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Abstract
We develop the distribution for the number of hypotheses found to be statistically
significant using the rule from Simes (Biometrika 73: 751–754, 1986) for controlling the
family-wise error rate (FWER). We find the distribution of the number of statistically
significant p-values under the null hypothesis and show this follows a normal
distribution under the alternative. We propose a parametric distribution �I(·) to
model the marginal distribution of p-values sampled from a mixture of null uniform
and non-uniform distributions under different alternative hypotheses. The �I
distribution is useful when there are many different alternative hypotheses and these
are not individually well understood. We fit �I to data from three cancer studies and
use it to illustrate the distribution of the number of notable hypotheses observed in
these examples. We model dependence in sampled p-values using a latent variable.
These methods can be combined to illustrate a power analysis in planning a larger
study on the basis of a smaller pilot experiment.

Keywords: Bonferroni correction, Simes criteria, False discovery rate, p-values

1 Introduction
Much work in informatics is concerned with identifying and classifying statistically
significant biological markers. In this work we develop methods for describing the distri-
bution of the numbers of such events. Informatics methods often summarize experiments
resulting in a large number of p-values, usually through multiple comparisons of gene
expression data. Typically, the number of tests m, is much greater than the number of
subjects, N. There are several important rules for identifying statistically significant p-
values while maintaining the significance level below a pre-specified level α (0 < α < 1).
Benjamini (2010) provides a review of recent advances.
A commonly cited rule to control the FWER is the Bonferroni correction. Given a sam-

ple of ordered p-values p(1) ≤ p(2) ≤ · · · ≤ p(m), the Bonferroni rule finds the smallest
value of B = 0, 1, . . . ,m − 1 for which

p(B+1) > α/m . (1)

The Simes (1986) rule chooses the smallest value S = 0, 1, . . . ,m such that

p(S+1) > (S + 1) α/m (2)
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to control the FWER ≤ α.
A similar rule developed by Benjamini and Hochberg (1995) to maintain the false

discovery rate (FDR) ≤ α finds the largest value of BH such that

p(BH) < BH α/m .

This reference shows procedures controlling the FWER also control the FDR, but
procedures controlling FDR only control FWER in a weaker sense.
We will concentrate on the distribution of B and S in this report. We describe the

probability distribution of B and S under null hypotheses where each p-value has
an independent marginal uniform distribution as well as an approximating distribution
under the alternative hypothesis with density function ψI(p) expressible as a polynomial
in log p of order I.
There has been limited research on parametric distributions for the p-values generated

from data under a mixture of the null and different distributions under multiple alterna-
tive hypotheses. The mixed p-values are mainly modeled using non-parametric methods
(Genovese and Wasserman 2004; Broberg 2005; Langaas et al. 2005; Tang et al. 2007)
or alternatively, the p-values are converted into normal quantiles and modeled there-
after (Efron et al. 2001; Efron 2004; Jin and Cai 2007). Another common approach is to
approximate the distribution of sampled p-values using a mixture of beta distributions
(Pounds andMorris 2003; Broberg 2005; Tang et al. 2007). Other parametric models have
been described by Kozoil and Tuckwell (1999); Genovese and Wasserman (2004); Yu and
Zelterman (2017, 2019).
Of interest is the fraction π0 of p-values sampled from the uniform distribution under

the null hypothesis. Langaas et al. (2005) and Tang et al. (2007) suggest the estimated den-
sity of p-values at p = 1 be used to estimate the fraction π0. Estimating π0 is of practical
importance: The BH statistic controls the FDR no more than απ0. Consequently, Ben-
jamini and Hochberg (2000) recommend we perform tests with significance level α/π0
and still maintain the FDR below α. We found ψI(1 | θ̂) to be a useful estimator of π0
in the examples of Section 5, where θ̂ denotes the maximum likelihood estimate.
The p-values are usually not independent. In microarray studies, for example, a small

number of clusters of p-values in the same biological pathway may have high mutual cor-
relations. Methods for modeling such dependencies are developed by Sun and Cai (2009),
Friguet et al. (2009), and Wu (2008) for examples.
In Section 2, we describe the probability distribution of S in (2) when the pi are inde-

