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Abstract

A new generalized class of Lindley distribution is introduced in this paper. This new
class is called the T -Lindley{Y} class of distributions, and it is generated by using the
quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy
distributions. The statistical properties including the modes, moments and Shannon’s
entropy are discussed. Three new generalized Lindley distributions are investigated in
more details. For estimating the unknown parameters, the maximum likelihood
estimation has been used and a simulation study was carried out. Lastly, the usefulness
of this new proposed class in fitting lifetime data is illustrated using four different data
sets. In the application section, the strength of members of the T -Lindley{Y} class in
modeling both unimodal as well as bimodal data sets is presented. A member of the
T -Lindley{Y} class of distributions outperformed other known distributions in modeling
unimodal and bimodal lifetime data sets.

Keywords: Two parameters Lindley distribution, Moments, Maximum likelihood
estimation, The T-R{Y} framework

1 Introduction andmotivation
The Lindley distribution was first introduced as a one scale parameter distribution by
Lindley (1958). In the recent years, researchers have given Lindley distribution a special
attention for its importance in modelling complex real lifetime data. Some researchers
went in the track of studying the Lindley distribution and its properties in more details.
Ghitany et al. (2008) studied some properties of the one parameter Lindley distribu-
tion, and in the application part, they showed that it is more flexible and works better in
modelling lifetime data than the known exponential distribution. Other researchers have
introduced more flexible generalizations of Lindley by compounding Lindley with other
well-known distributions. A two parameters extension of Lindley distribution was inves-
tigated by Ghitany et al. (2011), Nadarajah et al. (2011), Shanker et al. (2013), and Shanker
et al. (2017). More recently, another two-parameter Lindley distribution was introduced
by Dey et al. (2019), which provides a better fit to skewed real data than the inverse
Lindley distribution introduced by Sharma et al. (2015). With comparison to Weibull
distribution, Arslan et al. (2017) proposed the use of Generalized Lindley distribution
introduced by Nadarajah et al. (2011) as an alternative to the Weibull distribution when
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modeling wind speed data. A notable amount of attention in the literature is given to the
three-parameter Lindley distribution generalization. Many three-parameter generaliza-
tions have been defined, analyzed and presented as a competitive models to well-known
distributions (From these three-parameter generalization; the one proposed by Zak-
erzadeh and Dolati (2009), Elbatal et al. (2013), and another three-parameter Lindley was
introduced by Ashour and Eltehiwy (2015), which was extended by the exponentiation of
Lindley distribution. The various three-parameter Lindley generalizations defined over
the past decade assembled strength and flexibility in modelling the different shapes of
lifetime data. As a result, less interest was given to studying Lindley generalization with
more than three parameters. One of the few four-parameter generalizations of Lindley
distribution is named the beta-generalized Lindley distribution, and it was proposed by
Oluyede and Yang (2015).
Generalizing distributions mainly depends on adding more flexibility to known distri-

butions which result from implanting a basic distribution into more capable structure.
The literature of Distribution Theory is full of different techniques to generalize contin-
uous distributions to enhance their abilities in modeling real world data. Lee et al. (2013)
discussed the different methods for generating distributions with more details.
In this paper, we use the transform-transformer framework (T-X class) introduced by

Alzaatreh et al. (2013) to generalize the one parameter Lindley distribution, and named
it the T-Lindley{Y } class of distributions. Alzaatreh et al. (2014) refined the T-X class by
defining the T-R{Y } framework. The T-R{Y } method can be briefly defined as follows. Let
T, R and Y be random variables with the respective CDFs FT (x) = P (T ≤ x) , FR (x) =
P (R ≤ x) , and FY (x) = P (Y ≤ x). The PDFs of T, R and Y are fT (x), fR(x), and fY (x),
respectively. Define the quantile function of the random variable Y as QY (p) = inf{y :
FY (y) ≥ p}, 0 < p < 1. The CDF and the PDF of the random variable X, following a
T-R{Y } family of distributions, are respectively defined as

FX(x) =
∫ QY (FR(x))

a
fT (t)dt = FT (QY (FR(x))) , and (1)

fX(x) = fR(x) × fT (QY (FR(x)))
fY (QY (FR(x)))

. (2)

Generalizing distributions using the T-R{Y } framework involves adding more param-
eters to the generalized distribution. Hence there is more flexibility in modeling lifetime
data. In the recent years, many new classes of distributions using the T-R{Y } framework
were introduced as a generalization to known distributions; Alzaatreh et al. (2014) used
this technique to define the T-normal{Y } family of distributions as a generalization to
the normal distribution. Hamed et al. (2018) introduced a generalization for Pareto dis-
tribution using the transform-transformer framework. Alzaghal et al. (2013) proposed an
exponentiation to the T-R{Y } family of distributions by adding an extra parameter to the
random variable T.
In this paper, the T-R{Y } framework was used to generalize the Lindley distribution.

