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Abstract

Al-Osh and Alzaid (1988) consider a Poisson moving average (PMA) model to describe
the relation among integer-valued time series data; this model, however, is constrained
by the underlying equi-dispersion assumption for count data (i.e., that the variance and
the mean equal). This work instead introduces a flexible integer-valued moving
average model for count data that contain over- or under-dispersion via the
Conway-Maxwell-Poisson (CMP) distribution and related distributions. This first-order
sum-of-Conway-Maxwell-Poissons moving average (SCMPMA(1)) model offers a
generalizable construct that includes the PMA (among others) as a special case. We
highlight the SCMPMA model properties and illustrate its flexibility via simulated data
examples.

Keywords: Over-dispersion, Under-dispersion, Conway-Maxwell-Poisson
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Introduction
Integer-valued thinning-based models have been proposed to model time series data rep-
resented as counts. Al-Osh andAlzaid (1988) introduce a generally defined integer-valued
moving average (INMA) process as an analog to the moving average (MA) model for
continuous data which assumes an underlying Gaussian distribution. This INMA process
instead utilizes a thinning operator that maintains an integer-valued range of possible
outcomes. To form such a model, they consider the “survivals” of independent and iden-
tically distributed (iid) non-negative integer valued random innovations to maintain and
ensure discrete data outcomes (Weiss 2021). Al-Osh and Alzaid (1988) particularly con-
sider a first-order Poisson moving average (PMA(1)), i.e. a stationary sequence Ut of the
form Ut = γ ◦ εt−1 + εt where {εt} is a sequence of iid Poisson(η) random variables and
(γ ◦ ε) = ∑ε

i=1 Bi for a sequence of iid Bernoulli(γ ) random variables {Bi} independent
of {ε}. By design, the PMA(1) is an INMA whose maximum stay time in the sequence is
two time units. Consequently, components ofUt are dependent, while the components of
εt and (γ ◦ εt−1) are independent.
Given the PMA(1) structure,

E(Ut) = Var(Ut) = (1 + γ )η, (1)
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and the covariance of consecutive variables Cov(Ut−1,Ut) = γ η; this implies that the
correlation is

ρU(r) = Corr(Ut−r ,Ut) =
{

γ
1+γ

r = 1
0 r > 1.

(2)

Meanwhile, the probability generating function (pgf ) of Ut is �Ut (u) =
e−η(1+γ )(1−u), the joint pgf of {U1, . . . ,Ur} is �r(u1, . . . ,ur) = exp (−η [r + γ−
(1 − γ )

∑r
i=1 ui − γ (u1 + ur) − γ

∑r−1
i=1 uiui+1

])
(which infers that time reversibility

holds for the PMA), and the pgf of TU ,r = ∑r
i=1Ui is

�TU ,r (u) = exp
(−η [(1 − γ )r + 2γ ] (1 − u) − ηγ (r − 1)(1 − u2)

)
.

Al-Osh and Alzaid (1988) note that TU ,r does not have a Poisson distribution, which is
in contrast to the standard MA(1) process. The conditional mean and variance of Ut+1
given Ut = u are both linear in Ut , namely

E(Ut+1 | Ut = u) = η + γu/(1 + γ ), and (3)

Var(Ut+1 | Ut = u) = η + γu/(1 + γ )2. (4)

The PMA is a natural choice for modeling an integer-valued process, in part because
of its tractability (Al-Osh and Alzaid 1988). This model, however, is limited by its con-
straining equi-dispersion property, i.e. the assumption that the mean and variance of the
underlying process equal. Real data do not generally conform to this construct (Hilbe
2014; Weiss 2018); they usually display over-dispersion relative to the Poisson model (i.e.
where the variance is greater than the mean), however integer-valued data are surfacing
with greater frequency that express data under-dispersion relative to Poisson (i.e. the vari-
ance is less than the mean). Accordingly, it would be fruitful to instead consider a flexible
time series model that can accommodate data over- and/or under-dispersion.
Alzaid and Al-Osh (1993) introduce a first-order generalized Poisson moving average

(GPMA(1)) process as an alternative to the PMA. The associated model has the form,

Wt = Q∗
t
(
ε∗
t−1

) + ε∗
t , t = 0, 1, 2, . . . , (5)

where
{
ε∗
t
}
is a sequence of iid generalized Poisson GP(μ∗, θ ), and {Q∗

t (·)} is a sequence
of quasi-binomial QB(p∗, θ/μ∗, ·) random operators independent of {ε∗

t }. As with the
PMA, Wt+r and Wt are independent for |r| > 1. The marginal distribution of Wt is
GP((1+p∗)μ∗, θ ). Recognizing the relationship between moving average and autoregres-
sive models, Alzaid and Al-Osh (1993) equate terms in this GPMA(1) model to their
first-order generalized Poisson autoregressive (GPAR(1)) counterpart,

