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1 Introduction

This paper introduces a new model for stochastic events such as growth/decline periods
of a financial return, flood, drought, or a heat wave, among others. The model describes
the duration N, the magnitude X and the peak value Y of such events through the random
structure

N N
X, Y,N) £ (ZX,«, \/Xi,N) : (1)

i=1 i=1

where the {X;};>1 are independent and identically distributed (IID) exponential random
variables given by the probability density function (PDF)

fx) =Be P, xeRy, B>0, 2)

N is an integer-valued random variable, independent of the {X;}, and \/fil X; denotes
the maximum of {X;};=1,  n. Events like this arise in many applications. A common
process generating such observations is Peaks-over-Threshold process where we are inter-
ested in observations exceeding (or below) a threshold. For example, in finance, time
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periods with positive/negative log-returns give growth/decline periods for an asset. In cli-
mate/hydrology, a flood may be described as stage of a stream exceeding a levy, heat wave
may be described as consecutive days when the maximum daily temperature exceeds a
high threshold, deluge can be thought of as consecutive observations (daily, hourly, etc.)
of precipitation exceeding a high threshold. In energy research, heating degree days are
those days when the maximum daily temperature is below 64 degrees Fahrenheit (the
threshold temperature varies by country and region). Drought may be considered to be a
time period when the maximum precipitation (daily, annual, etc.) is below a seasonal low
for a given region. Various bivariate and trivariate models for stochastic episodes/events
with the structure of (1) were developed and applied in different fields in Arendarczyk
etal. (2018a, b), Barreto-Souza (2012), Barreto-Souza and Silva (2019), Biondi et al. (2002,
2005, 2008), Kozubowski and Panorska (2005, 2008), and Kozubowski et al. (2008a, b,
2010, 2011). Most of the existing models assume that the underlying observations {X;} are
IID exponential or (dependent) Pareto variables, thus cover the cases of light and heavy
tailed processes. In the aforementioned work the duration N was modeled with geometric
distribution.

Our interest in extending the models developed earlier was motivated by the observa-
tion that the duration of (exceedingly) many events in processes such as financial asset
returns is one time period. While geometric distribution allows for values of one, in many
processes the events of duration 1 (above/below threshold) are either more or less com-
mon than in the geometric model. For example, heat waves are often a “hot day” (so
1-inflated), financial returns often switch daily from positive to negative (1 inflated), large
precipitation is often lasting one day (1 -inflated). Summarizing, while the geometric
durations work well for some applications, they do not work well for every applications.
Thus, we introduced the generalization allowing 1-inflation or 1-deflation.

Thus, we developed an extension of the models with geometric duration, to allow more
flexibility when accounting for the frequency of data with the duration of one. Models for
count process, such as duration, are typically discrete, positive or non-negative, integer
valued random variables such as geometric, negative binomial or Poisson. There are many
works in the literature (medical, ecology, social science, actuarial science, etc.) describing
counts data with a very large number of zeros. The models used to account for the “excess”
zeros fall to two general types: zero inflated (ZI) or hurdle (H) models. We discuss and
provide examples of applications for these models in Section 2. We also provide a repre-
sentation for the ZI and H models via waiting times for the first success in independent
Bernoulli trials with different probabilities of success.

This paper is organized as follows. Section 2 is devoted to the discussion of ZI nad
H models and introduces our model for 1-inflated geometric distribution. Section 3
introduces our trivariate model and presents its basic properties. Section 4 provides infor-
mation about marginal and conditional distributions for the trivariate vector. Section 5
is devoted to estimation and testing connected with the new model. An illustrative data
example is given in Section 6. Selective proofs and auxiliary results are collected in the
Supplementary Material.

2 Mixture models for duration
In this section we briefly discuss zero inflated and hurdle models and introduce our
(shifted hurdle) model for duration. As noted in the introduction, the two common ways
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of dealing with extensive zeros in the literature are zero -inflated (ZI) (or zero-adjusted,
zero-altered) and hurdle (H) models (see, e.g., Cameron and Trivedi 1998, 2005; Lambert
1992; Mullahy 1986; 1997; Panicha 2018; Zuur et al. 2009; Alshkaki 2016; and references
therein). These two approaches to account for large number of zeros involve mixture dis-
tributions with two components, but they differ in the way that zeros can occur. The
models are mixtures of a point mass at zero and a counting distribution. In the ZI models,
zero can occur as an outcome of the point mass variable or the counting variable. On the
other hand, in H models zero can only occur as an outcome of the point mass while the
counting variable is truncated at zero.

Examples of zero-inflated or hurdle models used in the literature include applications
in econometrics (see, e.g., Cameron and Trivedi 1998, 2005; Zeileis et al. 2008), ecol-
ogy (Panicha 2018; Zuur et al. 2009), public health, epidemiology and bioinformatics
(Hu et al. 2011; Zelterman 2004; Chipeta et al. 2014). There are also interesting appli-
cations in social science, criminology and actuarial science (Aryal 2011; Constantinescu
et al. 2019; Iwunor 1995; Pandey and Tiwari 2011; Sharma and Landge 2013; Tiizen
and Erbas 2018). In ecology, the use of ZI nad H models is connected with estimation
population sizes using various capture-recapture type methods. In public health and epi-
demiology, these models are used to estimate the number of sick with a given disease, in
bioinformatics ZI and H models serve for estimation of the size of the population of drug
users, and in criminology and social science to estimate the size of rural-urban migration,
the size of homeless populations or violators of a certain law, or the number of highway
crashes (see, e.g., Famoye and Singh 2006; Iwunor 1995; Pandey and Tiwari 2011; Sharma
and Landge 2013). In actuarial science, zero-inflated discrete and dependent by mixture
Pareto distribution was used in modeling probability of ruin in the compound binomial
risk model in Constantinescu et al. (2019).