The main motivation for using this frame, is to extend the characteristics of the base-
line Lindley model to fit different shapes of data including left skewed, symmetric and
bimodal. Moreover, to provide better fit than other distributions with the same or more
numbers of parameters when modeling real world data sets.
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The rest of the paper is structured as follows: In Section 2, the definition of the T-
Lindley{Y } class of distributions, and six different subclasses of theT-Lindley{Y } are
proposed. Some statistical properties of this new class of distributions such as modes,
moments, and Shannon’s entropies are investigated in Section 3. In Section 4, some
new members of this new class are introduced and studied in more details. The max-
imum likelihood estimation method is used to estimate the parameters of the normal-
Lindley{Cauchy} distribution and a simulation study is performed in Section 5. The
flexibility of this new class of distributions in fitting four different shapes of data is
illustrated in Section 6. Finally, a brief conclusion of this paper is given in Section 7.

2 The T-Lindley{Y} class of distributions
The cumulative distribution function (CDF) and probability density function (PDF) of the
one parameter Lindley distribution are, respectively, given by

F(x) = 1 − (1 + θx/(θ + 1)) e−θx, x ≥ 0, θ > 0 (3)

f (x) = θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0.

Using Eq. (1) with FR(x) to be the CDF defined in Eq. (3), the CDF and PDF of the random
variableX following the generalT-Lindley{Y } class of distributions are, respectively, given
as

FX(x) =
∫ QY

(
1−
(
1+ θx

θ+1

)
e−θx

)

a
fT (t)dt = FT

(
QY
(
1 − (1 + θx/(θ + 1)) e−θx)) , (4)

and

fX(x) = θ2

(1 + θ)
(1 + x)e−θx FT

(
QY
(
1 − (1 + θx/(θ + 1)) e−θx))

fY
(
QY
(
1 − (1 + θx/(θ + 1)) e−θx)) . (5)

Table 1 provides the six different quantile functions that are used in generating six dif-
ferent subclasses of the T-Lindley{Y } class of distributions. The different subclasses of
T-Lindley{Y } class introduced in this paper are different generalized classes of Lindley
distribution with a maximum of three parameters.

2.1 New T-Lindley{Y} subclasses of distributions

Using the different quantile functions listed in Table 1, six new subclasses of the
T-Lindley{Y } are defined in this subsection.

2.1.1 T-Lindley{uniform} class of distributions

By using the quantile function of the uniform distribution, QY (p) = p, the corresponding
CDF to (4) is

FX(x) = FT {FR(x)} ,

Table 1 Some quantile functions of Y and the domains of T

Random variable Y The quantile function QY(p) Domain of T

(i) Uniform p (0, 1)

(ii) Exponential −b log(1 − p), b > 0 (0,∞)

(iii) Weibull β(− log(1 − p))1/α , β ,α > 0 (0,∞)

(iv) Log-logistic a(p/(1 − p))1/b , a, b > 0 (0,∞)

(v) Logistic a + b log[ p/(1 − p)] , a, b > 0 (−∞,∞)

(vi) Cauchy tan(π(p − 0.5)) (−∞,∞)
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and the corresponding PDF to (5) is

fX(x) = θ2

1 + θ
(1 + x)e−θxfT {FR(x)} .