pendently sampled from an unspecified distribution �. In Section 3 we examine p-values
sampled from a uniform distribution under the null hypothesis. Section 4 provides ele-
mentary properties of the proposed distribution �I . The parameters θ of �I depend on
the specific application and are estimated for two examples in Section 5. In Section 6, we
model the distribution of dependent p-values using a latent variable. We combine these
methods in Section 7 to illustrate approximate power in planning a proposed study. We
provide mathematical details of Sections 2 and 3 in Appendix A. Appendix B examines
the behavior of B and S under a close sequence of alternative hypotheses. Appendix C
examines the parameter space for the �I distribution.
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2 Simultaneousmultiple testing
Let p1, p2, . . . , pm denote m randomly sampled p−values with ordered values p(1) ≤
p(2) ≤ · · · ≤ p(m). We will initially assume all p-values are independent and have the
same distribution function denoted by �(·) with corresponding density function ψ(·).
In Section 6, we return to the assumption of independence. We propose a non-uniform
approximation for � in Section 4.
If we follow the Bonferroni rule (1) then the distribution of the number B of statisti-

cally significant p-values at FWER≤ α follows a binomial distribution with index m and
probability parameter equal to �(α/m).
The distribution of S can be obtained by writing

Pr[ S = k ] = Pr

⎡
⎣

k⋂
j=1

{ p(j) < jα/m } and p(k+1) > (k + 1)α/m

⎤
⎦

= m!
(m − k)!

[ 1 − �((k + 1)α/m) ]m−k Uk , (3)

where U0 = 1 and

Uk =
∫ α/m

p1=0

∫ 2α/m

p2=p1
· · ·

∫ kα/m

pk=pk−1

ψ(p1) · · · ψ(pk) dpk . . . dp2 dp1 (4)

for k = 1, 2, . . . ,m.
In Appendix A we prove

Uk =
k∑

i=1
(−1)i+1 � i{(k − i + 1)α/m}Uk−i/ i! . (5)

The p-values are typically sampled from a mixture of a uniform distribution under the
null hypothesis and several distributions under different alternative hypotheses. Similarly,
the distribution of S will be a mixture of a mass near zero and a normal distribution,
described next. This mixture distribution is illustrated in Figs. 2 and 4 for two examples
of Section 5.
Specifically, for values of S near zero we have

Pr[ S = 0 ] = {1 − �(α/m)}m ,

Pr[ S = 1 ] = m {1 − �(2α/m)}m−1 �(α/m) ,

Pr[ S = 2 ] =
(
m
2

)
{1 − �(3α/m)}m−2 �(α/m) {2�(2α/m) − �(α/m)} .

To describe the behavior of S away from zero, begin with the quantile function
�−1(i/(m + 1)) giving the approximate expected value of the order statistic p(i). If m is
large and i/m is not too close to either zero or one, then p(i) will be approximately nor-
mally distributed. In (2), S is the smallest value of k for which p(k+1) > (k+1)α/m. This
should occur for values of S with mean μ solving

�−1((μ + 1)/(m + 1)) = (μ + 1)α/m ,

or equivalently,

�((μ + 1)α/m) = (μ + 1)/(m + 1) . (6)
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If we write S = mp(μ)/α for integer μ and use the large sample approximation to an
order statistic, then the approximate variance of S is

μ(m − μ)

α2m [ψ(α(μ + 1) /m)]2
.

If the null (uniform) and alternative hypotheses are not very different from each other,
then the solution to μ in (6) will be close to zero and Appendix B describes a different
approximation to the behavior of B and S.

3 Behavior under the null hypothesis
Let us next examine the special case where all p-values are independently sampled under
the null hypothesis. When the distribution of the pi are independent and marginally
uniformly distributed then (3) and (5) are expressible as

Pr[ S = 0 ] = (1 − α/m)m ,

Pr[ S = 1 ] = α (1 − 2α/m)m−1 ,

Pr[ S = 2 ] = 3/2 {(m − 1)/m}α2 (1 − 3α/m)m−2 ,

and in general,

Pr[ S = k ]=
(
m
k

)
(k + 1)k−1 (α/m)k {1 − (k + 1)α/m}m−k . (7)

Details of the derivation of (7) appear in Appendix A.
Useful results can be obtained if we also assume the number of hypotheses m is large.