We now turn to the definitions of the ZI and H models. We start with the notation used
in the rest of this paper: the set of non-negative integers (including zero) shall be denoted
by No, while N shall stand for the set of natural numbers (excluding zero).

2.1 The zero-inflated model

The ZI model is a mixture of point mass at zero and a counting random variable N.
In practice, the latter is often chosen to follow a standard discrete distribution such as
Poisson, geometric or negative binomial (see, e.g., Mullahy 1986; Lambert 1992). It is
important to note that in the ZI model, the zeros may come from two different sources:
the point mass or the count variable. The probability mass function (PMF) f7; of a zero-
inflated random variable Nz, derived from a “base” discrete random variable N with the
PME f, is of the form

Jz1(n) = qlioy(n) + (1 — q)f (n), n€ Ny, 0<g =<1,

where 14 is the indicator function of the set A.

Remark 1 The corresponding mixture representation, connecting the relevant random
variables, is as follows:

d
Nz; =N,

where ] is a Bernoulli random variable with parameter 1 — g, independent of N.
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2.2 The hurdle model

The hurdle model is also a mixture, where the components are a point mass at zero and a
counting “base” random variable N with the PMF f. However, the base random variable is
truncated below at zero before mixing. Due to the truncation, the PMF f of N is converted
to fr, where the latter is the PMF of the conditional distribution of N given that N > 1,

frimy = 2

Mixing this distribution with a point mass at zero leads to the hurdle distribution based
on N, with the PMF of the form

Ju(n) = qlioy(n) + (1 — q)fr(n), n € Ny. (3)

Remark 2 Similarly to the ZI case, a random variable Ny with the PMF (3) admits the

mixture representation of the form
d
Np =JNr,

where ] is a Bernoulli random variable with parameter 1 — q, independent of Nt. Note that
in the hurdle model the value of zero can only come from the Bernoulli trail J.

Both the IZ and H models have appeared in the literature. The practical convenience
of the hurdle model comes from the ease of estimation procedures compared with those
for the IZ model. Since in this work the count random variable N represents the duration
of an event, our N is always greater than or equal to one. Further, our data may show an
unusual frequency of ones (not zeros). Thus, we use a hurdle-type model (shifted up by
one) for the duration N. We discuss it in more details below.

2.3 A hurdle-type geometric distribution
We start with the definition of geometric random variable we use in this work: a random
variable with the PMF

fm)y=pA—-p)" ! neN 0<p<l, (4)

will be referred to as a geometric random variable with parameter (probability of success)
p, and denoted by N, ~ GEO(p). Note that this variable “starts” at one, and accounts for
the number of trials until the first success in a series of IID Bernoulli trials with parameter
p. Using this variable, we can define a hurdle-type model with the PMF of the form

q for n=0

(1 —qp(1 —p)" for neN. (5)

-]

Next we define our counting variable N that would represent the duration in the trivari-
ate model (1). Namely, this will be the distribution given by (5) shifted up by one, with the

PMTF of the form
q for n=1
= 6
J { 1 —qpd —p)*2 for ne{2,3,...,} (©)

We shall denote this distribution by HGEO(p, g), which stands for hurdle - geometric
distribution, and write N ~ HGEO(p, q) when the random variable N follows this dis-
tribution. Note, that depending on the relation between p and g, the HGEO (p, g) model
may over-inflate the number of ones (p < ¢) or under-inflate the number of ones (p > ¢q)
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compared to geometric distribution with probability of success p. The following result
provides a useful stochastic representation of this distribution.

Proposition 1 If N ~ HGEO(p, q) then
d
N =1+ 1IN, (7)

where N, is geometric with the PMF (4) and I is Bernoulli with parameter 1 — g,
independent of Np.

It is easy to see that when p = ¢ then the HGEO model (7) and its PMF (6) reduce
to geometric distribution with parameter p, and the PMF given by (4). It is interesting to
compare the hurdle-type HGEO model above with one analogous to zero-inflation, and
also built upon the geometric distribution. The PMF of the latter will be of the form

Ja+ra-ap for =1
o= [ (1—qpA—p)" ' for nef2,3,. .} v

Remark 3 Both of the models introduced above have interpretations as waiting times for
the first success in a sequence of independent Bernoulli trials {1;}. Namely, if the probabil-
ities of success are given by P(I} = 1) = q and P(I; = 1) = p for j > 2 then the number
of trials till the first success will have the HGEO distribution given by the PMF (6). On the
other hand, if the probabilities of success are the same as above for n > 2 while forn = 1
we have P(Iy = 1) = g + (1 — q)p, then the corresponding waiting time will have a dis-
tribution with the PMF (8). Because of this, it is clear that the first model is more flexible
than the second: for the hurdle type model, we have P(I; = 0) = 1 — g, which can fall any-
where in the unit interval, while an analogous probability for the second model is equal to
(1 — p)(1 — q), which does not cover the entire unit interval as q changes in (0, 1).

3 Definition and basic properties of the new trivariate model

In this section we formally define the new distribution of (1) and derive its basic proper-
ties. Here, and elsewhere in the paper, the notation EXP(B) stands for the exponential
distribution with the PDF (2).

Definition 1 The random vector (X,Y,N) with the stochastic representation given in
(1), where the {X;} are IID exponential random variables with the PDF (2) and N ~
HGEO(p, q) with the PMF (6), independent of the {X;}, is said to have a generalized TETLG
(GT) distribution, denoted by GT (p, q, B).

We note that when p = ¢, then the variable N has a geometric distribution with
parameter p, and the random vector (X, Y, N) above has the TETLG distribution stud-
ied in Kozubowski et al. (2011), where the name stands for Trivariate distribution with
Exponential, Truncated Logistic and Geometric marginal distributions. Our construc-
tion provides a flexible generalization of the TETLG model that accounts for the excess
of ones in the data.

