with the values of the purported dis-
tribution. A few questions arise immediately: what are suitable critical values for sound
decisions, are the distributional assumptions justified and what happens if the sample size
increases? There are many different guidelines for acceptable ranges for mean squares
and different recommendations as to which approach should be chosen when sample
size is large.
The behaviour of chi-square statistics has not been widely tested. Hagell and West-

ergren (2016) have shown that Type I errors increase for n ≥ 500. They stud-
ied situations with 25 items and sample sizes up to 2500, but conducted only one
simulation for each situation. Other approaches to deal with sample size issues are
drawing smaller random samples from a large sample or use an algebraic adjust-
ment of the sample size before calculating p-values. These two procedures have
been implemented in RUMM2030. Bergh (2015) compared the two approaches with
each other. He found that for original sample sizes up to 21 000 and adjustments
to sample sizes of 5000 both procedures work equally well. For adjustments to
smaller sizes, the algebraic adjustment approach appeared less effective than random
samples.
Simulation studies for outfit and infit statistics have shown several weaknesses. Means

are not equal to the expected value of 1, distributions are asymmetric with extreme val-
ues more often occuring above 1, simple rule-of-thumb critical values for acceptable fit
may be inappropriate (Smith 1991; Smith et al. 1998; Wang and Chen 2005). Wolfe (2013)
examined the distributions of outfit and infit statistics under a limited number of con-
ditions, and based on these results recommended bootstrapping to get adequate critical
values.
There are two main problems when calculating and using fit statistics: the esti-

mation of the residuals and the distribution of the fit statistics. All item fit statis-
tics summarize standardized residuals which are based on estimates of response
probabilities. Item and person parameter estimates are usually utilized here. Item
estimates are consistent but person estimates are not. The latter are biased and
the bias does not disappear with increased sample size. Due to the correspon-
dence between person estimates and scores, estimates of conditional response prob-
abilities given the total person score could be used to virtually eliminate the bias
(Kreiner and Christensen 2011).
Because the exact distributions of the fit statistics are unknown for unconditional and

conditional estimates, asymptotic distributions are used. It is unclear how reliable these
approximations are. In this paper, we compare chi-square as well as outfit and infit
statistics based on unconditional and conditional estimation procedures. Furthermore,
bootstrap simulations are used to understand the distributions of these statistics.

Background
The Rasch model for dichotomous items (Rasch 1960) assumes that the response of a
person to an item is stochastically independent of all other item responses for the same
and other persons, and that the probability of a positive response to an item is equal to
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P (Xvi = 1) = exp (θv − βi)

1 + exp (θv − βi)
, v = 1, . . . , n; i = 1, . . . , k. (1)

where θv is a parameter characterizing the person v and βi is an item parameter.
Two different types of residuals are calculated during tests of fit of items to the Rasch

model. Response residuals compare observed and expected for every combination of
person and item. These residuals are given by

Zvi = Xvi − E (Xvi)√
Var (Xvi)

, (2)

whith E (Xvi) = P (Xvi = 1) = pvi and Var (Xvi) = pvi (1 − pvi). Outfit and infit statistics
are calculated as means of the squared residuals.

Outfiti =
∑

v
Z2
vi/n, Infiti =

∑
v Z2

vi · wvi∑
v wvi

. (3)

The weights wvi used to calculate the infit statistics are equal to Var (Xvi). Two
approaches are used to assess item fit: rule-of-thumb critical values for the mean squares
or formal tests by dividing the mean squares by their standard errors and comparing
the resulting test statistics with the normal distribution. The Wilson-Hilferty cube root
transformation can be used to improve the approximation of a chi-square variable to the
normal distribution (Wilson and Hilferty 1931).
Rule-of-thumb lower and upper limits for acceptable mean square fit values have been

set by many researchers to 0.7 and 1.3. Linacre (2017) gave a detailed instruction on cut-
off numbers suggesting values between 0.5 and 1.5 as acceptable. Adjustments have been
proposed which take into account the sample size n. Smith et al. (1998) recommend criti-
cal values equal to 1±6/

√
n for outfits and 1±2/

√
n for infits. Unfortunately, simulation

studies have shown that appropriate critical values also depend on the number of items
and the difficulty of the item considered (Wang and Chen 2005).
A second type of residuals used are group residuals. They compare the total number of

positive responses to an item in a group of persons to the expected number of responses
in the same group. Item chi-square fit statistics are calculated as the sum of squared group
residuals, where persons are grouped into class intervals g depending on their scores.

