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Abstract
This paper introduces a new family of bivariate copulas constructed using a unit
Weibull distortion. Existing copulas play the role of the base or initial copulas that are
transformed or distorted into a new family of copulas with additional parameters,
allowing more flexibility and better fit to data. We present a general form for the new
bivariate copula function and its conditional and density distributions. The tail behaviors
are investigated and indicate the unit Weibull distortion may result in new copulas with
upper tail dependence when the base copula has no upper tail dependence. The
concordance ordering and Kendall’s tau are derived for the cases when the base
copulas are Archimedean, such as the Clayton and Frank copulas. The Loss-ALEA data
are analyzed to evaluate the performance of the proposed new families of copulas.

Keywords: Archimedean copula, Distortion function, Kendall’s tau, Weibull
distribution, Tail dependence coefficient, Tail order

Introduction
Copulas serve numerous fields including insurance and finance. For example, (Frees and
Valdez 1998) demonstrated their usefulness and explored practical applications such as
estimation of joint life mortality and multi-decrement models. Nazemi and Elshorbagy
(2012) implemented copula modeling to study the interdependence among hydrological
data. The fitness of statistical models rests on its flexibility and more parameters may
better accommodate various features in data. Construction of new families of copulas
with better fitness has been of interest to researchers. In this paper, we provide a new
distortion mechanism of copula construction and start by setting forth fundamentals and
relevant literature below.
LetX and Y be continuous random variables with a joint distribution functionH(x, y) =

P(X ≤ x,Y ≤ y) and marginal cumulative distribution functions (cdf ) F(x) = P(X ≤ x)
and G(y) = P(Y ≤ y). Sklar (1959) showed that there exists a unique copula C such that
H(x, y) = C(F(x),G(y)) with joint probability density function (pdf), h(x, y), given by

h(x, y) = c (F(x),G(y)) f (x)g(y), (1)

where the copula pdf c(u, v) = ∂C(u, v)/∂u∂v, f (x) = dF(x)/dx = F ′(x), and g(y) =
dG(y)/dy = G′(y). Note the prime mark will be used to denote a derivative throughout
the paper.
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A bivariate copula can arise form a bivariate joint cdf. For example, the Gaussian cop-
ula is derived from the bivariate Gaussian distribution. Conversely, it can also be used to
generate new bivariate probability distributions via (1); see Nelsen (2006) for summaries
of methods of constructing copulas. Methods for constructing new bivariate joint dis-
tributions (Balakrishnan and Lai 2009) have also been adopted to create new copulas.
For example, the framework of the Sarmanov-Lee distribution (Lee 1996) was utilized
by Sharifonnasabi et al. (2018) and Cooray (2019) to construct new copulas. It is related
to the bivariate FGM distribution introduced by Morgenstern (1956), given by h(x, y) =
f (x)g(y)

�
1 + αh1(x)h2(y)

�
, x, y ∈ R , where h1 and h2 are two functions satisfying certain

conditions.
Distortion or transformation of existing copulas is another framework for forging new

families of copulas. Valdez and Xiao (2011)proposed three kinds of distortion approaches:
(1) distortion of the margins alone without altering the original copula structure; (2)
simultaneous distortion of the margins and the copula structure; and (3) synchronized
distortion of the copula and its margins. In this paper, we focus on the distortion of
the third kind that acts on the copula and induces the copula defined in (2). A function
T :[ 0, 1]→[ 0, 1] is said to be a distortion function if it is continuous and non-decreasing,
not necessarily convex or concave, with T(0) = 0 and T(1) = 1. It is said to be admissible
for a base or an initial copula C if the transformed copula CT (u, v) of the form

CT (u, v) = T
�
C

�
T−1(u),T−1(v)