We now derive basic characteristics of the GT model, starting with its PDF. For this,
we use the bivariate distribution of (Z?:l Xi, Vi, Xi), developed in Qeadan et al. (2012),
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which is the conditional distribution of (X, Y) given N = # in the GT model. This distri-
bution, referred to as the BGGE model in Qeadan et al. (2012), has the PDF of the form

fyln) = B"e P*H(x,y, n), )

where, forall n € N,

Zle %(x —sy)" (=1t forn > 2, (x,y) € Sp, k=1,...,n—1,
Hx,y,n)=11 forn =1, (x,9) € So,
0 otherwise.

(10)

The values of the joint PDF in (9) depend on which of the sectors Sy the input (x,y)
belongs to, where

So={(xy) :x=y >0},

and

S = {(x, R2:0 <
= {(xy) € < T

The support of this distribution is the set

1
x§y<zx}, k=12,...,n—1.

A,,:UZ;(l)Sk:{(x,y):gfyfx}, neN.

The joint distribution of (X, Y, N) ~ GT (p, g, B) can now be derived via a standard hier-
archical approach, where N ~ HGEO(p, q) with the PMF f given by (6) and (X, Y)|N = n
has the PDF f(x, y|n) given by (9), so that f (x,y, n) of (X, Y, N) is f (x,y, n) = f(x, y|n)f (n).
This leads to the following result.

Proposition 2 The PDF of (X,Y,N) ~ GT (p,q, B) is given by

qpeP* forn=1
B'e P*H(x,5,m)(1 — pp(l —p)" > forn>1,
where the function H is defined in (10).

fxy,n) = (11)

Remark 4 We note that the support of the GT distribution is the same as that of its
special case of TETLG distribution, which consists of the set {(x,y,n) : n € N, (x,y) € Ay}.
In analogy with the TETLG model, if n = 1 and (x,y) € So, so that the point (x,y, n) is in
the set A1 x {1}, the joint PDF reduces to

f@y,m) = gBe P a1 (x, 9, 1) = qfi(x,y, 1),

where fi(x,y,n) = Be P*] 4, %11y (%, ¥, n). In other words, with probability g, the distribution
is concentrated on the set A1 x {1}, and represents the random vector (Ey, Ey, 1), where
Ey ~ EXP(B). However, when n > 2, the conditional distribution of (X,Y) given N = n
is absolutely continuous with the PDF f (x, y|n) given in (9), in which case the joint PDF in
(11) becomes

f@ynm =1 —gfxylmpQ —p)" %=1 —q)fs(xy,n), n>2,x%Y) €Ay

where fy(x, y,n) = f(x, y|m)p(1 — p)"~2. Altogether, we have

[ y,n) = qfi(x,y,n) + A — q)fa(x,y, 1), (12)
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showing that the GT distribution is a mixture of a degenerate distribution of (Ey, Eo, 1) and
a proper, trivariate distribution (with the PDF f,), where the mixing probabilities corre-
spond to the events N = 1 and N > 2, respectively. This absolutely continuous component
is the same as its analogue in the TETLG model.

The mixture representation (12) of the GT distribution can also be seen from the
stochastic representation of this model, stated below.

Proposition 3 If (X, Y,N) ~ GT (p,q, B) then
N

d E;
COBUEDD (Ei - 1>, (13)
i=1
where N ~ HGEO(p, q) and the {E;} are independent EX'P(B) variables, independent of
N.

Next, we provide an alternative stochastic representation, involving a geometric vari-
able N, rather than the mixed geometric variable N, which is the part of the random
vector (X, Y, N). Both of these representations are useful for deriving further properties
of the GT distribution.

Proposition 4 If (X, Y,N) ~ GT (v, q, B) then
NP NP

X, Y,N) £ o, Eo, ) +1 (Y E>

i=1 i=1

E;
’N ’ 14
i+17F (14)
where all the variables on the right-hand-side of (14) are mutually independent, N, ~
GEO(p), I is a Bernoulli random variable with parameter (1 — q), and the {E;} are

independent EXP(B) random variables.

Remark 5 We note that in the special case p = g, both of the above stochastic represen-
tations result in the TETLG distribution studied in Kozubowski et. al. (2011), describing
the random vector

N, N
&Y, L |3 E\/EN, |,
i=1 =1

where Ny, and the {E;} are as above. Further, it can be shown that in general the random
vector (X, Y,N) ~ GT (p,q, B) can be directly related to a TETLG random vector (X, Y, N)
viz. another stochastic representation, which involves the operation ®; defined below. This
operation dacts component-wise on two vectors, X = (x1,...,%,) andy = (¥1,...,yn), and
returns another vector, denoted by x®;y. The latter is obtained by adding the corresponding
coordinates of X and'y, with the exception of the j-th coordinate, where we take x; V y; (the
maximum of xj and y;). Thus, we have

X®jy = W1HV1 - X 1YLV X 1Y+ 1 - - X tYn), J€{1,2,...,n}, X,y e R".
(15)
With this notation we have

X, Y,N) £ (Eo,Eo, 1) @2 I(X, ¥, N), (16)
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where Ey and I are as above and the operation @3 acts as the maximum of the second
coordinates and the sum of the first and the third coordinates, so that

(x1,%2,%3) D2 (¥y1,92,¥3) = (X1 +y1,%2 V ¥2,%3 + ¥3).

Using the above representations, we obtain the characteristic function (ChF) of the GT
model, presented below.

Proposition 5 The characteristic function of (X,Y,N) ~ GT (p,q, B) is given by

¢ (t1,t,t3) = ]Eetlx+t2Y+t3N

qBe'’s (17)

T B—iti+ 1)

00 n )
; 1 —-gppQd —p)”
+ ) et i ——, ti,bt3€R.

When p = g, Eq. (17) yields the ChF of the TETLG model of Kozubowski et al. (2011).
The joint moments of the GT model are presented below.