The limiting distribution (7) of S, is

Pr[ S = k | α ]= {(k + 1)k−1/ k! } αk e−(k+1)α (8)

for k = 0, 1, . . . .
The probabilities in (8) sum to unity using equation (130) in Jolley (1961, p. 24). The

mean of this distribution is α/(1 − α) and the variance is α/(1 − α)3. The distribution
of S + 1 in (8) is known as the Borel distribution with applications in queueing theory
(Tanner, 1961). Similarly, for large values of m, the number of identified p-values at FWER
≤ α for the Bonferroni criteria (1) will follow a Poisson distribution with mean α when
sampling p-values under the null hypothesis.

4 Distributions for P−Values
We next propose a marginal distribution � for p-values, independent of the choice of test
statistic.We continue to assume the p-values aremutually independent and have the same
marginal distributions. We must have � concave (Genovese and Wasserman 2004; Sun
and Cai 2009), otherwise the underlying test will have power smaller than its significance
level for some α. Similarly, the corresponding density function ψ must be monotone
decreasing. We next propose a flexible distribution for modeling the distribution of p-
values under alternative hypotheses.
Consider a distribution with a density function expressible as a polynomial in log p

up to degree I = 0, 1, 2, . . .. The uniform (0–1) distribution is obtained for I = 0. The
marginal density function we propose for p-values is

ψI(p | θ) =
I∑

i=0
θi (− log p)i (9)
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for real-valued parameters θ = {θ1, . . . , θI} with I ≥ 1 where

θ0 = 1 −
I∑

i=1
i! θi , (10)

so the densities ψI(p) integrate to one over 0 < p ≤ 1. Similarly, θ0 is not an
independent parameter.
The corresponding cumulative distribution function is

�I(p | β) = p
I∑

i=0
βi (− log p)i , (11)

where β0 = 1.
The relationship between these parameters is linear:

βj =
I∑
i=j

θi i! /j!

for j = 1, 2, . . . , I and θi = βi − (i + 1)βi+1 for i = 1, 2, . . . , I − 1. Throughout, we will
interchangeably refer to either the θ or β parameterizations for simplicity.
The moments of distribution ψI(p | θ) are

E(p j | θ) =
I∑

i=0
i! θi / (j + 1)i+1 , (12)

for j = 1, 2, . . . .
We must have θI > 0 in order to have ψI(p) > 0 for values of p close to zero. Values

of θ0 are restricted in (10) in order for ψI(p) to integrate to unity. Since ψI(1 | θ) = θ0
we must also require θ0 ≥ 0. Requiring ψI(p) to be decreasing at p = 1 gives θ1 ≥ 0.
These restrictions alone on θ0, θ1, and θI are not sufficient to guarantee ψI(p | θ) is

monotone decreasing or positive valued for all values of 0 ≤ p ≤ 1. The necessary con-
ditions for achieving these properties are difficult to describe in general, but sufficient
conditions are all θi ≥ 0. Specific cases are examined in Appendix C for values of I up
to I = 4. Models for larger values of I could be fitted by maximizing the penalized like-
lihood, such that ψI(p | θ) is positive valued and monotone decreasing at the observed,
sorted p-values.
In practice, the choice of I is found by fitting a sequence of models. Successive values of

I represent nested models so twice the differences of the respective log-likelihoods will
behave as χ2 (1 df) when the underlying additional parameter value is zero. In practice,
we found I = 3 or 4 were adequate for the three examples in this work.
The ψI density function is specially suited for modeling the marginal distribution of a

uniform and a variety of non-uniform distributions for p-values. If each pi (i = 1, . . . ,m )
is sampled from a different distribution with density function ψI(p | θ i), then the
marginal density of all pi satisfies

m−1
m∑
i

ψI(p | θ i) = ψI(p | θ), (13)

where θ is the arithmetic average of all θ i. A similar result holds if the values of I vary
across distributions of pi.
This mixing of distributions includes the uniform as a special case. Specifically, suppose