��
, for u, v ∈ I, (2)

is also a copula. Note that, as in Valdez and Xiao (2011), T is assumed to be strictly
increasing such that T−1 exists and is continuous on [ 0, 1] .
If the initial copula is Archimedean with generator φ, then CT is Archimedean with

generator φ ◦ T−1; see Di Bernardino and Rulliere (2013) and the right composition rule
in Genest et al. (1998). A convex T is required for the admissibility; see Morillas (2005)
or Theorem 3.3.3 in Nelsen (2006). Durante et al. (2010) showed T is admissible if T ◦
exp : (−∞, 0) →[ 0, 1] is log-convex and suggested several distortion functions. The log-
convex condition will be used to obtain the admissible parameter space for the proposed
distortion. Samanthi and Sepanski (2019) constructed a new family of copulas via beta cdf
distortion. The mixture of Max-infinitely divisible approach for constructing BB1-BB7
copulas in Joe (2015) is also a distortion method. Xie et al. (2019) presented a family of
bivariate copulas by transforming an initial/base copula using two increasing functions.
For more references, see Xie et al. (2019).
In this paper, we inaugurate a distributional distortion derived by a transformation of a

Weibull random variable. This paper is organized as follows. In “Groundwork”, we first lay
some groundwork required for the derivation of properties of the new family of copulas.
“The proposed unit weibull distortion” stages the unit Weibull (UW) distortion func-
tion and the admissibility conditions on the parameters. In “Unit-Weibull distorted copu-
las”, the UW distorted copula distribution and its corresponding conditional and den-
sity distributions are formulated. Examples and possible limiting cases in parameters are
presented. “Properties” investigates properties such as the tail dependence coefficients,
tail orders, and concordance ordering. To assess its performance, the new UW-distorted
copula model is applied to the Loss-ALAE data set in “Application” sections, followed by
concluding remarks.
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Groundwork
In this section, we describe notation, definitions and some known results that would be
applied to distorted copulas; see Joe (2015) for more details.
From (1), a copula contains the dependence structure between two random variables

and links a bivariate distribution function to its univariate marginal cdf ’s. It has the fol-
lowing properties: i) C(u, 0) = C(0, v) = 0, (u, v) ∈ I2, where I =[ 0, 1]; ii) C(u, 1) = u
and C(1, v) = v, (u, v) ∈ I2; and iii) C (u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0,
for u1 ≤ u2, v1 ≤ v2, and (u1,u2), (v1, v2) ∈ I2. A copula C is Archimedean with strict
generator φ if it admits the representation of φ−1 (φ(u) + φ(v)), where φ : I →[ 0,∞] is
a continuous, strictly decreasing and convex function such that φ(1) = 0 and φ(0) = ∞.
Tail dependence coefficients are measures of extremal dependence that quantify the

dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate dis-
tribution. Let U and V be two unit uniform random variables with a joint copula cdf
C(u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ I. The lower tail dependence coefficient, λL, is defined
as the limit value of the conditional probability of U ≤ u given V ≤ u as u → 0+ and can
be calculated as lim

u→0+C(u,u)/u. The upper tail dependence coefficient, λU , is defined as

the limit value of the conditional probability of U > u given V > u as u → 1−. It can be
simplified as lim

u→1−C̄(u,u)/(1 − u), where C̄(u, v) = P(U > u,V > v).
Let T be an admissible distortion function, then the induced copula is of the form

displayed in (2). Since T is a distortion function and by L’Hopital’s rule, the lower tail
dependence coefficient for a T-distortion induced copula is given by

λT ,L = lim
u→0+

T
�
C

�
T−1(u),T−1(u)

��

u

= lim
u→0+

T (C(u,u))

T(u)
= lim

u→0+
t (C(u,u))

t(u)

dC(u,u)

du
, (3)

where t(u) = dT(u)/du, if the lower tail dependence coefficient λL of the initial copula C
and the limit of t (C(u,u))/t(u) at 0+ exist. Since limu→1− T(u) = 1, with the substitution
of v = T−1(u) and by L’Hopital’s rule, the upper tail dependence coefficient is given by

λT ,U = 2 − lim
u→1−

1 − T
�
C

�
T−1(u),T−1(u)

��

1 − u

= 2 − lim
v→1−

1 − T (C(v, v))
1 − T(v)

= 2 − lim
v→1−

t (C(v, v))
t(v)

dC(v, v)
dv

(4)

if the upper tail dependence coefficient λU of the initial copula C and the limit of
t (C(u,u))/t(u) at 1− exit.
Let f1 and f2 be two functions. If limu→u0 f1(u)/f2(u) = 1, we denote it by f1(u) ∼ f2(u)

as u → u0. A positive function f1 defined on (0,∞) is regularly varying at 0 with index γ ,
in which case we write f1 ∈ R (γ ), if for some real number γ it satisfies

lim
x→0

f1(sx)/f1(x) = sγ for all s > 0.