Proposition 6 If (X, Y,N) ~ GT (,q, B) then

Uiim =E {XleNm}

(k+ D! 1 =, L
= 4t g 2" - op —p)”
k+1 k+1
gt 1T gt £ (18)
Z Z < k >( [ )ﬁ(1j+kj)!
. . A ’
koot vk NG )
where the double summation is taken over all sets of non-negative integers ki, . . ., k, and

l1,...,1, that add up to k and I, respectively.

One can use the above result to obtain the mean vector and the covariance matrix of
the GT distribution, which are presented below.

Proposition 7 If (X, Y,N) ~ GT (v, q, B), then

! 1_‘1] 1[ (l—q)[p—l—log(p)]] 1—¢q
EX=_|1+—2|, EY =1+ S ]
B |: p B 1 —p)? p P
and the elements of the covariance matrix % =|o0;;] are as follows:
1+ 2_ 2
o011 = Var(X) = #’
1—p)? 1-— 1 —g)2 1— — ol
o012 = Cov(X,Y) =p( p)”+ A =p) . 9 +§ Dp—q og(p),
B<p(1 —p)
1-q92-p) —(1—¢g)?

01,3 = COV(X,N) = ,3]92

2(q —p) (1—q>pcp_[ qa-p _(1—q>1og<p)]2

1-pp> A-pBp> |BA-p  BA-p? |’

A-q[2p—q)logp) + (1 —p)(p —q+1)]
Bl —p)*p

029 = VLZV(Y) =

023 = COV(Y,N) =

’

1-g[l-p+4q]
]92

’

03,3 = Var(N) =

Page 8 of 21
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where the constant cy in the expression for o3 is given by

o0 ule "dy
Cp =/ - 5 (19)
o [e*+p/(1—-p)]

4 Marginal and conditional distributions
In this section we present the marginal and (selected) conditional distributions of the new
trivariate GT distribution.

4.1 Bivariate margins
Here we discuss the three bivariate marginal distributions of (X, N), (Y,N), and (X, Y),
starting with the joint distribution of (X, N).

4.1.1 The marginal distribution of X, N
In view of the stochastic representation in (1), the joint PDF of (X, N) can be derived
through a standard conditioning argument using the fact that N ~ HGEO(p, q) and,
given N = n, the variable X is the sum of #n IID exponential variables with parameter
B > 0. Thus, X|N = n has a gamma distribution GAM (n, 8), with the PDF given by:
ﬂn
(n—1)!
We obtain the joint PDF of (X,N) by multiplying the conditional PDF (20) by the
marginal PMF of N given by (6), leading to the following result.

SxIN=n(x) = K" le P xeRy, B>0. (20)

Proposition 8 If (X, Y,N) ~ GT (p,q, B) then the joint PDF of (X, N) is given by

—Bx -1
e or n =
SN (x,n) = q/,fn f

Lo e A —ppQ —p)" 7 for n=2.

(21)

Remark 6 Clearly, in the special case p = q we obtain the bivariate BEG distribution
(see Kozubowski and Panorska 2005), describing the random vector
NF
&L (Y EN, |,
i=1
where N, ~ GEO(p) and the {E;} are IID EX'P(B). Further, it can be seen from Proposi-
tion 4 or the relation (16) that in general the random vector (X, N) with the PDF (21) can
be related to a BEG random vector (X, N) viz.

N £ (Eo, 1) + 1K, N, (22)
where Eg ~ EX'P(B), I is Bernoulli with parameter 1 — q, and all the variables on the

right-hand-side of (22) are mutually independent.

4.1.2 The marginal distribution of Y, N

We now turn to the joint distribution of (Y, N). Here, given N = #, the variable Y is the
maximum of # IID exponential random variables. Thus, it has a generalized exponential
distribution with the PDF

Frinen(®) = nBe PY(1 — e P71y e Ry, (23)

By proceeding as above, we obtain the joint PDF of (Y, N) as follows.
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Proposition 9 If (X, Y,N) ~ GT (p,q, B) then the joint PDF of (Y, N) is given by

qpe P for n=1,

npe (1 —e Py =11 - gp(l —p)" =2 for n=2. ey

JrnGn) = I

Remark 7 We note that in the special case p = q we obtain the bivariate BTLG
distribution (see Kozubowski and Panorska 2008), describing the random vector

NP

o o d

¥, £\ EN,|,
i=1

where Ny, and the {E;} are as above. Further, it can be seen from the relation (16) that in
general the random vector (Y,N) with the PDF (24) can be related to a BTLG random
vector (f’, N ) viz.

(¥,N) £ (Eo, 1) &1 1(7, N, (25)

where Eg and I are as above and the operation ®; is given by (15), so the ®1 above acts as
the maximum of the first coordinates and the sum of the second coordinates,

(x1,%2) @1 (¥1,92) = (%1 V y1,%2 + y2).

4.1.3 The marginal distribution of X, Y

Finally, we turn to the last of the three bivariate distributions, the distribution of (X, Y). Its
PDF can be obtained in a standard way by adding up the trivariate PDF of the GT model
(given in Theorem 2) across all the values of » € N. The support of this new bivariate
distribution is the set

A=UZ Sk =Ul Ar ={(%):0 <y <}

Lengthy algebra produces the result below, which can be proven in the same way as
Theorem 3.1 in Kozubowski et al. (2011).

Proposition 10 If (X, Y,N) ~ GT (p, q, B) then the marginal PDF of (X,Y) is given by

fy sy =qg1(xy) + (1 — g (%), (26)

where g1(x,y) = Be P*I4, (x,y) and

k
@@y =ppre Py

s=1

(_1)s+1
(s—1!