X2
i =

∑

g

⎡

⎢⎣
∑

v∈g Xvi − ∑
v∈g E (Xvi)

√∑
v∈g Var(Xvi)

⎤

⎥⎦

2

(4)

The total “item-trait interaction” chi-square test statistic is the sum of the item chi-
squares.

X2 =
∑

i
X2
i , df = k · dfi (5)

It is assumed that the test statistic defined in (4) follows a chi-square distribution with
degrees of freedom df i equal to the number of class intervals minus 1, and that the total
“item-trait interaction” follows a chi-square distribution with k · df i degrees of freedom.
This test should show whether the data fit to the Rasch model for the classes along the
scale.
The formulas for the fit statistics involve E(Xvi) and Var(Xvi) which are unknown and

have to be estimated. The usual way to estimate E(Xvi) is to plug in the item and person
parameter estimates. We call this the unconditional estimate leading to unconditional fit
statistics.
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Ê(Xvi) = P̂(Xvi = 1) =
exp

(
θ̂v − β̂i

)

1 + exp
(
θ̂v − β̂i

) (6)

Kreiner and Christensen (2011) showed that using person parameter estimates for the
estimation of response probabilities lead to biased residuals and therefore biased outfit
statistics. It is actually not needed to plug in person estimates, conditional estimates could
be used instead. They are given by

Ê (Xvi) = P̂ (Xvi = 1|Rv = r) =
exp

(
−β̂i

)
γr−1

(
β̂

(i))

γr
(
β̂
) , (7)

where β̂ denotes the vector of item parameters, β̂
(i)

denotes the vector of item parame-
ters without β̂i and γr(β̂) is the elementary symmetrical function of order r of the item
parameter estimates. The fit statistics based on (7) are called conditional fit statistics. Full
details of the calculations can be found in Christensen and Kreiner (2013).
The widely used Rasch software Winsteps and the R package eRm calculate uncondi-

tional outfits and infits (3) based on (6). Other R packages such as mirt, LTM and irtoys
use the same estimation approach. RUMM2030 estimates unconditional chi-square fit
statistics (see (4) and (5)) also relying on (6). Only DIGRAM estimates conditional out-
fit and infit statistics utilizing (7). Most programs use chi-square or normal distributions
for goodness of fit tests. Only LTM and DIGRAM allow simulations to get p-values. In
this paper we want to answer the following questions: what are the consequences of using
biased estimates and inadequate distributional assumptions and for which sample size do
problems become serious?

Methods
Data sets were simulated to fit the Rasch model, with sample sizes between 150 and 10
000, and 10, 15 or 20 items. Person parameters came from a standard normal distribu-
tion. Item parameters were also chosen from a normal distribution or equidistantly fixed,
ranging from –2 to +2 or from –2.5 to +2.5. Different conditions were studied because
the range and the distribution of item parameters could have an effect on the results. Item
parameters were estimated with conditional maximum likelihood, for the person param-
eters weighted maximum likelihood was used. Unconditional and conditional outfit, infit
and chi-square fit statistics were calculated. The distributions of the p-values were then
examined and proportions of p-values below 0.05, the type I error rates, were compared.
Parametric bootstrap was used to study the distributions of the fit statistics for various

n (sample size) and k (number of items). First, a data set was generated from a Rasch
model. Item and person parameters were estimated for this data set and fit statistics and p-
values were calculated. Next, bootstrap samples were generated from a Rasch model with
parameters equal to the estimates calculated in the first step. Fit statistics for the samples
were used to get their empirical distribution. This is called the bootstrap distribution. The
critical value from this distribution gives the bootstrap p-value, which was compared with
the p-value based on the normal or the chi-square distribution.
All simulations and calculations were done with the R statistical package (R

Core Team 2019) and the additional R packages eRm (Mair et al. 2019) and PP
(Reif and Steinfeld 2019).
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Results
Chi-square fit statistics

We start with simulations with normally distributed person parameters and fixed item
parameters, equidistant in the interval [–2, +2]. Sample sizes vary between 150 and 2000,
the number of items is 10, 15 or 20. The number of class intervals is three for n ≤ 250,
and seven for larger n. For each situation 1000 simulations are done. As the Rasch model
is true for all the data sets, the proportions of p-values below 0.05 should be about 0.05.
Table 1 shows the proportions of p-values below 0.05 for unconditional and conditional
individual item and total tests. Let us look first at the unconditional tests. For n=200 and
k=10, we have a proportion of 0.107 of p-values below 0.05. The proportion even reaches
1 for n ≥ 1500 and k=10. There are therefore too many significant results regarding the
total test for n ≥ 200, especially if there are not many items. For n ≥ 500, the type I error
rate is also increased for single item tests. The proportions vary between 0.047 and 0.119
for n=500 and k=10. Hence, the chi-square statistics appear to be okay for some items,
but not for all. The conditional total and single item tests maintain the significance level.
Higher proportions can be found for unconditional tests for items located in the center.