2.1.2 T-Lindley{exponential} class of distributions

By using the quantile function of the exponential distribution,QY (p) = −b log(1−p), the
corresponding CDF to (4) is

FX(x) = FT
{−b log FR(x)

} = FT
{−b log FR(x)

}
, (6)

and the corresponding PDF to (5) is

fX(x) = θ2b (1 + x)
θ(x + 1) + 1

fT
{−b log FR(x)

}
, (7)

where F(x) = 1− F(x). Using the hazard, hR(x), and cumulative hazard,HR(x), functions
for the Lindley distribution, the CDF and PDF of the T-Lindley{exponential} class can be
written as FX(x) = FT {−bHR(x)} and fX(x) = bhR(x)fT {−bHR(x)}, respectively. There-
fore, the T-Lindley{exponential} class of distributions arises from the hazard function of
the Lindley distribution.

2.1.3 T-Lindley{Weibull} class of distributions

By using the quantile function of the Weibull distribution, QY (p) = β( − log(1 − p))1/α ,
the corresponding CDF to (4) is

FX(x) = FT
{
β
(− log FR(x)

)1/α} = FT
{
β
(− log FR(x)

)1/α} ,
and the corresponding PDF to (5) is

fX(x) = βθ2(1 + x)
αθ(x + 1) + α

(− log FR(x)
)−1+1/α fT

{
β
(− log FR(x)

)1/α} , (8)

Note that, if α = 1 in Eq. (8), then the PDF of theT-Lindley{Weibull} class of distributions
reduces to the PDF of the T-Lindley{exponential} class of distributions.

2.1.4 T-Lindley{Log-logistic} class of distributions

By using the quantile function of the log-logistic distribution, QY (p) = a(p/(1 − p))1/b,
the corresponding CDF to (4) is

FX(x) = FT
{
a
(
FR(x)/FR(x)

)1/b} = FT

{
a
(

(1 + θ)eθx

θx + θ + 1
− 1
)1/b}

, (9)

and the corresponding PDF to (5) is

fX(x) = a(1 + θ)(1 + x)θ2eθx

b(θx + θ + 1)

(
(1 + θ)eθx

θx + θ + 1
− 1
)−1+ 1

b
fT

⎧⎨
⎩a
(

(1 + θ)eθx

θx + θ + 1
− 1
) 1

b

⎫⎬
⎭
(10)

Note that, if a = b = 1, then the family of distributions in Eq. (10) arising from the odds
of the Lindley distribution and it is given by

fX(x) = (1 + θ)(1 + x)θ2eθx

θx + θ + 1
fT
{(

(1 + θ)eθx

θx + θ + 1
− 1
)}

.
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2.1.5 T-Lindley{Logistic} class of distributions

By using the quantile function of the logistic distribution,QY (p) = a + b log (p/(1 − p)),
the corresponding CDF to (4) is

FX(x) = FT
{
a + b log

(
FR(x)/FR(x)

)} = FT
{
a + b log

(
(1 + θ)eθx

θx + θ + 1
− 1
)}

,

and the corresponding PDF to (5) is

fX(x) = b(1 + x)θ2

(θx + θ + 1)FR(x)
fT
{
a + b log

(
(1 + θ)eθx

θx + θ + 1
− 1
)}

. (11)

If a = 0 and b = 1, then the family of distribution in Eq. (11) arising from the logit
function of the Lindley distribution and it is given by

fX(x) = (1 + x)θ2

(θx + θ + 1)FR(x)
fT
{
log
(

(1 + θ)eθx

θx + θ + 1
− 1
)}

,

2.1.6 T-Lindley{Cauchy} class of distributions

By using the quantile function of the Cauchy distribution, QY (p) = tan(π(p −0.5)), the
corresponding CDF to (4) is

FX(x) = FT {tan (π (FR(x) − 0.5))} , (12)

and the corresponding PDF to (5) is

fX(x) = θ2πγ

θ + 1
(1 + x)e−θxsec2 {π (FR(x) − 0.5)} fT {tan (π (FR(x) − 0.5))} . (13)

3 SOME structural properties of the T-Lindley{Y} class of distributions
In this section, some structural properties of the new proposed class of distributions is
discussed in details. Proofs are not provided for obvious results.

Lemma 1 Let T be a random variable with PDF fT (x), then the random variable
X = QR(FY (T)) follows the T- Lindley{Y} class of distributions, where QR(·) is the quantile
function of Lindley distribution. As a result, X can be simplified to

X = KW−1

(
FY (T)

)
,

where KW−1(Z) = − 1+θ
θ

− 1
θ
W−1

(−Z(θ + 1)e−(θ+1)) and W−1 denotes the negative
branch of the Lambert W function. For more details about the negative branch of the
Lambert function; see Lazri and Zeghdoudi (2016).