Ws(ﬁ[l—P] [x_Sy] )7 (x!y) ESk,kEN, (27)
with

Wi(u) = e“(s(s— D’ 2+ 2su' T+ u , seN,u>0. (28)

k—s .. , its—

s G+98)G+s—Duts2
)= ; il

Remark 8 The result shows that the distribution of (X,Y) is a mixture of a degener-
ate distribution of the vector (Ey, Eo) with Ey ~ EX'P(B), which is a singular part of the
distribution (corresponding to the event N = 1, which occurs with probability q) and an
absolutely continuous component with the PDF g, given by (27), supported on the set A
(corresponding to the event N > 2, which occurs with probability 1 — q). Similar interpre-
tation applies to the special case of the BETL distribution discussed in Kozubowski et al. (),
obtained here when p = q. In that case the above proposition yields the PDF of
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Np Np
&L E\VE]|
i=1 i=1

where N, and the {E;} are as above. Further, it can be seen from the relation (16) that
in general the random vector (X,Y) with the PDF (26) can be related to a BETL random
vector (X, Y) viz.

d ~ ~
X, Y) = (Eo, Eo) @2 I(X,Y), (29)
where Ey and I are as above and the operation @; is given by (15), so that
(x1,%2) @2 (V1,92) = (X1 + Y1, %2 V y2).
4.2 Univariate margins
We now discuss the univariate margins. Since N has a hurdle-type generalized geometric

distribution given by (6), we shall focus on the marginal distributions of X and Y, starting
with X.

4.2.1 The marginal distribution of X
The PDF of X can be calculated in a straightforward way by summing up the joint PDF of
X and N given by (21) across all the values of # € N, leading to the result below.

Proposition 11 If (X, Y,N) ~ GT (p,q, B) then the PDF of X is

1— 1—
fx(x) = <1 - q) Be P* 4+ (q>pﬂe_”’3x, xRy, (30)
1-p 1-p
with the corresponding CDF of the form
F 0 forx <0
x) = _ _
= (1-28) (=) + 12 (1 ) fore = 0

Remark 9 The results shows that X is a generalized mixture of two exponential distri-
butions, one with parameter B and another with parameter ppB. The term ‘generalized”
signifies the fact that the two weights in (30), although add up to one, are not necessarily
restricted to the unit interval. It is worth noting that the distribution of X is also a proper
mixture of two distributions, of which one is again exponential with parameter 8 while the
other has a hypoexponential distribution, also known as generalized Erlang distribution
(see, e.g., Johnson et al. 1994), given by the PDF

gx) = ;pﬁe—lﬂﬁx I
l—-p l—-p
The above is the PDF of X1 + X,, where X1 is exponential with parameter pf and

Be P x e R,. (31)

Xy is exponential with parameter B, independent of X1 (the term “hypoexponential”
describes convolutions of exponential variables with different parameters). While the above
hypoexponential variable is also a generalized mixture of exponential distributions, the
distribution of X is a proper mixture as its PDF can be expressed as

fr@) = gBe P + (1 — pgx), x e Ry,

with g(-) given by (31). This representation can be obtained directly from Proposition 4,
which shows that X is either equal to X, (representing the exponential part Ey, with prob-
ability q) or X1 + Xo, where Xy is exponential with parameter pB. This Xy corresponds to
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the first sum on the right-hand-side of the representation (14), and the hypoexponential
component X1 + Xo occurs with probability 1 — q.

Remark 10 The above mixture representations of X provide a convenient tool in deriving
basic characteristics of the distribution of X. For example, the moment generating function
(MGEF) of X is of the form

Mx(t)zlE(etX)z(l—l_q> B +<1_Q> pB . t<pB,
1-p/p—t \1-p/pB—t
while the moments of X are given by

IEX”:(I—I_q> T(n+1)+(1—q) Fo+D
1—p B 1-p/) @B

4.2.2 The marginal distribution of Y
The PDF of Y shown in the result below can be calculated as that of X, by summing up
the joint PDF of Y and N given by (24) across all the values of n € N.

Proposition 12 If (X,Y,N) ~ GT (p, q, B) then the PDF of Y is

_ 1—-qp 1
_ B _
Sr(y) = Be y[q+ =, <[1—(1—p)(1—e_/33’)]2 1)} y e Ry,

while the CDF of Y is

fory <0

0
Fy(y) = . —e By
:[l—eﬁy][q—i—(l—q)M]foryZO.

Remark 11 The structure of the above CDF reveals that the distribution of Y is also a two
component mixture. Indeed, Y can be thought of as either an exponential variable Ey with
parameter 8 (with probability q) or the maximum of two independent variables, Ey Vv Y,

where

with N, and {E;} as above. The variable Y has a truncated logistic distribution on R,
with the CDF
Ry = — 20
—(1-p)A—eP)
studied by Marshall and Olkin (1997). This can also be seen from the representation (29),
showing that Y 4 Eo Vv IY.

) yeR+)

4.3 Conditional distributions

Here we summarize basic facts concerning bivariate and univariate conditional distri-
butions connected with the GT distribution. Since the results below are established by
routine derivations involving ratios of the relevant PDFs, their elementary proofs are
omited.

4.3.1 Bivariate conditional distributions
Here we consider the three bivariate conditional distributions of (X,Y)[N = =,
X,N)|Y =y,and (Y,N)|X = «.
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4.3.2 Thedistribution of Xand Y given N = n

The conditional distribution of (X,Y) given N = n € N was studied in Qeadan et al.
(2012), and is known as the BGGE(, n) model. Its PDF, given by (9) - (10), provided the
basis for our derivation of the GT PDF. In particular, the conditional distribution of X
given N = n is Gamma with the PDF given in (20) while the conditional distribution of ¥
given N = n is generalized exponential (see, e.g., Gupta and Kundu 2007) with the PDF
given in (23).

4.3.3 Thedistribution of Xand N givenY =y
Next, we consider the conditional PDF of (X, N) given Y = y > 0, which turns out to be
of the form
) = (B — py e PR | 7 =
Sl nly) = (BA-p)" e xm -1 " 1,

QT@ for n > 2,

where the function H(x, y, n) is given by (10) and

(l—q)p< 1
1—-p \[1-Q-pA—eh)

v(y) =q+ ]2—1>,yeR+.