Wt = Qt(Wt−1) + εt , t = 0, 1, 2, . . . , (6)

where {εt} is a sequence of iid GP(qμ, θ ) random variables where q = 1 − p, and {Qt(·)}
is a sequence of QB(p, θ/μ, ·) random operators, independent of {εt}; i.e., they let μ =
(1 + p∗)μ∗ and p = p∗

1+p∗ . The bivariate pgf ofWt+1 andWt can thus be represented as

�Wt+1,Wt (u1,u2) = exp
[
μ∗ (Aθ (u1) + Aθ (u2) − 2) + μ∗p∗ (Aθ (u1u2) − 1)

]
(7)

= exp
[
μq (Aθ (u1) + Aθ (u2) − 2) + μp (Aθ (u1u2) − 1)

]
, (8)

where Aθ (s) is the inverse function that satisfies Aθ

(
se−θ(s−1)) = s; see Alzaid and Al-

Osh (1993). This substitution in Eq. (7) to obtain Eq. (8) further illustrates the relationship
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between the GPMA(1) and GPAR(1) models such that they have the same joint pgf. Eq. (8)
and the related GPAR work of Alzaid and Al-Osh (1993) therefore show that

E(Wt | Wt−1 = w) = pw + qμ
1 − θ

. (9)

The joint pgf of (Wt ,Wt−1, . . . ,Wt−r+1) is given by

�(u1, . . . ,ur) = exp
[

μq
r∑

i=1
(Aθ (ui) − 1) + μp

r∑

i=1
(Aθ (uiui+1) − 1)

]

. (10)

From the joint pgf, we see that the GPMA(1) is also time-reversible, because it
has the same dynamics if time is reversed. Further, the pgf associated with the
total counts occurring during time lag r (i.e. TW ,r = ∑r

i=1Wt−r+i) is �Tw,r (u) =
exp

[
μqr(Aθ (u) − 1) + μp(r − 1)(Aθ (u2) − 1)

]
. Alzaid and Al-Osh (1993) note that this

result extends the analogous PMA result to the broader GPMA(1) model. Finally, the
GPMA autocorrelation function is

ρW (r) = Corr(Wt ,Wt+r) =
{
p |r| = 1
0 |r| > 1,

where p = p∗(1 + p∗)−1; by definition, ρW (r) ∈[ 0, 0.5] (Alzaid and Al-Osh 1993).
Even though the GPMA can be considered to model over- or under-dispersed count

time series, it may not be a viable option for count data that express extreme under-
dispersion; see, e.g. Famoye (1993). This work instead introduces another alternative for
modeling integer-valued time series data. The subsequent writing proceeds as follows.We
first provide background regarding the probability distributions that motivate the devel-
opment of our flexible INMA model. Then, we introduce the SCMPMA(1) model to the
reader and discuss its statistical properties. The subsequent section illustrates the model
flexibility through simulated and real data examples. Finally, the manuscript concludes
with discussion.

Motivating distributions
While the above constructs show increased ability and improvement towards modeling
integer-valued time series data with various forms of dispersion, each of the models suf-
fers from respective limitations. In order to develop and describe our SCMPMA(1), we
first introduce its underlying motivating distributions: the CMP distribution and its gen-
eralized sum-of-CMPs distribution (sCMP), as well as the Conway-Maxwell-Binomial
(CMB) along with a generalized CMB (gCMB) distribution.

The Conway-Maxwell-Poisson distribution and its generalization

The Conway-Maxwell-Poisson (CMP) distribution (introduced by Conway and Maxwell
(1962), and revived by Shmueli et al. (2005)) is a viable count distribution that generalizes
the Poisson distribution in light of potential data dispersion. The CMP probability mass
function (pmf) takes the form

P(X = x | λ, ν) = λx

(x! )νζ(λ, ν)
, x = 0, 1, 2, . . . , (11)

for a random variable X, where λ = E(Xν) ≥ 0, ν ≥ 0 is the associated dispersion param-
eter, and ζ(λ, ν) = ∑∞

s=0
λs

(s!)ν is the normalizing constant. The CMP distribution includes
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three well-known distributions as special cases, namely the Poisson (ν = 1), geometric
(ν = 0, λ < 1), and Bernoulli

(
ν → ∞ with probability λ

1+λ

)
distributions.