Figure 1a shows that the distribution of p-values for item 1 looks more or less uniform,
whereas the same distribution for item 5 is skewed (Fig. 1b). In the case of conditional
tests, the distributions look uniform as they should (Fig. 1c and d). As the type I error
rates for the unconditional total tests are more affected than the error rates for single
item test, the distributions of p-values for unconditional total tests are even more skewed.
Simulations with fixed item parameters equidistant in the interval [–2.5, +2.5] or normally
distributed item parameters lead to very similar results.

Table 1 Proportions of p-values < 0.05 for chi-square statistics

Unconditional Conditional

n k items total items total

150 10 0.035–0.087 0.074 0.043–0.053 0.058

15 0.030–0.065 0.057 0.032–0.061 0.058

20 0.032–0.060 0.051 0.036–0.056 0.062

200 10 0.031–0.092 0.107 0.043–0.050 0.050

15 0.027–0.062 0.065 0.040–0.061 0.055

20 0.030–0.063 0.053 0.036–0.068 0.059

250 10 0.031–0.099 0.153 0.036–0.051 0.047

15 0.029–0.059 0.067 0.034–0.056 0.046

20 0.031–0.061 0.064 0.039–0.062 0.062

500 10 0.047–0.119 0.228 0.043–0.064 0.059

15 0.036–0.077 0.087 0.042–0.062 0.051

20 0.036–0.059 0.055 0.036–0.062 0.050

1000 10 0.104–0.252 0.880 0.044–0.060 0.064

15 0.047–0.110 0.305 0.036–0.059 0.057

20 0.041–0.093 0.156 0.040–0.069 0.052

1500 10 0.190–0.416 1.000 0.036–0.057 0.053

15 0.061–0.156 0.613 0.043–0.061 0.052

20 0.048–0.112 0.304 0.037–0.067 0.048

2000 10 0.335–0.592 1.000 0.040-0.065 0.058

15 0.083–0.226 0.907 0.036–0.060 0.058

20 0.055–0.130 0.505 0.034–0.057 0.054
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Fig. 1 Distribution of p-values for unconditional and conditional tests of an extreme item (item 1) and an
item located in the center (item 5) with n = 500 and k = 10

The distributions of the simulated unconditional test statistics coincide with the pro-
posed chi-square distributions as long as n < 500. For larger n the discrepancy between
empirical and assumed distribution becomes larger and larger. Because the empirical dis-
tribution is shifted to the right, the type I errors increase. For n ≥ 1000 this affects items
independently of their location. Figure 2 shows the unconditional (a-c) and conditional
(d-f ) distributions for item 5 with n = 500 and item 1 with n = 1000 and n = 2000,
k = 10. Chi-square density curve and histogram agree for the conditional test statistic in
all situations.
Table 2 contains unconditional and conditional chi-square fit statistics, and p-values

based on the chi-square distribution as well as based on the bootstrapping procedure with
n = 1000, k = 10 and fixed item parameters in the interval [-2, +2]. The two uncondi-
tional item fit statistics for item 5 and item 6 showmisfit and the total test also rejects the
Rasch model if the chi-square distribution is used. The bootstrap p-values are larger and
do not indicate any misfit. As for the conditional tests, the chi-square distribution and
bootstrap p-values are quite similar.

Outfit and infit statistics

Simulations are done again with normally distributed person parameters and fixed item
parameters, equidistant in the interval [–2, +2]. Sample sizes vary between 150 and 10
000, the number of items is 10, 15 or 20. For each situation 1000 simulations are done. The
Wilson-Hilferty transformation has been used for the unconditional fit statistics, but not
for the conditional values because there was no apparent improvement of the approxima-
tion to the normal distribution. Table 3 showsmean values of outfit and infit statistics, and
the proportions of p-values below 0.05. The unconditional outfit and infit statistics are
biased, their means are smaller than the expected mean of 1. The size of the bias depends
on the number of items. Type I error rates are increased for unconditional statistics if
n ≥ 500, especially if there are not many items. Mean values are okay for the conditional
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Fig. 2 Distribution of the unconditional and conditional test statistic. The red curve is the proposed
chisquare distribution, the red vertical line is the 95% percentile. Values above this critical value will lead to
rejecting the null hypothesis