A function f1 is said to be slowly varying if γ = 0. Karamata’s Characterization Theorem
(Bingham et al. 1989) states that every regularly varying function f1 with index γ is of the
form f1(x) = xγ �(x), where � is a slowly varying function. Buldygin et al. (2006) derived
that if f1(x) is regularly varying at 0 (or ∞) with an order of γ ∈ R , then

lim
x→0+

log f1(x)
log x

= γ . (5)
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For a bivariate copula C, if C(u,u) ∼ uκL�(u) as u → 0+, where �(u) is slowly varying at
0+, then κL is referred to as the lower tail order of the copula C. Let �C(u, v) = C̄(1−u, 1−
v) = u+v−1+C(1−u, 1−v) be the survival copula. The upper tail order is defined as κU
if �C(u,u) ∼ uκU �∗(u) as u → 0+ for some slowly varying function �∗(u). When κL = 2
and �(u) → q as u → 0+, for some positive q, the variables are near independent in the
lower tail. If 1 < κL < 2, the variables are positively associated and have intermediate
tail dependence. The case κL = 1 corresponds to the usual tail dependence coefficient
λL ∈ (0, 1) with limu→0+ C(u,u)/u = limu→0+ �(u). Similar conclusions are made for the
upper tail and κU ; see Hua and Joe (2013) for more details.

The proposed unit weibull distortion
By the definition of a distortion function, a continuous cdf with domain I is a distortion
function. In this section, we define the unit Weibull cdf and examine its admissibility.
LetW be a non-negative continuous random variable with cdf G(.) and pdf g(·). Define

Z = exp(−W ). Then, the cdf of Z is given by

T(z) = P(Z ≤ z) = P(W ≥ − log z) = 1 − G(− log z) for z ∈ I, (6)

which is the survival function of W evaluated at − log z. It is related to the expres-
sion Ḡ(− log z), where Ḡ is a survival function, suggested by Durante et al. (2010). If
W is a Weibull random variable, we name Z as a unit Weibull (UW) random vari-
able with a support of the unit interval I. Let G be the Weibull cdf given by G(w) =
1 − exp (−bwa) , a, b > 0,w ≥ 0, then the cdf of Z is given by

T(z) = exp
� −b(− log z)a

�
. (7)

The UW quantile function and UW pdf are given by, respectively,

T−1(z) = exp
�

−
�

−1
b
log z

	 1/a



, (8)

t(z) = ab
z

� − log z
� a−1 exp

� −b
� − log z

� a�
. (9)

To find the admissibility of the distributional distortion function T, we employ the
following proposition shown in Durante et al. (2010).

Proposition 1 Let T be an increasing bijective distortion. If T ◦ exp : (−∞, 0]→[ 0, 1]
is log-convex, then the function CT in (2) is a copula.

The following corollary specifies constraints on the parameter values in the UW
distortion to ensure the admissibility.

Corollary 1 Let T(u) and T−1(u) for u ∈[ 0, 1] be the UW-distortion and quantile func-
tions in (7) and (8), respectively. Then, the function CT in (2) is a copula if 0 < a ≤ 1 and
b > 0.

Proof Note T ◦ exp is log-convex if log ◦T ◦ exp is convex. Define l(x) =
log (T[ exp(x)] ) = −b(−x)a, x ∈ (−∞, 0] . The first and second derivatives of l(·) are

l′(x) = ab(−x)a−1 and l
′′
(x) = ab(1 − a)(−x)a−2,
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respectively. Since the second derivative l′′ is non-negative if 0 < a ≤ 1 and b > 0, the
conclusion follows from Proposition 1.