The associated pgf of X is �X(u) = E(uX) = ζ(λu,ν)
ζ(λ,ν)

, and its moment generating func-
tion (mgf) is MX(u) = E(eXu) = ζ(λeu,ν)

ζ(λ,ν)
. The moments can meanwhile be represented

recursively as

E(Xg+1) =
{

λ[E(X + 1)]1−ν , g = 0
λ ∂

∂λ
E(Xg) + E(X)E(Xg), g > 0.

(12)

In particular, the expected value and variance can be written in the form and approxi-
mated respectively as

E(X) = ∂ ln ζ(λ, ν)

∂ ln λ
≈ λ1/ν − ν − 1

2ν
, (13)

Var(X) = ∂E(X)

∂ ln λ
≈ 1

ν
λ1/ν , (14)

where the approximations are especially good for ν ≤ 1 or λ > 10ν (Shmueli et al. 2005).
This distribution is amember of the exponential family, where the joint pmf of the random
sample x = (x1, . . . , xN ) is

P(x | λ, ν) =
∏N

i=1 λxi
∏N

i=1 xi!
· ζ−N (λ, ν) = λS1 exp(−νS2)ζ−N (λ, ν),

where S1 = ∑N
i=1 xi and S2 = ∑N

i=1 log(xi! ) are joint sufficient statistics for λ and
ν. Further, because the CMP distribution belongs to the exponential family, the con-
jugate prior distribution has the form, h(λ, ν) = λa−1e−νbζ−c(λ, ν)δ(a, b, c), where
λ > 0, ν ≥ 0, and δ(a, b, c) is a normalizing constant such that δ−1(a, b, c) =
∫ ∞
0

∫ ∞
0 λa−1e−bνζ−c(λ, ν)dλdν < ∞.

Meanwhile, lettingX∗ = ∑n
i=1 Xi for iid random variablesXi ∼ CMP(λ, ν), i = 1, . . . , n,

we say that X∗ is distributed as a sum-of-CMPs [denoted sCMP(λ, ν, n)] variable, and has
the pmf

P(X∗ = x∗) = λx∗

(x∗! )νζ n(λ, ν)

x∗∑

a1,...,an=0
a1+...+an=x∗

(
x∗

a1, · · · , an

)ν

, x∗ = 0, 1, 2, . . . ,

where ζ n(λ, ν) is the nth power of ζ(λ, ν), and
( x∗
a1, ··· , an

) = x∗!
a1!···an! is a multinomial coef-

ficient. The sCMP(λ, ν, n) distribution encompasses the Poisson distribution with rate
parameter nλ (for ν = 1), negative binomial(n, 1 − λ) distribution (for ν = 0 and λ < 1),
and Binomial(n, p) distribution

(
as ν → ∞ with success probabilityp = λ

λ+1

)
as special

cases. Further, for n = 1, the sCMP(λ, ν, n = 1) is simply the CMP(λ, ν) distribution.
The mgf and pgf for a sCMP(λ, ν, n) random variable X∗ are

MX∗(t) =
(

ζ(λet , ν)

ζ(λ, ν)

)n
and �X∗(t) =

(
ζ(λt, ν)

ζ(λ, ν)

)n
,

respectively; accordingly, the sCMP(λ, ν) has mean E(X∗) = nE(X) and varianceV (X∗) =
nV (X), where E(X) and V (X) are defined in Eqs. (13)-(14), respectively. Invariance under
addition holds for two independent sCMP distributions with the same rate and disper-
sion parameters. See Sellers et al. (2017) for additional information regarding the sCMP
distribution.
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The Conway-Maxwell-Binomial distribution and its generalization

The Conway-Maxwell-Binomial distribution of Kadane (2016) (also known as the
Conway-Maxwell-Poisson-Binomial distribution by Borges et al. (2014)) is a three-
parameter generalization of the Binomial distribution. Denoted as CMB(d, p, ν) dis-
tributed, its pmf is

P(Y = y) =
(d
y
)ν
py(1 − p)d−y

χ(p, ν, d)
, y = 0, . . . , d (15)

for some random variable Y where 0 ≤ p ≤ 1, ν ∈ R, and χ(p, ν, d) = ∑d
y=0

(d
y
)ν
py(1 −

p)d−y is the associated normalizing constant. The Binomial(d, p) distribution is the special
case of the CMB(d, p, ν) where ν = 1. Meanwhile, ν > (<)1 corresponds to under-
dispersion (over-dispersion) relative to the Binomial distribution. For ν → ∞, the pmf
is concentrated on the point dp while, for ν → −∞, the pmf is concentrated at 0 or d.
For independent Xi ∼ CMP(λi, ν), i = 1, 2, the conditional distribution of X1 given that
X1 + X2 = d has a CMB

(
d, λ1

λ1+λ2
, ν

)
distribution.