100π0−percent of the p-values are sampled from a uniform (0, 1) distribution (0 ≤ π0 ≤
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1) and the remaining 100(1−π0)−percent are sampled from ψI(p | θ). Then themarginal
distribution has density function

π0 + (1 − π0) ψI(p | θ) = ψI(p | (1 − π0)θ) , (14)

demonstrating π0 is not identifiable in this model.
Equations (13) and (14) illustrate the utility of ψI in modeling p-values sampled from

a mixture of the null hypothesis and different distributions under alternative hypotheses,
yet retaining the same parametric distribution form. Donoho and Jin (2004) also describe
the value of such a mixture of heterogeneous alternative hypotheses in multiple testing
settings. Following Langaas et al. (2005); Tang et al. (2007) we use ψI(p = 1 | θ̂) = θ̂0,
the estimated density at p = 1, to estimate π0, the proportion of p-values sampled from
the null hypothesis.

5 Two examples
For each of the examples in this work, we fitted the density function ψI described in
Section 4 and then used this model to examine the distribution of S given in (3). The
fitted parameter values θ̂ for these examples are given for successive values of I. Wemax-
imized the likelihoods using standard optimization routine nlm in R. This routine also
provides estimates of theHessian used to estimate standard errors of parameter estimates.
The evaluation of Uk in (5) involves adding and subtracting many nearly equal values

resulting in numerical instability. We computed Uk using multiple precision arithmetic
with the Rmpfr package in R (Maechler 2019). A third example will be introduced in
Section 7, to illustrate estimation of power for multiple hypothesis testing problems.

5.1 Breast cancer

This microarray dataset was originally described by Hedenfalk et al. (2001) and also
analyzed by Storey and Tibshirani (2003). These data summarize marker expressions of
m = 3226 genes in seven women with the BRCA1 mutation and in eight women with the
BRCA2 mutation. The objective was to determine differentially-expressed genes between
these two groups. Earlier analyses used a two-sample t-test to compare the two groups
for each gene, giving rise to m p-values. Efron (2004) and Jin and Cai (2007) model the
z-scores corresponding to the p-values.
Fitted parameters are given in Table 1. The fitted model for I = 2 represents a big

improvement over the model with I = 1 parameter. The model with I = 3 parameters
has amodest improvement over themodel with I = 2 and I = 4 demonstrates negligible
change in the likelihood over I = 3. Fitted densities ψI for I = 2 and 3 are plotted in
Fig. 1 along with the observed data. There is only a small difference between the fitted
models in this figure, and both exhibit a good fit to the data. Our estimate of π0 given by
θ̂0 is .65 for I = 2 and .62 for I = 3. An estimate of .67 for π0 is described in Storey and
Tibshirani (2003).
There are S = 29 statistically significant markers at FWER = .05 using the adjust-

ment for multiplicity given in (2). The fitted distribution of S is displayed in Fig. 2 using
ψ3(· | θ̂) . The mean of this fitted distribution is 22.75. The distribution in Fig. 2 appears
as a mixture of a distribution concentrated near k = 0 and a left-truncated normal
distribution with a local mode at 24. The observed value S = 29 is indicated in this figure.
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Table 1Maximum likelihood estimated parameter values of ψI for the breast cancer data

Model parameters Log- 2× θ̂0 to

I Symbol Estimate Std Err Likelihood Difference estimate π0

1 θ1 0.531 0.018 482.04 — 0.469

2 θ1 0.0 0.049 569.04 174.0 0.649

θ2 0.177 0.015

3 θ1 0.158 0.084 573.27 8.47 0.623

θ2 0.0492 0.0506

θ3 0.0201 0.0075

4 Same as I = 3

The point mass at S = 0 is about 0.1 and values of S ≤ 3 account for about 20% of the
distribution with I = 3 and fitted θ̂ . This distribution is approximately a mixture of the
distribution near zero and 80% of a normal with mean 26.1 and standard deviation 17.9
using (6).