We note that when n = 1, this conditional PDF is non-zero only if x = y, in which case
it takes on the value of g/v(y). We also note that when n > 2, the function H(x, y, n) will
be non-zero only if x satisfies ky < x < (k+ 1)y, k =1,...,n — 1, in which case

k

-1
H(x,y,m) = ;‘ %u — )" (=D (32)

4.3.4 Thedistribution of Y and N given X = x
Finally, we have the following expression for the PDF of (Y, N) given X = x > 0:

SOl = (BA—p)" THexy ) - i1
u(x)

forn > 2,
where the function H(x, y, n) is given by (10) and
u@)=qg—p+ 1 —qpe PP xecR,.

Again, when n = 1 the PDF above is non-zero only if y = x, in which case it takes on
the value of g(1 — p)/u(x), and when n > 2 the function H(x, y, n) will be non-zero only
if x satisfiesx/(k+ 1) <y < «x/k, k =1,...,n — 1, in which case we have (32).

4.3.5 Univariate conditional distributions

It turns out that all three univariate conditional distributions of X, ¥, and N given the
other two variables are the same as their counterparts in the special TETLG case (p = ¢q)
studied by Kozubowski et al. (2011). We present their formulas below for the convenience
of the reader.

4.3.6 Thedistribution of XgivenY =y,n=n
The PDF of the conditional distribution of X given Y =y > 0, N = n € N is given by

B )”—1 e~ BGE—)

— e By

S&ly,n) = (1 H(x,y,n).
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Similarly to the cases discussed above, when n = 1 the PDF is non-zero only if y = «, in
which case it takes on the value of 1. In turn, when n > 2 the function H(x, y, n) will be
non-zero only if x satisfies ky < x < (14+k)y, k = 1,...,n—1, in which case we have (32).

4.3.7 Thedistribution of Y givenX = x,n =n
The conditional PDF of Y given X = x > 0, N = n € N is of the form

(n—1)!
xn—l

SOl n) =

Again, for n = 1 we have f(y|x, n) = 1if y = x (and zero otherwise), while for n > 2 the

H(x,y,n).

function H(x, y, n) will be non-zero only if y satisfiesx/(k+1) <y <x/k,k=1,...,n—1,
in which case we have (32). We also note that this particular distribution is parameter-free.

4.3.8 Thedistribution of N given X = x,y =y
As in the TETLG case, the conditional distribution of N given X =x > 0and Y =y > 0
reduces to a point mass at 1 when x = y. On the other hand, for (x,y) € S, k € N, the

PMEF of this distribution is of the form

(B(1 —p))r2 H(x,y,n) forn>k+1
S GO WL —pl [x—s]) [0 otherwise,
where W is defined in (28).

fulx,y) =

5 Estimation and testing

In this section we consider the problems of estimating the parameters of the GT model
and testing the hypothesis that p = ¢ (so that the GT model reduces to the TETLG model)
based on a random sample (X1, Y1, N1), . . ., (Xk, Yi, Ni) from the GT (p, g, B) distribution.

5.1 Maximum likelihood estimation
We start with the Fisher information matrix I(p, q, ) corresponding to the distribution
of (X,Y,N) ~ GT (p,q, B). Routine calculations lead to

1= 0

P (1-p) .
I(p,q,B) = 0 7d—9 0 . (33)
1+p—q
0 0 ET

Next, we turn to the parameter estimation viz. maximum likelihood. While the PDF
of the GT model is rather complicated, fortunately the function H(x,y, n) is parameter-
free and the derivation of the maximum likelihood estimators (MLEs) is straightforward.
Indeed, the likelihood function can be written as

N, —BkX k—k N, —
L(p,q,B) = CBNke PRegh [(1 — gp] ™™ (1 — pyNi—2kth, (34)

where C is parameter-free, ki is the number of data points with N; = 1, and Xy, N are the
sample means of the {X;} and the {N;}, respectively. Thus, the statistics k;/k, X; and Ny
are jointly sufficient. We note that these statistics do not involve the values of {Y;};—1 .
This is due to the fact that the conditional distribution of Y given X and N is parameter
free (see Section 4.3.7). Thus the values of N and X carry all the information necessary to
estimate all the parameters. We also note that the likelihood function can be maximized
with respect to each parameter separately from the other parameters, leading to explicit
MLEs provided below.
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Proposition 13 Let (X1, Y1,N1), ..., Xk, Yi, Ni) be IID observations from GT (p,q, B)
distribution such that X; > 0, Ny > 1. Then, there exist unique MLEs of the three
parameters, given by

n k1 1 R k1 A ﬁk
= 1 - frmy ) = /), d = = 35
Dk ( X ) N1 Q=2 an Br X (35)

We note that since the distribution of X is absolutely continuous, we have P(X; > 0) =
1. Additionally, while it is possible to have Ny = 1, which occurs only if all sample values
are equal to 1, the probability of this event converges to zero as the sample size k goes
to infinity. However, if such an event does occur, the MLEs of g and 8 still exist and are
unique (with values of 1 and 1/X}, respectively) while the MLE of p is undefined.

Further, the estimators do not involve the values {Y;}, and the estimator of j is exactly
the same as its counterpart in the TETLG model of Kozubowski et al. (2011). Moreover, if
only the data on the {X;, N;} were available, and the values of the third variable were miss-
ing, we would still obtain exactly the same set of three estimators. In fact, the estimators
of p and ¢q are only dependent on the univariate observations of the {N;}, and would be
exactly the same if the rest of the data was missing, or if we only have information on the
{Yi, N;} while the {X;} were missing. However, in the latter case, the estimator of 8 is no
longer the same as above, and a numerical search is needed to find it. The estimators are
also different from those above if we only worked with bivariate data on {Xj, Y;} or only
univariate data involving either the {X;} or the {Y;}. In these three cases the underlying
models are mixtures, and finding the estimators is not straightforward. We now turn to
the asymptotic properties of the MLEs, where we have the following result.