The pgf and mgf of Y have the form,

�Y (u) = E
(
uY

) =
τ

(
up
1−p , ν, d

)

τ
(

p
1−p , ν, d

) and MY (u) =
τ

(
peu
1−p , ν, d

)

τ
(

p
1−p , ν, d

) , (16)

respectively, where τ(θ∗, ν, d) = ∑d
y=0

(d
y
)ν

θ
y
∗ for some θ∗. The CMB distribution is a

member of the exponential family whose joint pmf of the random sample y = {y1, . . . , yN }
is

P(y | p, ν) ∝ (1 − p)dN
N∏

i=1

(
p

1 − p

)yi d!Nν

[ yi! (d − yi)! ]ν

∝ exp
(

S∗1 log
(

p
1 − p

)

− νS∗2
)

,

where S∗1 = ∑N
i=1 yi and S∗2 = ∑N

i=1 log[ yi! (d − yi)! ] are the joint sufficient statistics
for p and ν. Further, its existence as a member of the exponential family implies that a
conjugate prior family exists of the form,

h(θ∗, ν) = θa−1∗ e−νbω−c(θ∗, ν)ψ(a, b, c), 0 < θ∗ < ∞, 0 < ν < ∞,

where ω(θ∗, ν) = ∑d
y=0 θ

y
∗/[ y! (d − y)! ]ν , ψ−1(a, b, c) =

∫ ∞
0

∫ ∞
0 θa−1∗ e−νbω−c(θ∗, ν)dθ∗dν < ∞ (Kadane 2016).

Sellers et al. (2017) further introduce a generalized Conway-Maxwell-Binomial (gCMB)
distribution whose pmf is

P(Z = z) ∝
(
s
z

)ν

pz(1 − p)s−z

⎡

⎢
⎢
⎣

z∑

a1,...,an1=0
a1+...+an1=z

(
z

a1, . . . , an1

)ν

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

s−z∑

b1,...,bn2=0
b1+...+bn2=s−z

(
s − z

b1, . . . , bn2

)ν

⎤

⎥
⎥
⎥
⎦

(17)

for a random variable Z with parameters (p, ν, s, n1, n2). As with the conditional probabil-
ity of a CMP random variable given the sum of it and another independent CMP random
variable sharing the same dispersion parameter, a special case of a gCMB distribution
can be derived as the conditional distribution of X∗1, given the sum X∗1 + X∗2 = d for



Sellers et al. Journal of Statistical Distributions and Applications             (2021) 8:1 Page 6 of 12

independent sCMP random variables, X∗i ∼ sCMP(λi, ν, ni), i = 1, 2; the resulting dis-
tribution is analogously a gCMB

(
λ1

λ1+λ2
, ν, d, n1, n2

)
distribution. The gCMB distribution

contains several special cases, including the CMB(d, p, ν) distribution (for n1 = n2 = 1);
the Binomial(d, p) distribution (when n1 = n2 = 1 and ν = 1); and, for λ1 = λ2 = λ, the
hypergeometric distribution when ν → ∞ and the negative hypergeometric distribution
when ν = 0 and λ < 1.

First-order sCMP time series models
This section highlights two first-order models for discrete time series data that have a
sCMP marginal distribution, namely the first-order sCMP autoregressive (SCMPAR(1))
model, and a first-order SCMP moving average (SCMPMA(1)) model with the same
marginal distribution structure.

First-order sCMP autoregressive (SCMPAR(1)) model

Sellers et al. (2020) introduce a first-order sCMP autoregressive (SCMPAR(1)) model to
describe count data correlated in time that express over- or under-dispersion. Based on
the sCMP and gCMB distributions, respectively (as described in the “Motivating distri-
butions” section withmore detail available in Sellers et al. (2017)), we use the sCMP distri-
bution to model the marginals of the first-order integer-valued autoregressive (INAR(1))
process as

Xt = Ct(Xt−1) + εt t = 1, 2, . . . , (18)

where εt ∼ sCMP(λ, ν, n2), and {Ct(•) : t = 1, 2, . . .} is a sequence of independent
gCMB