Unit-Weibull distorted copulas
We below present the copula distribution, pdf, and conditional pdf, and derive limiting
cases for the proposed new family of UW distorted copulas.
Applying (7) and (8), the copula CT in (2) is of the following general form

CT (u, v) = exp
�
−b

�
− logC



e−(−b−1 logu)1/a , e−(−b−1 log v)1/a

�� a�
, (10)

where 0 < a ≤ 1 and b > 0. When a = 1 and b = 1, then T(u) = u, i.e., the initial copula
is not distorted. The initial copula is a member of the proposed family of copulas. When
a = 1, the UW distortion is the power distortion.
If the initial copula C is Archimedean with a strict generator function of φ, then CT is

Archimedean with generator given by

	(u) = φ
�
T−1(u)

� = φ

�

exp
�

−
�

− log u
b

	 1/a

�

, u ∈ I. (11)

Example 1 UW-Clayton copula. Consider the Clayton copula expressed as C(u, v; θ) =
�
u−θ + v−θ − 1

� −1/θ , θ > 0 with generator given by
�
t−θ − 1

�
/θ . The UW-Clayton

copula has the following expression

CT (u, v) = T
� � �

T−1(u)
� −θ + �

T−1(v)
� −θ − 1

� −1/θ
�

= exp
�

−b
�
1
θ
log

�

exp
�

θ

�
−1
b
log u

	 1/a



+exp
�

θ

�
−1
b
log v

	 1/a



− 1
�
 a�

,

and its generator is given by 	(u) =
�
exp

�
θ

� −b−1 logu
� 1/a�

− 1
�

/θ . The bivariate BB3
copula derived by Joe (2015) is a special case when b = 1.

Example 2 UW-Gumbel copula. Consider the Gumbel copula expressed asC(u, v; θ) =
exp

�
−

� � − log u
� θ + � − log v

� θ
� 1/θ �

, θ ≥ 1. It is Archimedean with generator

(− log t)θ . The UW-Gumbel copula has the following expression

CT (u, v) = exp
�
−

� � − log u
� θ/a + � − log v

� θ/a
� a/θ �

.

Note the parameters θ and a cannot be identified separately. Reparameterizing by setting
θ/a = δ, we see that the UW distortion of the Gumbel copula returns the Gumbel copula
and does not yield a new family of copulas.
This example prompts us to consider the UW distortion of extreme-value bivariate

copulas such that C
�
u1/m, v1/m

�m = C(u, v), for integersm ≥ 1, and are of the form

C(u, v) = exp
�
log(uv)A

�
log(v)
log(uv)

	�
, u, v ∈ (0, 1),

where A(·) is convex and satisfies certain constraints; see Gudendorf and Segers (2010).
In this case, since T−1(u) = exp

�
− � −b−1 logu

� 1/a�
,

CT (u, v)=exp
�

−
�
−

� � − log u
� 1/a+ � − log v

� 1/a�
A

�
(− log v)1/a

(− log u)1/a + (− log v)1/a

	� a


.



Aldhufairi and Sepanski Journal of Statistical Distributions and Applications             (2020) 7:8 Page 6 of 20

The parameter b originated from the UW distortion disappears.

Example 3 UW-independence copula. Consider the independence copula expressed as
C(u, v) = uv. The UW-independence copula has the following expression

CT (u, v) = exp
�

−b
� �

−1
b
log u

	 1/a
+

�
−1
b
log v

	 1/a

 a�

= exp
�
−

� � − log u
� 1/a + � − log v

� 1/a� a�
.

Therefore distorting the independence copula results in the Gumbel copula. That is, the
proposed UW distortion gives another genesis of the Gumbel copula.

Example 4 UW-Frank copula. The Frank copula is defined as C(u, v; θ) =
−θ−1 log

�
1 + ��

e−θu − 1
� �
e−θv − 1

��
/

�
e−θ − 1

��
, θ �= 0, with generator function

− log
��
e−θ t − 1

�
/

�
e−θ − 1

��
. The UW-Frank copula has the following expression

CT (u, v) = exp
�
−b

�
− log

�
−1

θ
log

�
1 + [B(u) − 1] [B(v) − 1]

e−θ − 1

		� a�
,

where B(s) = exp
�
T−1(u)

� = exp


−θe−(−b−1 log s)1/a

�
. Its generator is defined as

	(u) = − log
�
[B(u) − 1] /

�
e−θ − 1

��
.