tests, but the error rates appear to be too small. This is particularly true for items with
large or small difficulties (see Fig. 3).
Table 4 contains 2.5 and 97.5% percentiles for outfit and infit statistics. Ranges get more

narrow for unconditional and conditional estimates, but unconditional fit statistics are
not symmetric around 1. The critical values 0.5–1.5 proposed by Linacre are only valid
for very small sample sizes and few items (n ≤ 150, k ≤ 10). The usual rule-of-thumb of

Table 2 Comparison of chi-square and bootstrap p-values with n = 1000

Unconditional Conditional

X2i p-Chi p-Boot X2i p-Chi p-Boot

Item 1 4.642 0.591 0.891 1.627 0.951 0.953

Item 2 4.793 0.571 0.863 2.302 0.890 0.896

Item 3 5.471 0.485 0.816 2.416 0.878 0.873

Item 4 5.754 0.451 0.789 4.861 0.562 0.528

Item 5 13.752 0.033 0.181 4.422 0.620 0.612

Item 6 14.734 0.022 0.154 6.483 0.371 0.348

Item 7 7.290 0.295 0.674 11.559 0.073 0.073

Item 8 10.436 0.107 0.347 4.641 0.591 0.578

Item 9 9.568 0.144 0.346 7.659 0.264 0.256

Item 10 6.391 0.381 0.633 3.100 0.796 0.785

Total 82.830 0.027 0.770 49.070 0.842 0.815
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Table 3Mean values and proportions of p-values < 0.05 for unconditional and conditional outfits
and infits