( 1
2 , ν, •, n1, n2

)
operators, independent of {εt}. This flexible INAR(1) model con-

tains the first-order Poisson autoregressive (PAR(1)) as described in several references
(Al-Osh and Alzaid 1987; McKenzie 1988;Weiss 2008), and the first-order binomial auto-
regressive model of Al-Osh and Alzaid (1991) as special cases. It likewise contains an
INAR(1) model that allows for negative binomial marginals with a thinning operator
whose pmf is negative hypergeometric.
The SCMPAR(1)model is yet another special case of the infinitely divisible convolution-

closed class of first-order autoregressive (AR(1)) models described in Joe (1996), and
satisfies the Markov property with the transition probability,

P(Xt|Xt−1) =
min(xt ,xt−1)∑

k=0

(xt−1
k

)ν

[
∑k

a1,...,an1=0
a1+...+an1=k

( k
a1,...,an1

)ν

] ⎡

⎣
∑xt−1−k

b1,...,bn2=0
b1+...+bn2=xt−1−k

( xt−1−k
b1,...,bn2

)ν

⎤

⎦

∑xt−1
c1,...,cn1+n2=0

c1+...+cn1+n2=xt−1

( xt−1
c1...cn1+n2

)ν

× λxt−k

[ (xt − k)! ]ν Zn2(λ, ν)

xt−k∑

d1,...,dn2=0
d1+...+dn2=xt−1−k

(
xt − k

d1, . . . , dn2

)ν

.

(19)

The SCMPAR(1) model has an ergodic Markov chain, thus Xt has a stationary
sCMP(λ, ν, n1 + n2) distribution that is unique. The joint pgf associated with the
SCMPAR(1) model is
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φXt+1,Xt (u, l) = ζ n2(λu, ν)

ζ n2(λ, ν)

ζ n1(λul, ν)

ζ n1(λ, ν)

ζ n2(λl, ν)

ζ n2(λ, ν)
= (ζ(λu, ν)ζ(λl, ν))n2 ζ n1(λul, ν)

ζ n1+2n2(λ, ν)
, (20)

where the pgf is symmetric in u and l, and hence the joint distribution of Xt+1 and Xt
is time reversible. The regression form for the SCMPAR(1) process can be determined,
and the general autocorrelation function for the process {Xt} is ρr = Corr(Xt ,Xt−r) =(

n1
n1+n2

)r
for r = 0, 1, 2, . . .. Parameter estimation can be conducted via conditional max-

imum likelihood with statistical computation tools (e.g. in R); see Sellers et al. (2020) for
details.

Introducing the sCMPMA(1) model

Motivated by the SCMPAR(1) model of Sellers et al. (2020), we introduce a first-order
sum-of-CMPs moving average (SCMPMA(1)) process Xt by

Xt = C∗
t
(
ε∗
t−1

) + ε∗
t , t = 1, 2, . . . , (21)

where ε∗
t is a sequence of iid sCMP(λ, ν,m1 + m2) random variables and C∗

t (•) is a
sequence of independent gCMB(1/2, ν, •,m1,m2) operators independent of ε∗

t . By defini-
tion, Xt is a stationary process with the sCMP(λ, ν, 2m1 + m2) distribution, and Xt+r and
Xt are independent for |r| > 1. While this model can analogously be viewed as a special
case of the infinitely divisible convolution-closed class of discrete MA models (Joe 1996),
unlike the sCMPAR(1) process, the sCMPMA(1) process is not Markovian.
The autocorrelation between Xt and Xt+1 is

ρ1 = Corr(Xt ,Xt+1) = Cov
(
C∗
t
(
ε∗
t−1

) + ε∗
t ,C∗

t+1
(
ε∗
t
) + ε∗

t+1
)

√
Var(Xt)Var(Xt+1)

= Cov
(
ε∗
t ,C∗

t+1
(
ε∗
t
))

√
Var(Xt)Var(Xt+1)

by the independence assumptions,

where C∗
t+1(ε

∗
t ) = ∑m1

i=1 Yi and ε∗
t = ∑m1+m2

i=1 Yi, respectively, are sCMP(λ, ν,m1) and
sCMP(λ, ν,m1 +m2) random variables; i.e. each sCMP random variable can be viewed as
respective sums of iid CMP(λ, ν) random variables, Yi. Thus,

Cov
(
ε∗
t ,C∗

t+1
(
ε∗
t
)) = Cov

(m1+m2∑

i=1
Yi,

m1∑

i=1
Yi

)

= Var
( m1∑

i=1
Yi

)