Corollary 1 Based on Lemma 1, we have

(i) X = KW−1 (1 − T) follows the T-Lindley{uniform} class,
(ii) X = KW−1

(
e−(T/b)) follows the T-Lindley{exponential} class,

(iii) X = KW−1

(
e−(T/β)α

)
follows T-Lindley{Weibull} class,

(iv) X = KW−1

((
1 + (T/a)b

)−1
)
follows the T-Lindley{log-logistic} class,

(v) X = KW−1

((
1 + e(T−a)/b)−1) follows the T-Lindley{logistic} class,

(vi) X = KW−1 ((0.5 − (arctanT)/π)) follows the T-Lindley{Cauchy} class.

The importance of Lemma 1 is that it shows the relationship between the random vari-
ableX and the random varaiableT. As an example, we can generate the random variableX



Hamed and Alzaghal Journal of Statistical Distributions and Applications            (2021) 8:11 Page 6 of 22

that follows the T-Lindley{Cauchy} distribution in Eq. (12) by first simulating the random
variable T from the PDF fT (x) and then computing X = KW−1 ((0.5 − (arctanT)/π)),
which has the CDF FX(x)

Lemma 2 If QX(p), 0 < p < 1 denote a quantile function of the random variable X.
Then, the quantile function for T-Lindley{Y} class is given by QX(p) = QR

{
FY (QT (p)

}
,

which can be reduced to

QX(p) = KW−1

(
FY (QT (p)

)
.

Corollary 2 Based on Lemma 2, the quantile functions for the (i) T- Lindley{uniform},
(ii) T- Lindley{exponential}, (iii) T- Lindley{Weibull}, (iv) T- Lindley{log-logistic}, (v) T-
Lindley{logistic}, and (vi) T- Lindley{Cauchy} classes of distributions, are respectively

(i) X = KW−1 (1 − QT (p)) ,
(ii) X = KW−1

(
e−(QT (p)/b)),

(iii) X = KW−1

(
e−(QT (p)/β)α

)
,

(iv) X = KW−1

((
1 + (QT (p)/a)b

)−1
)
,

(v) X = KW−1

((
1 + e(QT (p)−a)/b)−1),

(vi) X = KW−1 ((0.5 − (arctanQT (p))/π)).

Theorem 1 The mode(s) of the T- Lindley{Y} class are the solutions of the equation

x + 1 = (M + �
{
fy
(
Qy (FR(x))

)})−1,

where M = θ − �
{
fT
(
Qy (FR(x))

)}
and �(f ) = f ′/f .

Proof Using the fact that f ′
R(x) = (1/(1 + x) − θ) fR(x), the derivative of fX(x) can be

written as f ′
X(x) = fX(x)R(x), where R(x) = 1/(1 + x) − θ + �

{
fT
(
Qy (FR(x))

)} −
�
{
fy
(
Qy (FR(x))

)}
. The equation to be solved to find themode(s) of fX(x) can be obtained

by solving the equation R(x) = 0.

Corollary 3 Based on Theorem 1, the mode(s) of the (i) T- Lindley{uniform}, (ii) T-
Lindley{exponential}, (iii) T- Lindley{Weibull}, (iv) T- Lindley{log-logistic}, (v) T- Lind-
ley{logistic}, and (vi) T- Lindley{Cauchy} distributions are solutions of the following
equations, respectively,

(i) x + 1 = M−1,
(ii) x + 1 = (M − θ2(1 + x)/ (1 + θ(1 + x))

)−1,

(iii) x + 1 =
(
M + (1+x)θ2

(1+θ+xθ)

(
(1−α)

α log[e−xθ (1+xθ/(1+θ))] − 1
))−1

,

(iv) x + 1 =
(
M − (1+x)θ2

(−2b(1+θ+xθ)+(b+1)exθ (1+θ)
)

b(−1−(1+x)θ+exθ (1+θ))(1+θ+xθ)

)−1
,

(v) x + 1 =
(
M − (1+x)θ2

(−exθ (1+θ)+2(1+θ+xθ)
)

(1+θ+xθ)(1+θ+xθ−exθ (1+θ))

)−1
,

(vi) x + 1 = (M−2πe−xθ (1+x)
(1+θ)

θ2 tan
[
π
(
0.5 − e−xθ

(
1 + xθ

1+θ

))])−1
.
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In Section 4, the normal-Lindley{Cauchy} distribution is an example of a bimodal distri-
bution, which means that Corollary 3 (vi) could have more than one solution to represent
a bimodal distribution.
The entropy of a random variable X is a measure of variation of uncertainty. Entropy

has several applications in information theory, physics, chemistry and engineering. The
Shannon’s entropy for a continuous random variable X with PDF f (x) is defined as ηX =
E
[− log f (x)

]
(Shannon 1948).