Unconditional Conditional

n k Out p < 0.05 In p < 0.05 Out p < 0.05 In p < 0.05

150 10 0.91 0.014–0.062 0.94 0.018–0.077 1.00 0.033–0.052 1.00 0.000–0.052

15 0.95 0.010–0.040 0.96 0.006–0.057 1.00 0.021–0.046 1.00 0.000–0.054

20 0.96 0.011–0.049 0.97 0.001–0.057 1.00 0.021–0.053 1.00 0.000–0.052

200 10 0.91 0.020–0.070 0.94 0.022–0.082 1.00 0.028–0.048 1.00 0.000–0.051

15 0.94 0.013–0.043 0.96 0.007–0.064 1.00 0.021–0.047 1.00 0.000–0.050

20 0.96 0.009-0.053 0.97 0.000-0.057 1.00 0.020–0.055 1.00 0.000–0.060

250 10 0.91 0.023–0.060 0.94 0.047–0.079 1.00 0.023-0.048 1.00 0.000–0.044

15 0.95 0.016–0.048 0.96 0.006–0.058 1.00 0.022–0.044 1.00 0.000–0.038

20 0.96 0.013–0.055 0.97 0.002–0.066 1.00 0.017–0.053 1.00 0.000–0.055

500 10 0.91 0.058–0.109 0.94 0.110–0.148 1.00 0.026–0.041 1.00 0.000–0.044

15 0.95 0.022–0.063 0.96 0.022–0.063 1.00 0.024–0.046 1.00 0.000–0.046

20 0.96 0.019–0.062 0.97 0.008–0.067 1.00 0.019–0.052 1.00 0.000–0.056

1000 10 0.91 0.149–0.190 0.94 0.236–0.403 1.00 0.018–0.043 1.00 0.000–0.046

15 0.95 0.058–0.080 0.96 0.086–0.115 1.00 0.021–0.054 1.00 0.000–0.047

20 0.96 0.029–0.067 0.97 0.034–0.081 1.00 0.020–0.055 1.00 0.000–0.054

1500 10 0.91 0.223–0.293 0.94 0.319–0.672 1.00 0.015–0.053 1.00 0.000–0.060

15 0.95 0.093–0.123 0.96 0.128–0.237 1.00 0.013–0.050 1.00 0.000–0.046

20 0.96 0.053–0.091 0.97 0.069–0.110 1.00 0.021–0.060 1.00 0.000–0.067

2000 10 0.91 0.319–0.402 0.94 0.442–0.839 1.00 0.020–0.043 1.00 0.000–0.048

15 0.95 0.123–0.160 0.96 0.166–0.352 1.00 0.021–0.045 1.00 0.000–0.049

20 0.96 0.065–0.104 0.97 0.090–0.139 1.00 0.021–0.058 1.00 0.000–0.060

3000 10 0.91 0.452–0.563 0.94 0.585–0.975 1.00 0.020–0.052 1.00 0.000–0.050

15 0.95 0.152–0.254 0.96 0.208–0.621 1.00 0.012–0.048 1.00 0.000–0.049

20 0.96 0.090–0.145 0.97 0.110–0.278 1.00 0.018–0.049 1.00 0.000–0.048

10000 10 0.91 0.930–0.980 0.94 0.981–1.000 1.00 0.016–0.045 1.00 0.000–0.045

15 0.95 0.490–0.749 0.96 0.629–1.000 1.00 0.017–0.056 1.00 0.000–0.061

20 0.96 0.256–0.501 0.97 0.337–0.976 1.00 0.018–0.068 1.00 0.000–0.058

0.7–1.3 is valid for n around 200, whereas the adjusted crical values proposed by Smith et
al. (1998) fit quite well for conditional infits over the range of sample sizes considered.
Next, histograms of the standardized outfit and infit values are compared with the stan-

dard normal distribution. The deviation from the expected mean for unconditional outfit
values is obvious in Fig. 4 (upper row). The Wilson-Hilferty transformation makes the
approximation even worse for larger n. The conditional statistics are unbiased but there
are some large outliers and too many values in the center, the calculated standard errors
seem to be too large. Standard errors are also too large for unconditional outfit statistics.
This can be seen if the outfits are centered around zero. For items with small ore large
difficulties the situation is more extreme.
Parametric bootstrap is expected to produce smaller p-values for conditional statisics as

the test based on the normal approximation. This is verified in Table 5 for the conditional
outfit statistics with n = 2000 and k = 10.

Discussion
Residual-based fit statistics are widely used to assess Rasch model fit. At the same time,
there are concerns about the quality of these indicators. Some people argue completely
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Fig. 3 Distribution of p-values for unconditional and conditional outfit statistics of difficult item (item 10) and
an item located in the center (item 5) with n = 1000 and k = 10

against the use of any residual fit statistic (Karabatsos 2000), others have developped
alternatives such as likelihood-based fit statistics or graphical approaches to assess item
fit (Orlando and Thissen 2000; Yu 2020). There is no doubt that other approaches can
give valuable information about possible problems of items. Nevertheless, this paper is
focused on residual-based fit statistics because they are so popular and we would like to
help to improve their usage.
Two different estimates of residuals are considered, one based on biased and not consis-

tent person parameters, the other based on scores. For a sample size of 200 or more, the
unconditional total item-trait interaction chi-square test which uses the person parameter
estimates shows increased Type I error rates. Unconditional single item chi-square statis-
tics become unreliable for n ≥ 500. This is in accordance with the results of Hagell and
Westergren (2016), but is now supported bymanymore simulations. The usually assumed
chi-square approximations are inadequate and the parametric bootstrap confirms these
results. In the case of unconditional tests, chi-square p-values are much smaller than
bootstrap p-values. So this means that even for moderate sample sizes, the Rasch model
is rejected too often and/or too many items falsely show misfit.
The conditional chi-square tests which are based on scores remain valid. The pro-

portion of p-values below 0.05 is close to 0.05 and the chi-square distribution and the
bootstrap distribution quite agree for conditional tests. As long as there are no conditional
fit statistics implemented in RUMM2030, users have to be careful to not misinterpret
seemingly significant results unless the sample size is small.
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Table 4 2.5 − 97.5% Percentiles for unconditional and conditional outfits and infits