= m1Var(Y ),

where, without loss of generality, we let Y denote any of the iid Yi random variables.
Meanwhile, because {Xt} is a sCMP(λ, ν, 2m1 + m2) distributed stationary process, we
can likewise represent Var(Xt) = Var

(∑2m1+m2
i=1 Yi

)
= ∑2m1+m2

i=1 Var(Yi) = (2m1 +
m2)Var(Y ) for all t. We therefore find that

ρ1 = Corr (Xt ,Xt+1) = Cov
(
ε∗
t ,C∗

t+1
(
ε∗
t
))

√
Var (Xt)Var(Xt+1)

= m1Var(Y )

(2m1 + m2)Var(Y )
= m1

2m1 + m2
. (22)

Because m1,m2 ≥ 1, the one-step range of possible correlation values is 0 ≤ ρ1 ≤ 0.5.
In particular, for m1 = m2, we have the special case where ρ1 = 1/3. Meanwhile, ρk = 0
for all k > 1 because, by definition of the SCMPMA(1) model assumptions, there is no
dependent structure between Xt and Xt+r for r > 1.
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Recall from the “The Conway-Maxwell-Poisson distribution and its generalization”
section that�G(w)=

(
ζ(λw,ν)
ζ(λ,ν)

)π

is the pgf for a sCMP(λ, ν,π ) distributed random variable,
(say) G. Using this knowledge along with Eq. (21), the joint pgf can be derived as

φXt+1,Xt (u, l) = E
(
uXt+1 lXt

)

= E
(
uC

∗(ε∗
t )+ε∗

t+1 lXt
)

= E
(
uC

∗(ε∗
t )+ε∗

t+1 lXt−C∗(ε∗
t )lC

∗(ε∗
t )

)

= E
(
(ul)C

∗(ε∗
t )uε∗

t+1 lXt−C∗(εt)
)
where Xt − C∗ (

ε∗
t
) d= ε∗

t

= E
(
(ul)C

∗(ε∗
t )

)
E

(
uε∗

t+1
)
E

(
lε

∗
t
)
by independence

= φC∗(ε∗
t )

(ul)φε∗
t+1

(u)φε∗
t (l)

=
(

ζ(λul, ν)

ζ(λ, ν)

)m1 (
ζ(λu, ν)

ζ(λ, ν)

)m1+m2 (
ζ(λl, ν)

ζ(λ, ν)

)m1+m2

= (ζ(λu, ν)ζ(λl, ν))m1+m2 (ζ(λul, ν))m1

(ζ(λ, ν))3m1+2m2
, (23)

where Eq. (23) is equivalent to Eq. (20) (i.e. the SCMPMA(1) process is comparable
to the SCMPAR(1) process) when m1 = n1 = n2 − m2. Given this comparison, we
can easily determine the conditional mean E(Xt+1 | Xt = x) and conditional vari-
ance Var(Xt+1 | Xt = x). Eq. (23) further demonstrates that the SCMPMA(1) model is
time-reversible.
Parameter estimation via maximum likelihood (ML) is a difficult task with INMA

models given the complex form of the underlying distributions. Even a conditional least
squares approach does not appear to be feasible “because of the thinning operators,
unless randomization is used” (Brännäs and Hall 2001). We therefore instead consider
the following ad hoc procedure for parameter estimation. Given a data set with an
observed correlation ρ1, we first propose values for m1,m2 ∈ N that satisfy the con-
straint, ρ1 ≈ m1

2m1+m2
. Given m1 and m2 and recognizing that Xt is stationary with a

sCMP(λ, ν, 2m1 +m2) distribution, we proceed with ML estimation to determine λ̂ and ν̂

as described in Zhu et al. (2017) for conducting sCMP(λ, ν, s = 2m1+m2) parameter esti-
mation with regard to a CMP process over an interval of length s ≥ 1. The corresponding
variation for λ̂ and ν̂ can be quantified via the Fisher information matrix or nonparamet-
ric bootstrapping. While the sampling distribution for λ̂ is approximately symmetric, the
sampling distribution for ν̂ is considerably right-skewed, hence analysts are advised to
quantify estimator variation via nonparametric bootstrapping. While this is a means to
an end, it only achieves in determining an appropriate distributional form regarding the
data; it does not fully address the nature of the time series.

Data examples
To illustrate the flexibility of our INMA model, we consider various data simulations and
a real data example. Below contains the respective details and associated commentary.