Proposition 14 The vector MLE (By, G, Br) " given in Proposition 13 is

1. Consistent;
2. Asymptotically normal, that is «/n[ (Px, Gk, BT — a8 converges in
distribution to a trivariate normal distribution with the (vector) mean zero and the

covariance matrix

2
)4 {1_:117) 0 0
TMLE = 0 gl-¢q O ; (36)
0 0 Pﬁz
1+p7q

3. Asymptotically efficient, that is the asymptotic covariance matrix (36) coincides

with the inverse of the Fisher information matrix (33).

Remark 12 The above result allows to derive approximate (1 — o) x 100% confidence
intervals for the parameters in large sample setting, leading to

Pr £ 202645y D)k, G £ 202645y (@ /K, Brc £ zap2645v (B) /K,

where the quantities Gasy (p), 6asy(q), and Gasy(B) are the square roots of the diagonal
entries of the asymptotic covariance matrix (36) with the parameters replaced by their
MLEs.
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5.2 Testing for p = q under the GT model

The objective of this section is to develop a likelihood ratio (LR) test for the null hypoth-
esis Hy : p = q under the assumption that the data follow the GT (p, q, 8) distribution.
Before setting up the test, let us consider the parameter space of this model, and its sub-
space corresponding to the null hypothesis. Clearly, we must have § > 0 and p, g must
belong to the unit interval. However, care is needed in regard to the boundary values of
p and q in order to assure the parameterization is identifiable and the possible values of
p and g are consistent with the results of estimation. With this in mind, we denote the
vector-parameter by 6 = (61,62, 93)T, where 0] = p, 62 = g, and 3 = B, and propose to
set the general parameter space ® as follows:

O = {(61,62,63) : (61,62) € ®12,65 > 0},
where

O ={(61,62) : 61,02 € (0,1)} U{(61,62): 0 <61 < 1,0, =0} U{(61,62) : 6
=1,6, €[0,1]}.

With this definition of the parameter subspace for p and g, all the boundary values with
p = 0 are excluded, regardless of g, and so are all the boundary values with g = 1, with
the exception of the “corner” of the unit square where we have p = ¢ = 1. Clearly, the
null subset of ® where p = g corresponds to the set

B0 = {(61,62,03) : 0 <61 =6, = 1,63 > O}.
With the above set-up, we wish to test
Hy:0 € ©y versus H; : 0 € O, (37)

where ®; = ® — ©¢. The classical LR test rejects the null hypothesis in (37) in favor of
the alternative for large values of the LR test statistic

_ SUPpep L)

= , (38)
Supee@o L(G)

where L(-) is the likelihood function (of the full GT model) given by (34). The evaluation
of the likelihood ratio test statistic (38) is straightforward. Indeed, the numerator in (38)
is simply the value of the likelihood evaluated at the three MLEs given by (35), resulting in
L(Pr, Gk Br)» given explicitly. The denominator is given by L(ilg, 5]2, ,3,?), where the triple

@2, 212, ﬁAIS) are the values of the parameter 6 that maximizes the likelihood over ®y. What
this means in our case is that we set ¢ = p in the likelihood function (34), resulting in

Lo(p, B) = L(p,p, B) = CBNke PRNipk (1 — p)Nik, (39)

and subsequently maximize the function Lo (p, 8) with respecttop € (0,1] and 8 > 0. We
recognize the function in (39) as the likelihood based on the TETLG model of Kozubowski
etal. (2011), which is known to be maximized by

f)g = l/ﬁk, B]? = Nk/)?k- (40)

Thus, the denominator in (38) becomes Lo(ﬁg, ,3,9) = L(ﬁg, fag, ;‘3,9), and is also given
explicitly. By putting these facts together, we arrive at the following result.
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Proposition 15 The LR statistic (38) for testing the hypotheses in (37) based on a random
sample of size k from a GT (p, q, B) distribution is given by

R ki A k—ky A kN —2k+ki
[ ax (1 — qi)pk 1 —pi
A=|75 TR0\ 20 ) ) (41)
Py (1—BY) by 1—p;
where ki is the number of sample values with N; = 1, p, qi, By are given by (35), and ]?’2:
51(() are given by (40).

Remark 13 We note that the LR statistic does not involve the values of {X;} and {Y;}. In
fact, the exact same statistic comes up in connection with testing the hypotheses

Hy:p=gq versus Hy : p #q (42)

in the context of univariate HGEO(p,q) distribution, based on a random sample
Ni,...,Ny. The PMF of this distribution is given in (6). Under the null hypothesis in
(42) this 1- inflated geometric distribution reduces to the classical geometric distribution
GEO(p), given by the PMF (4).

By the standard large sample theory, the quantity 2log A has approximately chi-square
distribution when the sample size k is large, which helps to set-up the critical region in
practice.

Proposition 16 Let A be the LR test statistic (38), based on a random sample of size
k from GT (p,q,B) distribution. Then, as k — 00, the quantity 2log A converges in
distribution to a chi-square random variable with 1 degree of freedom.