Conditional distribution and copula density

The conditional density C(u|v) plays a key role in simulating bivariate data linked by a
copula C since the conditional distribution P(X ≤ x|Y = y) = ∂C (F(x),G(y)) /∂v and
C(u|v) = ∂C(u, v)/∂v. A general algorithm to generate draws from a bivariate copula C
using the conditional distribution approach (see Nelsen (2006)) is described as follows. (i)
Generate two independent uniform random values (u1, v) and (ii) solve C (u2|u1)− v = 0
for u2. The desired pair is (u1,u2) . We will also obtain the copula density function needed
for computing the maximum likelihood estimates of parameters.
Let x = exp

�
− �−b−1 logu

� 1/a�
and y = exp

�
− �−b−1 log v

� 1/a�
; both are mono-

tonically increasing. The inverse transforms are u = exp
�−b

� − log x
� a�

and v =
exp

�−b
� − log y

� a�
. The copula CT in (10) can be rewritten as

H(x, y) = CT (u, v) = exp
� −b

�− logC(x, y)
� a�

.

The conditional cdf and copula pdf can be respectively derived by

CT (v|u) = ∂H
∂x

∂x
∂u

and cT (u, v) = ∂2H
∂y∂x

∂x
∂u

∂y
∂v

. (12)

The derivatives of H with respect to x and x with respect to u are

∂H
∂x

= ab
C(x, y)

∂C(x, y)
∂x

H(x, y)
�− logC(x, y)

� a−1 ,

∂x
∂u

= x
abu

�
− log u

b

	 1/a−1
.

The conditional cdf is therefore given by

CT (v|u) = xH(x, y)
b1/a−1C(x, y)

∂C(x, y)
∂x

�
(− log u)1/a

− logC(x, y)

	 1−a 1
u
.
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If a = b = 1, then x = u, y = v and CT (v|u) = C(v|u) = ∂C(u, v)/∂u. The derivation of
the copula density cT (u, v) in (12) requires the calculation of ∂2H/∂y∂x, which is lengthy
and tedious therefore not presented here.
Next, we consider the case when the initial copula is Archimedean with generator φ. In

this case, let x = φ
�
T−1(u)

�
and y = φ

�
T−1(v)

�
. Note that x and y are decreasing and

map [ 0, 1] to [ 0,∞] such that φ(1) = 0 and φ(0) = ∞. Then,

CT (u, v) = e−b
�− logφ−1(φ(T−1(u))+φ(T−1(v)))

� a = e−b
�− logφ−1(x+y)

� a = H̄(x, y),

where H̄ is a bivariate survival function with univariate margins
exp

� −b
�− log

�
φ−1(x)

�� a�
. Note that dT−1(u)/du = 1/t

�
T−1(u)

�
, where t(·) is defined

in (9). The conditional cdf and pdf of the UW distorted copula can be obtained from (12)
and the following:

CT (v|u) = ∂H̄
∂x

∂x
∂u

;
∂x
∂u

= ∂

∂u
�
φ

�
T−1(u)

�� = φ′ �
T−1(u)

�

t
�
T−1(u)

� ;

∂H̄(x, y)
∂x

= abH̄(x, y)
φ−1(x + y)

�− log
�
φ−1(x + y)

�� a−1

φ′ �
φ−1(x + y)

� = abH̄(x, y)da−1
1

d2
; (13)

∂2H̄(x, y)
∂x∂y

= abH̄(x, y)da−1
1

d2

�
abda−1

1
d2

− (a − 1)
d1d2

− 1
d2

− φ′′ �
φ−1(x + y)

�

�
φ′ �

φ−1(x + y)
�� 2

�

;

(14)

where d1 = − log
�
φ−1(x + y)

�
and d2 = φ−1(x + y)φ′ �

φ−1(x + y)
�
.

Example 5 UW-Clayton Copula. The Clayton copula, see Example 1, is Archimedean
with generator φ(u) = �

u−θ − 1
�
/θ and φ−1(u) = (1 + θu)−1/θ . Let x =

�
exp

�
θ(− log(u)/b)1/a

� − 1
�
/θ and y =

�
exp

�
θ

� − log(v)/b
� 1/a�

− 1
�

/θ . One can plug
in the following components into (13) and (14) to obtain the conditional distribution and
density of the UW-Clayton copula:

φ−1(x + y) =[ 1 + θ(x + y)]−1/θ ;

φ′ �
φ−1(x + y)

� = −[ 1 + θ(x + y)]1+1/θ ;

φ′′ �
φ−1(x + y)

� = (θ + 1)[ 1 + θ(x + y)]1+2/θ .