Simulated data examples

Table 1 reports the estimated mean, variance, and autocorrelation that result from
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Table 1 Estimated mean, variance, and autocorrelation for various SCMPMA(1) data simulations of
length 10,000 given parameters, (λ, ν ,m1,m2); λ = 0.5 for all simulations

m1 m2 ν Est. Mean True Mean Est. Var. True Var. ρ̂ ρ

1 1 0 3.0073 3.00 5.9076 6.00 0.333 0.333
0.5 1.8846 2.3395 0.335 0.333
1 1.4842 1.50 1.4507 1.50 0.328 0.333
2 1.2359 1.0358 0.338 0.333
35 0.9826 1.00 0.6568 0.67 0.333 0.333

1 2 0 4.0027 4.00 8.0309 8.00 0.248 0.250
0.5 2.4891 3.0010 0.253 0.250
1 1.9861 2.00 1.9755 2.00 0.252 0.250
2 1.6427 1.3284 0.257 0.250
35 1.3355 1.33 0.8964 0.89 0.254 0.250

2 1 0 5.0408 5.00 10.2256 10.00 0.404 0.400
0.5 3.1414 3.9010 0.402 0.400
1 2.4823 2.50 2.4689 2.50 0.396 0.400
2 2.0094 1.6561 0.401 0.400
35 1.6583 1.67 1.1135 1.11 0.390 0.400

2 2 0 6.0019 6.00 12.2343 12.00 0.331 0.333
0.5 3.7195 4.5267 0.338 0.333
1 2.9873 3.00 3.0130 3.00 0.329 0.333
2 2.4488 2.0178 0.336 0.333
35 1.9861 2.00 1.2964 1.33 0.326 0.333

For the special cases (i.e. ν = 0, 1, 35, where ν = 35 sufficiently represents performance as ν → ∞), we likewise provide the
expected/true mean and variance. Along with the estimated autocorrelation ρ̂ that results from the data, the table reports the
true autocorrelation, ρ1 = m1

2m1+m2
, for all {m1,m2} and any ν (Eq. (22))

various data simulations of SCMPMA(1) data given parameters (λ, ν,m1,m2). In all
examples, we let λ = 0.5, m1,m2 ∈ {1, 2}, and ν = {0, 0.5, 1, 2, 35}, where ν = 0
captures the case of extreme over-dispersion, ν = 1 denotes equi-dispersion, and ν =
35 sufficiently illustrates the case computationally of utmost under-dispersion where
ν → ∞.
For all examples, we find that the associated mean and variance compare with each

other as expected, i.e. the variance is greater than the mean when ν < 1 (i.e. the data are
over-dispersed), the variance and mean are approximately equal when ν = 1 (i.e. equi-
dispersion holds), and the variance is less than themean (i.e. the data are under-dispersed)
when ν > 1. In particular, we can easily verify that the three special case models perform
as expected. For the Poisson cases (ν = 1), we expect the mean and variance to both equal
(2m1 + m2)λ, while the binomial cases (i.e. ν → ∞ and p = λ

λ+1 ) produce a mean equal
to (2m1 + m2)

λ
λ+1 and variance equaling (2m1 + m2)

λ
λ+1

(
1 − λ

λ+1

)
, and the negative

binomial cases (ν = 0 with p = 1 − λ) have a mean of (2m1+m2)λ
1−λ

and variance equaling
(2m1+m2)λ

(1−λ)2
. In fact, even with the ν → ∞ case approximated by letting ν = 35, we still

obtain reasonable estimates for the mean and variance for all of the associated cases ofm1
andm2.
For each {m1,m2} pair, the mean and variance both decrease as ν increases while, for all

of the considered examples, we obtain estimated correlation values ρ̂ that approximately
equal the true correlation, ρ. In particular, for those cases where m1 = m2, we obtain
ρ̂ ≈ 1/3 as expected (see Eq. (22)).
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Fig. 1 (a) ACF plot for IP data (b) PACF plot for IP data

Real data example: IP address counts

Weiss (2007) considers a modified dataset regarding the number of unique IP-addresses
which access the University of Wurzburg Department of Statistics’s webpages in 240 two-
minute intervals. Collected on November 29, 2005 (from 10:00:00 to 18:00:00), these data
have an associatedmean and variance equaling 1.286 and 1.205, respectively.Weiss (2007)
considers a PAR(1) model, noting that “the empirical partial autocorrelation function
indicates that a first order [autoregressive] model may be an appropriate choice” with
ρ̂1 = 0.292; Sellers et al. (2020), following suit, consider a SCMPAR(1) model as a flex-
ible alternative to the PAR(1) model. The ACF and PACF plots of these data, however,
do not clearly distinguish between considering a first-order autoregressive or a moving
average model; see Fig. 1a-b. Further, recognizing that the data express apparent under-
to equi-dispersion, we therefore consider the SCMPMA(1) as an illustrative model for
analysis.
We perform ML estimation assuming various combinations for (m1,m2) (i.e. {(1,1),