5.2 The cancer genome atlas: lung cancer

This dataset contains the summary of an extensive database collected on tumors from
N = 178 patients with squamous cell lung carcinoma. A full description of these data and

Fig. 1 Histogram and fitted density function ψI for the 3226 biomarker p-values from the breast cancer data
with I = 2 (dashed line) and I = 3 (solid line). A histogram for these data also appears in Storey and
Tibshirani (2003)
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Fig. 2 Fitted distribution of S for breast cancer p-values with I = 3. The mean and observed S = 29
p-values at FWER = .05 are indicated. The dashed line is the normal approximation described by (6)

the analyses performed are summarized in the Cancer GenomeAtlas (2012). The data val-
ues were downloaded from the website https://tcga-data.nci.nih.gov/. We
choose to examine p-values representing summaries of statistical comparisons of smok-
ers and non-smokers across the genetic markers. We identified m = 20, 068 observed
p-values after omitting about 2% missing values.
Using the Simes procedure, S = 173 p-values are identified with FWER = .05. The

fitted parameter values θ̂ are given in Table 2. Distributions up to I = 4 showed statisti-
cally significant improvement in the log-likelihood but larger values of I failed to change
it. The fitted density function ψ4(· | θ̂) given in Fig. 3 demonstrates good agreement with
the observed data. The estimate θ̂0 of π0 is about .70 for I = 4.
The fitted distribution of S given in (3) is plotted in Fig. 4. There is close agreement

between the observed value (173), the mean (176.35) of the fitted distribution, and the
local mode (177). As with Fig. 2, the fitted distribution of S appears as a mixture of a
distribution concentrated near zero and a normal distribution. The local mode at zero
gives a fitted Pr[ S ≤ 2 ] of .012. The density mass away from zero is approximately that
of a normal distribution with mean 178.8 and standard deviation 39.1 using (6).

6 Sampling dependent P-values
In this section we describe a method for sampling of dependent p-values by condition-
ing on an unobservable, latent variable. Greater dependence among the p-values results

https://tcga-data.nci.nih.gov/
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Table 2Maximum likelihood estimated parameter values of ψI for lung cancer example

Model parameters Log- 2× θ̂0 to

I Symbol Estimate Std Err Likelihood Difference estimate π0

1 θ1 0.448 0.007 2147.48 — 0.552

2 θ1 0.0 0.020 2579.47 863.98 0.684

θ2 0.158 0.006

3 θ1 0.174 0.034 2641.32 123.70 0.684

θ2 0.0008 0.020

θ3 0.0233 0.0028

4 θ1 0.100 0.0497 2643.49 4.33 0.698

θ2 0.0761 0.0423

θ3 0.000493 0.0119

θ4 0.00195 0.0010

5 Same as I = 4

in greater means and variances for the distribution of p-values. This behavior is also
described by Owen (2005). Greater dependence also contributes to a larger point mass
at zero. We will use the fitted breast cancer example of Section 5.1 to illustrate these
methods.
Let θ and ε denote I−tuples such that both θ + ε and θ − ε are valid parameters for

the density ψI described in Section 4. Let Y denote a Bernoulli random variable with

Fig. 3 Observed and fitted ψ4 density for m = 20, 068 TCGA lung cancer biomarkers
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Fig. 4 Fitted distribution of S for TCGA lung cancer biomarker p-values with α ≤ .05

parameter equal to 1/2. Conditional on the (unobservable) value of Y , assume all p-values
are sampled from either ψI( · | θ + ε) or ψI( · | θ − ε). The marginal distribution of these
exchangeable p-values is then ψI(· | θ) using (13).
To demonstrate the correlation among the p-values induced by this latent model, let

Q1, Q2 denote a random sample from ψI , both with parameters either θ + ε or θ −
ε, conditional on Y. The Qi are conditionally independent given Y and have marginal
covariance

Cov(Q1, Q2) = {E(p | θ + ε)}2/2 + {E(p | θ − ε)}2/2 − {E(p | θ)}2 ,

where E(p | θ) is the expected value of ψI( p | θ) calculated using (12). This covariance
is never negative.
Continuing to sample in this fashion, we then have the marginal distribution

Pr[ S = k ] = Pr[ S = k | θ − ε ] /2 + Pr[ S = k | θ + ε ] /2 . (15)