Outfit Infit

n k uncond cond 1 ± 6/
√
n uncond cond 1 ± 2/

√
n

150 10 0.60–1.33 0.67–1.55 0.51–1.49 0.78–1.10 0.84–1.17 0.84–1.16

15 0.65–1.33 0.70–1.46 0.81–1.12 0.85–1.16

20 0.69–1.34 0.72–1.43 0.83–1.12 0.86–1.15

200 10 0.64–1.27 0.70–1.46 0.56–1.42 0.80–1.07 0.86–1.15 0.86–1.14

15 0.69–1.27 0.73–1.39 0.83–1.09 0.87–1.14

20 0.71–1.28 0.75–1.36 0.85–1.10 0.88–1.13

250 10 0.65–1.21 0.73–1.40 0.62–1.38 0.81–1.06 0.88–1.13 0.87–1.13

15 0.71–1.24 0.75–1.34 0.84–1.08 0.88–1.12

20 0.74–1.24 0.77–1.32 0.86–1.09 0.89–1.12

500 10 0.71–1.11 0.80–1.26 0.73–1.27 0.84–1.03 0.91–1.09 0.91–1.09

15 0.77–1.15 0.82–1.25 0.87–1.05 0.92–1.09

20 0.79–1.16 0.83–1.22 0.89–1.05 0.92–1.08

1000 10 0.76–1.05 0.85–1.18 0.81–1.19 0.86–1.01 0.94–1.06 0.94–1.06

15 0.81–1.08 0.87–1.16 0.89–1.02 0.94–1.06

20 0.83–1.10 0.88–1.16 0.91–1.03 0.94–1.06

1500 10 0.77–1.02 0.87–1.14 0.84–1.15 0.87–1.00 0.95–1.05 0.95–1.05

15 0.82–1.05 0.89–1.13 0.90–1.01 0.95–1.05

20 0.85–1.07 0.89–1.13 0.92–1.02 0.95–1.05

2000 10 0.75–1.04 0.89–1.12 0.86–1.13 0.87–0.99 0.96–1.05 0.96–1.04

15 0.84–1.04 0.89–1.13 0.91–1.01 0.96–1.04

20 0.86–1.05 0.91–1.11 0.92–1.02 0.96–1.04

3000 10 0.81–0.99 0.91–1.10 0.89–1.11 0.88–0.99 0.96–1.04 0.96–1.04

15 0.85–1.02 0.92–1.09 0.91–1.00 0.97–1.03

20 0.87–1.03 0.92–1.09 0.93–1.02 0.97–1.03

10 000 10 0.83–0.97 0.95–1.05 0.94–1.06 0.89–0.97 0.98–1.02 0.98–1.02

15 0.88–0.99 0.95–1.05 0.92–0.99 0.98–1.02

20 0.90–1.00 0.96–1.05 0.94–1.00 0.98–1.02

The unconditional outfit and infit statistics have means slightly smaller than the
expected value of 1, at least if the number of items is small. Type I error rates are increased
for unconditional statistics if n ≥ 500. Therefore, too many items are regarded as mis-
fitting or the Rasch model as a whole is falsely rejected. Other authors have also noticed
these problems a long time ago (Smith 1991; Wang and Chen 2005).
Mean values are okay for the conditional tests, but the error rates appear to be too

small. The calculated standard errors are too large and therefore the standardized values
become too small. The reason is that the squared residuals used in Eq. (3) are not indepen-
dent as assumed. Correlations tend to be negative especially for items with large or small
difficulties. The resulting true variance is therefore smaller than the estimated variance.
The adjusted rule-of-thumb (1±2/

√
n) appears to be reasonable if applied to conditional

infit statistics, whereas the adjusted rule-of-thumb for outfit statistics (1 ± 6/
√
n) does

not seem to be valid. As Winsteps and the R package eRm only calculate unconditional
outfit and infit statistics, their results can become unreliable for sample sizes above 250.
The R package iarm (Müller 2020) can be used to estimate conditional fit statistics which
have correct mean values and to apply bootstrapping for the p-values. DIGRAMestimates
conditional fit statistics as well. The user should also apply the recently implemented
bootstrapping procedure to get p-values not relying on invalid distributional assumptions.
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Fig. 4 Distribution of the unconditional and conditional standardized outfit statistic for item 5. The red curve
is the standard normal distribution, the red vertical lines are the 2.5% and 97.5% percentiles. Values outside
these critical values will lead to rejecting the null hypothesis

If only infit statistics are relevant, the adjusted rule-of-thumb given by Smith et al. (1998)
could be used instead.

Conclusions
It is time to update the Rasch software. Large chisquare fit statistics are not just a matter
of large sample sizes, problems start with n as small as 200. It is therefore crucial to use
conditional estimates. The chisquare distribution can then be used as an approximation
for the distribution of the test statistic. As for outfit and infit statistics, standard error
calculations are not reliable. Parametric bootstrap should be used to get correct p-values.

Table 5 Normal approximation and bootstrap p-values for conditional outfits, n = 2000

p-Normal p-Boot

Item 1 0.247 0.147

Item 2 0.860 0.803

Item 3 0.265 0.241

Item 4 0.724 0.695

Item 5 0.449 0.460

Item 6 0.478 0.442

Item 7 0.196 0.141

Item 8 0.410 0.337

Item 9 0.322 0.228

Item 10 0.129 0.102
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