(1,2), (2,2)}) as these values contain the observed correlation, 0.25 = 1
4 < ρ̂1 < 1

3 ≈ 0.33.
Table 2 contains the resulting parameter estimates for λ and ν, along with the respective
Akaike Information Criterion (AIC). While the SCMPMA(1) model with m1 = m2 = 2
has the lowest AIC among the four models considered, all of these models produce
approximately equal AIC values (i.e. 695.2) where the increasing m1 and m2 values asso-
ciate with decreasing λ̂ and increasing ν̂. This makes sense because the resulting estimates
rely solely on the assumed underlying sCMP(λ, ν, 2m1 + m2) distributional form for the
data.
The dispersion estimates in Table 2 are all greater than 1, thus implying a perceived

level of data under-dispersion. These results naturally stem from the reported mean of
the data (1.286) being greater than its corresponding variance (1.205). Their associated

Table 2 Estimated parameters, the 95% confidence intervals for λ and ν derived from
nonparametric bootstrapping, and Akaike Information Criterion (AIC) values for various SCMPMA(1)
models for the IP data

λ ν

m1 m2 Est. 95% CI Est. 95% CI AIC

1 1 0.461 (0.374, 0.585) 1.285 (0.650, 2.291) 695.24

1 2 0.346 (0.278, 0.433) 1.387 (0.582, 2.937) 695.21

2 1 0.277 (0.225, 0.348) 1.493 (0.500, 4.594) 695.20

2 2 0.231 (0.188, 0.289) 1.612 (0.429, 25.802) 695.19
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95% confidence intervals (determined via nonparametric bootstrapping; also supplied in
Table 2), however, are sufficiently large such that they contain ν = 1. This suggests that
the apparent data under-dispersion is not statistically significant, thus instead suggesting
that the data can be analyzed via the Al-Osh andAlzaid (1988) PMA(1)model. It is further
striking to see that the respective 95% confidence intervals associated with the dispersion
parameter increase with the size of the underlying sCMP(2m1 + m2) model. This is an
artifact of the (s)CMP distribution, namely that the distribution of ν is a right-skewed
distribution (as discussed in Zhu et al. (2017)). This approach confirms interest in the
PMA(1) model where Eqs. (1)-(2) imply that associated estimated parameters are γ̂ ≈
0.4124 and η̂ ≈ 0.9105. Thus, we benefit from the SCMPMA(1) as a tool for parsimonious
model determination.

Discussion
This work utilizes the sCMP distribution of Sellers et al. (2017) to develop a SCMPMA(1)
model that serves as a flexible moving average time series model for discrete data where
data dispersion is present. The SCMPMA(1) model captures the PMA(1), as well as
versions of a negative binomial and binomial MA(1) structure, respectively, as special
cases. This along with the flexible SCMPAR(1) can be used further to derive broader
auto-regressive moving average (ARMA) and auto-regressive integrated moving average
(ARIMA) models based on the sCMP distribution.
The SCMPMA(1) shares many properties with the analogous SCMPAR(1) model by

Sellers et al. (2020). The presented models rely on predefining discrete values (i.e.m1,m2
for the SCMPMA(1)) for parameter estimation. As done in Sellers et al. (2017) and Sellers
and Young (2019), we utilize a profile likelihood approach where, given m1 and m2, we
estimate the remaining model coefficients and then identify that collection of parameter
estimates that produces the largest likelihood, thus identifying these parameter estimates
as the MLEs. While this profile likelihood approach is acceptable as demonstrated in
other applications, directly estimating m1,m2 along with the other SCMPMA(1) model
estimates would likewise prove beneficial, as would redefining the model to allow for real-
valued estimators for m1 and m2. These generalizations and estimation approaches can
be explored in future work.
Simulated data examples illustrate that the SCMPMA(1) model can obtain unbiased

estimates, and the model demonstrates potential for accurate forecasts given data con-
taining any measure of data dispersion. The real data illustration, however, highlights the
complexities that comewith parameter estimation.While we nonetheless present ameans
towards achieving this goal, this approach does not perform but so strongly with regard
to prediction and forecasting. It nonetheless serves as a starting point for parameter esti-
mation that we will continue to investigate in future work. Moreover, the flexibility of the
SCMPMA(1) aids in determining a parsimonious model form as appropriate.
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