As an illustration, we used θ = θ̂ and ε = zσ̂ where θ̂ and σ̂ are the fitted parameters
and their estimated standard errors respectively given in Table 1 for the breast cancer
example with I = 3. The distributions given by (15) for z = 0, .25, .5, and .75 are plotted
in Fig. 5. Summaries of these four distributions and the mutual correlations of the p-
values are given in Table 3. As we see in Fig. 2, all distributions in Fig. 5 appear as mixtures
of distributions concentrated near zero and a truncated normal distribution, away from
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Fig. 5 Distributions of S under dependent sampling for fitted parameters from the breast cancer example.
Values of z are given and control the dependence among the underlying p-values. Summaries of these
distributions are given in Table 3

zero. Greater dependence results in a larger point mass at zero, as well as larger means
and variances of S .

7 Power for planning studies
In this final section we describe how to plan for a larger project using data from a smaller
pilot study. Huang et al. (2015) report on a study of N = 78 patients with lung cancer
and examined m = 48, 803 markers to determine if any of these are related to patient
survival. None of these markers were identified as statistically significant at α = .05 using
the Bonferroni method. A link to their data appears in our References.

Table 3 Properties of the distributions of S when sampling correlated p-values using (15) with the
fitted breast cancer data

Correlation

z of p-values Mean SD Pr[ S = 0 ]

0 0 22.75 18.13 .101

.25 .004 24.43 21.44 .104

.5 .017 29.40 29.50 .116

.75 .037 37.18 39.85 .136

These distributions are plotted in Fig. 5
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Table 4Maximum likelihood estimated parameter values of ψI for survival of lung cancer patients

Model parameters Log- 2× θ̂0 to

I Symbol Estimate Std Err Likelihood Difference estimate π0

1 θ1 0.1366 0.0048 461.09 — 0.863

2 θ1 0.00863 0.0115 541.72 161.26 0.921

θ2 0.03507 0.0030

3 θ1 0.0524 0.020 545.44 7.45 0.908

θ2 0.00983 0.010

θ3 0.00327 0.0013

4 Same as I = 3

We examined their data and the parameter estimates for our fitted models ψI appear
in Table 4. We found the model with I = 3 provided the best fit and worked with that
maximum likelihood estimate θ̂ to model power. We estimate more than 90% of the p-
values were sampled from the null hypothesis in these data.
In order to describe power we will assume the magnitude of the effect, as measured by

θ , is proportional to the square root of the subject sample size, as is often the case with
parameters whose estimates are normally distributed. This assumption will also require
values of θ to lie near the center of the valid parameter space and wouldn’t be valid for
extrapolating to extremely large sample sizes. That is, we computed power estimates in
Table 5 setting

θ = θ(N) = (N/78)1/2 θ̂

where N is the proposed patient sample size and used ε = zθ in (15) to vary the
dependence among p-values for values of z = 0, .4, and .8.
A variety of sample sizes and correlations are summarized in Table 5. This table sum-

marizes the power as the probability of identifying at least one marker with α = .05. The
expected number of identified findings using S is also given in this table.
We estimate the published study by Huang et al. (2015) had about a 50% chance of

detecting at least one marker with α = .05. Table 5 suggests increasing sample sizes from
78 to N ≥ 450 patients to achieve power greater than 80% under a model of independent

Table 5 Estimated power based on pilot data from Huang et al. (2015) with m = 48, 803 markers

Sample Dependence Estimated

size N z Correlation Expected S Pr[ S > 0]

78 0 0 1.5 0.517

0.4 .001 1.7 0.499

0.8 .006 2.7 0.444

300 0 0 6.5 0.748

0.4 .006 11.4 0.712

0.8 .002 30.9 0.592

450 0 0 12.6 0.813

0.4 .008 26.2 0.772

0.8 .034 75.0 0.631

600 0 0 21.7 0.855

0.4 .011 49.0 0.812

0.8 .045 90.8 0.657
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sampling. Even small mutual correlations result in greater point masses at zero, reducing
the power of detecting at least one statistically significant p-values. Another factor is the
estimated high proportion of p-values sampled from the null hypothesis ( π̂0 = .908).
Subsequent studies should restrict sampling to those markers showing promise in the
pilot, as the case in Haynes et al. (2012).