Theorem 2 The Shannon’s entropy for the T-Lindley{Y} class is given by

ηX = ηT − θμX + E
(
log fY (T)

)− log
(
θ2/(1 + θ)

)− E
(
log(1 + X)

)
,

where, ηT is the Shannon’s entropy for the random variable T and μX is the mean of the
random variable X.

Proof By the definition of the Shannon entropy,

ηX = E
{− log fT

(
Qy {FR(X)})}+ E

{
log fY

(
Qy {FR(X)})}− E

{
log fR(X)

}
.

Using the fact that the random variable T = Qy {FR(X)} for the T- Lindley{Y } class, the
ηX can be written as

ηX = ηT + E
(
log fY (T)

)+ E
{− log(fR(X))

}
.

Now, log(fR(x)) = log
(
θ2/(1 + θ)

)+ log(1 + x) − θx, which implies

E
{− log(fR(X))

} = − log
(
θ2/(1 + θ)

)− E
(
log(1 + X)

)− θE(X).

Hence, ηX = ηT + E
(
log fY (T)

)− log
(
θ2/(1 + θ)

)− E
(
log(1 + X)

)− θμX .

Corollary 4 Based on Theorem 2, the Shannon’s entropies of the (i) T- Lindley{uniform},
(ii) T- Lindley{exponential}, (iii) T- Lindley{Weibull}, (iv) T- Lindley{log-logistic}, (v) T-
Lindley{logistic}, and (vi) T- Lindley{Cauch} classes of distributions, respectively, are given
by

(i) ηX = EW−1((1 − T)) − log (θ/(1 + θ)) ,
(ii) ηX = EW−1

(
e−(T/b))− μT/b − log (θ/(1 + θ)) ,

(iii) ηX = EW−1

(
e−(T/β)α

)+ (α − 1)E(logT) − E (Tα) /βα − log (αθ/βα(1 + θ)),
(iv) ηX = EW−1

(
e−

T
b
)

− log
(

βθ
α(1+θ)

)
+ (β − 1)E

(
log T

α

)
− 2E

(
log
(
1 + (T

α
)
β
))

,

(v) ηX = EW−1

((
1 + e

T−a
b
)−1
)

− (μT−a
b
)− 2E

(
log
(
1 + e

−T+a
b
))

− log
(

θ
b(1+θ)

)
,

(vi) ηX = EW−1 (0.5 − (arctanT)/π) − E
(
log(T2 + 1)

)− log (θ/π(1 + θ)) .

Where, EW−1(Z) = ηT − θμX − E
(
log
(−1 − W−1

{−Z(θ + 1)e−(θ+1)})) and μT is the
mean for the random variable T.

Theorem 3 The rth non-central moments for the T-Lindley{Y} class of distributions are
given by

E(Xr) = (1/θ)r
r∑

j=0

∞∑
n=0

bn,rcn,rE[1 − FY (T)]
n+1

,
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where bn,r = (na0)−1
n∑

l=1
[r(l + 1) − n] albn−l,r , b0,r = ar0, an = −(n+1)n−1

(n)! (θ+
1)n+1e−(n+1)(θ+1), and cn,r = (rj

)
(−(θ + 1))r−j.

Proof From lemma 1,

E
(
Xr) = E

(
−1 + θ

θ
− 1

θ
W−1

{
−FY (T)(θ + 1)e−(θ+1)

})r
.