Example 6 UW-Frank Copula. The Frank copula is Archimedean with generator func-
tion φ(u) = − log

��
e−θu − 1

�
/

�
e−θ − 1

��
and φ−1(u) = −θ−1 log

�
1 + e−u �

e−θ − 1
��
;

see Example 4. In this case, x = − log
��

exp


−θe−(− log(u)/b)1/a

�
− 1

�
/

�
e−θ − 1

� �
and

y = − log
��

exp


−θe−(− log(v)/b)1/a

�
− 1

�
/

�
e−θ − 1

� �
. To use (13) and (14) to derive the

conditional distribution and density of the UW-Frank copula, the following expressions
will be required:

φ−1(x + y) = −θ−1 log


1 + e−(x+y) �

e−θ − 1
� �

;

φ′ �
φ−1(x + y)

� = θ
�
1 + ex+y �

e−θ − 1
� −1� ;

φ′′ �
φ−1(x + y)

� = θ2ex+y �
e−θ − 1

� −1 �
1 + ex+y �

e−θ − 1
� −1� .
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Limiting cases

When a = 1, the UW distortion function becomes T(u) = ub, the power distortion,
and the UW distortion results in copulas of the form CT (u, v) = �

C
�
u1/b, v1/b

�� b . Propo-
sition 2 below is not applicable to the case when the initial copula is an extreme-value
copula, for the power distortion doesn’t produce a new family of copulas in this case; see
Example 2.

Proposition 2 Let CT be the unit-Weibull distorted copula in (10), where 0 < a ≤ 1
and b > 0. Then, CT approaches the independence copula when b → ∞ and a → 1.

Proof Let r = 1/b, x = e−(−r log u)1/a , y = e−(−r log v)1/a , and Ar = C(x, y). The derivative
A′
r = dAr/dr is given by

A′
r = − r1/a−1

a
�
C2|1(x, y)

�
x(− log u)1/a

� + C1|2(x, y)
�
y(− log v)1/a

��
,

where C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. By L’Hopital’s Rule and
chain rule, the limit of the exponent term in (10) as r → 0 or b → ∞, is, if exists,

lim
r→0

− �− log Ar
� a

r
= a

�− log Ar
� a−1 A′

r
Ar

,

where C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. As b → ∞ or r → 0, we
have that x → 1, y → 1, and Ar → 1. When a → 1, limA′

r = log(uv) since C2|1 and C1|2
are conditional distributions. Therefore, limb→∞ CT (u, v) = exp(log(uv)) = uv.

Proposition 2 provides the limit of the UW copulas when b → ∞ and a → 1 with-
out specifying the initial copula. In the following, we find the limiting copulas in the
parameter θ originated from the initial copula for families of UW-Clayton and UW-Frank
copulas.

Example 7 Consider UW-Clayton copula in Example 1. By the same arguments for the
limit of the Clayton copula in Joe (2015),

lim
θ→∞C

�
T−1(u),T−1(v)

� = min
�
T−1(u),T−1(v)

�
,

lim
θ→0+C

�
T−1(u),T−1(v)

� = T−1(u)T−1(v).

Therefore, the UW-Clayton copula of the form T
�
C

�
T−1(u),T−1(v)

��
, by Example 3,

lim
θ→∞T

�
C

�
T−1(u),T−1(v)

�� = min{u, v},

lim
θ→0+T

�
C

�
T−1(u),T−1(v)

�� = exp
�
−

� � − log u
� 1/a + � − log v

� 1/a� a�
, 0 < a ≤ 1.

The limit of UW-Clayton copulas as θ → ∞ is the Gumbel copula.
When b = 1, the UW-Clayton begets the BB3 copula. Therefore, UW-Clayton copulas

approach the comonotonicity copula when θ → ∞ or a → 0+, and the Gumbel family
when θ → 0+.
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