Appendix A: Details of Sections 2 and 3
We define U0 = 1 in Eq. (4) and

Uk =
∫ α/m

p1=0

∫ 2α/m

p2=p1
· · ·

∫ kα/m

pk=pk−1

ψ(p1) · · · ψ(pk) dpk . . . dp2 dp1 ,

for k = 1, 2, . . . ,m.
To demonstrate (5), we integrate one term at a time to show

Uk =
∫ α/m

p1=0

∫ 2α/m

p2=p1
· · ·

∫ (k−1)α/m

pk−1=pk−2

{�(kα/m) − �(pk−1)}ψ(p1) · · ·ψ(pk−1) dpk−1 · · · dp1

= �(kα/n)Uk−1 −
∫ α/m

p1=0

∫ 2α/m

p2=p1
· · ·

∫ (k−2)α/m

pk−2=pk−3

{�2((k − 1)α/m) − �2(pk−2)}/2!

× ψ(p1) · · · ψ(pk−2) dpk−2 . . . dp2 dp1
= �(kα/n)Uk−1 − �2{(k − 1)α/m}Uk−2/2!

+ 1
2!

∫ α/m

p1=0

∫ 2α/m

p2=p1
· · ·

∫ (k−2)α/m

pk−2=pk−3

�2(pk−2) ψ(p1) · · ·ψ(pk−2) dpk−2 . . . dp2 dp1 ,

and continue in this manner to demonstrate the recursive relation

Uk =
k∑

i=1
(−1)i+1 � i{(k − i + 1)α/m}Uk−i/ i! , (16)

given by (5).
To demonstrate (7) for the specific case of �(p) = p we need to show

Uk = (k + 1)k−1 (α/m)k / k! . (17)

We will prove (17) by induction on k.
In Section 3 we demonstrate (17) is true for k = 0, 1, 2. Next, we demonstrate if (17) is

valid for any k = 0, 1, . . . ,m − 1 then it is also true for k + 1.
Begin by using the recursive relation (16) with �(p) = p and (17) for k giving

Uk+1 =
k+1∑
i=1

(−1)i+1
{

(k − i + 2)α
m

}i
{

(k − i + 2)k−iαk−i+1

(k − i + 1)! i! mk−i+1

}

= (α/m)k+1
k+1∑
i=1

(−1)i+1 (k − i + 2)k

(k − i + 1)! i!
.

It remains to show
k+1∑
i=1

(−1)i+1(k − i + 2)k/(k − i + 1)! i! = (k + 2)k/(k + 1)! ,

or equivalently
k+1∑
i=0

(−1)i+1
(
k + 1
i

)
(k − i + 2)k = 0 .
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Continue by writing
(k+1

i
) = (k

i
) + ( k

i−1
)
and set j = i − 1 giving

k+1∑
i=0

(−1)i+1
(
k + 1
i

)
(k − i + 2)k =

k∑
i=0

(−1)i+1
(
k
i

)
(k − i + 2)k

+
k∑

j=0
(−1)j

(
k
j

)
(k − j + 1)k .

The proof of (17) is completed by two applications of the Ruiz Identity (Ruiz, 1996).
Specifically,

k∑
i=0

(−1)i
(
k
i

)
(x − i)k = k! ,

for all integers k ≥ 0 and all real numbers x.

Appendix B: A close alternative hypothesis
Here we demonstrate the distribution of B and S when a large number of p-values are
independently sampled from �I(p | β) for I ≥ 1 for values of β close to zero. That is,
the null and alternative hypotheses are not very different. Specifically, consider a sequence
of parameter values βm = β/(logm)I shrinking to zero. Following (11), we always have
β0 = 1.
Begin by writing

m�I(γ /m | βm) = γ

{
1 + β1

(logm)I
(logm − log γ ) +· · ·+ βI

(logm)I
(logm − log γ )I

}

= γ (βI + 1) + O(1/ logm) , (18)

for any fixed γ > 0.
When sampling from �I(· | βm) using the Bonferroni rule (1), set γ = α in (18) to

demonstrate the number of statistically significant p-values B will have an approximate
Poisson distribution with mean α(βI + 1).
In order to describe the distribution of S we can also use (18) to show

{1 − �I((k + 1)α/m | βm)}m−k = exp{−(k + 1)α(βI + 1)} + O(1/ logm) ,

demonstrating

Pr[ S = 0 | βm ]= exp{−α(βI + 1)} + O(1/ logm) ,

and

Pr[ S = 1 | βm ]= α(βI + 1) exp{−2α(βI + 1)} + O(1/ logm) .