Remark 14 While the calculation of the LR test statistic or the quantity 2log A in prac-
tice is straightforward, some care is required when dealing with certain exceptional cases,
where the ratios in (41) may seem to be undefined. Careful examination of the likelihood
function, the relevant MLESs, and the LR statistic reveals five different cases, which can be
described as follows:

1. Ifall the values of Nj are 1 (so that ky = k) then2log A =0,
2. Ifall the values of N; are 2 (so that k; = 0) then 2log A = 2klog4,
3. Ifall the values of Nj are either 1 or 2, but they are not all the same, then

2log A = 2k |:Nk log(Ny) + ?log (l;:):| ,
k

4. IfN;>2foralli=1,...,k and at least one value is greater than 2 then
2log A = 2k [(N — 2) log(N — 2) — 2(Nx — 1) log(Ni — 1) + Ny log(Ny) |,
5. Ifatleast one N; = 1 and at least one N; > 2 then
2log A = 2k [/: log (il) +2 (1 - /:) log (1 - /:) —2(Nx — 1) log(Nyx — 1)

+(Np—1-— (1 - ];(1) log (Nk —-1- (1 - I;:)) + Ni log(Nk)i| . (43)

In order to have a practical guide as to when one can use the limiting distribution as
a reasonable approximation to the distribution of 2log A we performed a Monte Carlo
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Table 1 Sample sizes for the limiting distribution to work as an approximation for the 2 log A
p 001 002 005 01 02 03 04 05 06 07 08 09 095 0.98 0.99
k 510 160 60 25 15 12 10 20 35 60 85 240 1,000 8,000 27,000

The top row lists a selection of true values of the parameter p. The bottom row lists the corresponding minimal samples sizes for
which the xf to be a reasonable approximation to the distribution of 2 log A

study. Noting that the speed of convergence may depend on the true value of p, we sim-
ulated 10,000 samples of (varying) size k from GEO(p) distribution for selected values of
p. We then found the smallest k for which the (empirical) distribution of 2log A can be
assumed to be Xlz. We used Kolmogorov-Smirnov goodness-of-fit test with significance
level of 0.05 to assess whether the distribution of 2log A can be reasonably considered to
be x7. We summarized the results of this simulation study in Table 1.

The simulation shows that when the true value of p is between 0.1 and 0.9, the sample
size needed for the limiting distribution to be a good approximation for the distribution
of 2log A is below 100. However, once the value of p becomes closer to 0 or 1, the sample
sizes required for a reasonable approximation are growing. In particular, note that the
sample size required for large values of p (close to 1) are much larger than those for the

small values of p (close to 0).

6 Anillustrative data example
In this section, we illustrate potential applications of the new GT model using S&P500
index return data.

The data was downloaded from ‘Yahoo! Finance’ historical data archive. The initial data
were the daily closing prices for the S&P500 index, covering the period from Dec 30, 1927
to April 17, 2020. These were converted to (n = 23,183) daily log-returns, i.e. natural log-
arithms of the ratios of the closing prices for two consecutive days. Finally, we converted
these data to the growth periods, where the daily closing prices increase from one day to
the next one, so that the log-returns stay positive (5,540 growth periods). In this case, the
N; are the durations (in days) of the growth periods, while the X; and the Y; are the mag-
nitude and the maximum daily return for the i-th growth period. We call this data set
S&P500.

We estimated the parameters p, g, and 8 of the underlying GT (p, g, 8) model viz. max-
imum likelihood, using the results given in Proposition 13. The resulting estimates are
shown in Table 2, along with estimated margins of error (ME) of the 95% (asymptotic)
confidence intervals described in the remark following Proposition 14.

Note, that in this case, p < g and so we have an example of under-inflated ones data.
This may be reflection of the fact that S&P500 is a composite index, which is more sta-
ble, that is less prone to changes from growth to decline, than an individual stock return.
Further, we tested the hypotheses Hy : p = g versus H; : p # q on significance level
0.05 using the likelihood ratio test described in Section 5, and obtained the test statistic

Table 2 Maximum likelihood estimates of the parameters for the S&P500 data with the
corresponding (approximate) 95% margins of error in parentheses

p (ME) G (ME) B (ME)
S&P500 0.47 (0.00007) 0.441 (0.00009) 133.575(2.8832)
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Fig. 1 Fit of the GT model to S& 500 data. The graphs in the left/right column show the fit of
magnitude/maximum. The top row has QQ plots of the marginal distributions of magnitude (left panel) and
maximum (right panel). Rows 2, 3, and 4 show QQ plots of the conditional distributions of the magnitude
(left panels) and maximum (right panels) given duration N = 1,2,and 3

2log A = 10.06, with (approximate) p-value of 0.003. Thus, we rejected the null hypoth-
esis and conclude that durations are coming from the shifted hurdle model. Thus, the use
of GT model for the growth episodes arising from our data is better than the standard
TETLG model (connected with p = ¢), which has been used before in similar settings
(see, Kozubowski et al. 2011).

Although we did not aim at a formal goodness of fit analysis, we wanted to present
visual evidence of the reasonable fit of our model. We fitted the marginal distributions of
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Table 3 Duration Fit for S&P500 data

Nin days 1 2 3 4 5 6 7 8 9 10+
Freq. 2444 1406 825 418 205 121 58 33 13 17
Rel. freq. 0441 0.254 0.149 0.075 0.037 0.022 0.010 0.006 0.002 0.003

Model prob. 0441 0.263 0.139 0.074 0.039 0.021 0.011 0.006 0.003 0.003

The table contains observed frequency (second row), relative frequency (third row), and model probabilities (last row) for the
growth periods of given durations (first row)

X and Y, and the conditional distributions for X given N and Y given N, when N = 1,2, 3.
The fit is illustrated in Fig. 1 below with QQ plots.

All QQ plots show reasonable to very good fit. Note that the fit of the marginal of
maximum is particularly impressive, given that the values of the maxima of the episodes
did not play any role in the estimation.

Next, we present the fit of the HGEO(p, g) model for duration. Table 3 contains the
observed frequencies/relative frequencies along with estimated model probabilities for
the duration of S&P500 growth events.

The relative frequencies and model probabilities for our data are reasonably close, and
we conclude that the fit of the HGEO(p, q) model is quite good for this data set as well.
We believe that the fit of the GT model to the S&P500 data will start a common use of
this model for data sets with an excessive number of ones.
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