More generally, if m p-values are independently sampled from �I( · | β/(logm)I) then

Pr[ S = k ]= (k+1)k−1/k! {α(βI+1)}k exp{−(k+1)α(βI+1)} +O(1/ logm) , (19)

for moderate values of k = 0, 1, . . . which is the Borel distribution (8) with parameter
α(βI + 1). The proof of (19) closely follows the proof by induction of (17) in Appendix A.

Appendix C: Parameter space for ψI(p)

In this Appendix we describe the limits of parameter values for the density func-
tion ψI(p | θ) defined in (9) for small values of I. Specifically, we must have ψI(p)
non-negative and monotone decreasing for all 0 < p < 1.
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For all values of I we must have θI > 0 in order for ψI(p) > 0 for values of p close to
zero. We must have ψI(1) = θ0 non-negative so θ0 ≥ 0.
Since ψ ′

I(1) = −θ1, in order for ψI to be monotone decreasing, we must have θ1 ≥ 0
for all values of I. The condition of all θi ≥ 0 is sufficient (but may not be neccessary) for
ψ to be monotone decreasing because the Descartes Rule of Signs shows the derivative
ψ ′
I(p) of ψI(p) will have no positive roots in p.
I = 1: If 0 ≤ θ1 ≤ 1 then ψ1(p | θ1) is a valid density and monotone decreasing.
I = 2: Wemust have (θ0, θ1, θ2) all non-negative so

0 < θ2 ≤ 1/2 and 0 ≤ θ1 ≤ 1 − 2θ2 .

For larger values of I, define x = − log p and set g(x) = ∑
θixi. It is sufficient for

g(x) ≥ 0 and g′(x) ≥ 0 for all x ≥ 0 to show ψ is positive and monotone decreasing.
For θ1 ≥ 0 we have g′(0) ≥ 0 and g′(x) ≥ 0 for all x sufficiently large because θI > 0.
To demonstrate g′ > 0 we need to show g′′(x) has no real, positive roots.
I = 3: We must have θ3 > 0 and θ1 ≥ 0. The slope of g(x) does not change sign

provided its second derivative g′′ = 6θ3x+2θ2 is never negative for all x ≥ 0. This shows
θ2 > 0. The restriction 0 ≤ θ0 ≤ 1 gives

0 < θ3 ≤ 1/6; 0 ≤ θ2 ≤ 1/2 − 3θ3; and 0 ≤ θ1 ≤ 1 − 2θ2 − 6θ3 .

I = 4: We have θ1 ≥ 0 and θ4 > 0. If the larger, real root of g′′ = 12θ4x2 + 6θ3x+ 2θ2
is negative then

(36θ23 − 96θ2θ4)1/2 < 6θ3

showing θ3 > 0. Squaring both sides of this inequality shows θ2 > 0.
If g′′ has imaginary roots then 36θ23 − 96θ2θ4 < 0 so θ2 > 0 and g′′ is never negative.

With imaginary roots, if the minimum of g′′(x) occurs at x > 0 then ψ4(p) will be
decreasing but not concave. The minimum of g′′(x) occurs at x = −θ3/4θ4 which is
negative leading to θ3 > 0.
In either real or imaginary roots, for I = 4 we have

0 < θ4 ≤ 1/24; 0 ≤ θ3 ≤ 1/6 − 4θ4;

0 ≤ θ2 ≤ 1/2 − 3θ3 − 12θ4;

and 0 ≤ θ1 ≤ 1 − 2θ2 − 6θ3 − 24θ4 .
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