By using the binomial expansion and the series expansion for the LambertW−1 function,

W−1(z) =
∞∑
n=1

(−1)n−1nn−2

(n − 1)!
zn, (14)

whenever |z| < 1/e, the Xr can be written as

Xr = θ−r
r∑

j=0

(
r
j

)
(− (θ + 1))r−j

( ∞∑
n=0

an
(
FY (T)

)n+1
)r

,

where cn and an defined in the statement of Theorem 3. Therefore, E(Xr) =
θ−r

r∑
j=0

∞∑
n=0

cn,r bn,r E
(
FY (T)

)n+1. See Gradshteyn and Ryzhik (2007), where bn,r can be

obtained from the recurrence relation defined in Theorem 3.

Corollary 5 Based on Theorem 3, the rth non-central moments for the (i) T- Lind-
ley{uniform}, (ii) T- Lindley{exponential}, (iii) T- Lindley{Weibull}, (iv) T- Lindley{log-
logistic}, (v) T- Lindley{logistic}, and (vi) T- Lindley{Cauchy} classes of distributions,
respectively, are given by

(i) E(Xr) = θ−r
r∑

j=0

∞∑
n=0

cn,rbn,rE(1 − T)n+1 , exists if E(1 − T)n+1 exist.

(ii) E(Xr) = θ−r
r∑

j=0

∞∑
n=0

cn,rbn,rMT
(−(n+1)

b

)
, exists ifMT

(−(n+1)
b

)
< ∞.

(iii) E(Xr) = θ−r
r∑

j=0

∞∑
n=0

cn,rbn,rMTα

(−(n+1)
βα

)
, exists ifMTα

(−(n+1)
βα

)
< ∞.

(iv) E(Xr) = θ−r
r∑

j=0

∞∑
n=0

cn,rbn,rE
(
1 + (Ta )

−b)−(n+1)
, exists if E

(
1 + (Ta )

−b)−(n+1)

exist.
(v) E(Xr) = θ−r

r∑
j=0

∞∑
n,i=0

(−(n+1)
i
)
cn,rbn,rMT−a(

−i
b ), exists ifMT−a(

−i
b ) < ∞.

(vi) E(Xr) = θ−r
r∑

j=0

∞∑
n,i=0

(n+1
i
)
(0.5)n+1−i(−π)−icn,rbn,rE(arctanT)i, exists if

E(arctanT)j exist.

Where MX(t) = E(etX).

The next theorem is about the mean deviation from the mean, D(μ), and the mean
deviation from the median, D(M), for the T-Lindley{Y } class of distributions.

Theorem 4 The D(μ) and D(M) for the T-Lindley{Y} class of distributions, respectively,
are given by

Dμ = 2μ FT (QY (FR(μ))) − 2Iμ, and DM = μ − 2IM,
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where μ and M are the mean and median for X, and Iq = (−(1 + θ)/θ) FX(q) +
1
θ

∞∑
n=1

an
∫ QY (FR(q))
−∞ fT (u)

(
Fy(u)

)n du, where an = nn−2

(n−1)! (θ + 1)ne−n(θ+1).

Proof For a nonnegative random variable X, we have Dμ = E (|X − μ|) = 2μ FX(μ) −
2Iμ, and DM = E (|X − M|) = μ − 2IM, where Iq = ∫ q

0 x fX(x) dx. From Eq. (2) and
Lemma 1, we have Iq = ∫ QY (FR(q))

−∞ fT (u)QR(FY (u)) du. By using the series expansion
of Lambart W function given in Eq. (14), QR(·) can be written as QR(p) = − 1+θ

θ
+

1
θ

∞∑
n=1

an(1 − p)n, where an = nn−2

(n−1)! (θ + 1)n e−n(θ+1). In turn, implies the result in

Theorem 4.

Corollary 6 Based on Theorem 4, the I(q)’s for (i) T-Lindley{unif-orm}, (ii) T-
Lindley{exponential}, (iii) T- Lindley{Weibull}, (iv) T- Lindley{log-logistic}, (v) T- Lind-
ley{logistic}, and (vi) T- Lindley{Cauchy} classes of distributions, respectively, are given
by

(i) Iq = Hq + 1
θ

∞∑
n=1

n∑
j=1

(n
j
)
(−1)janSu(q, 0, j), where Hq = (−(1 + θ)/θ) FX(q),

Sξ (q, z, r) = ∫ QY (FR(q))
z ξ rfT (u)du, and QY for uniform distribution.

(ii) Iq = Hq + 1
θ

∞∑
n=1

anSeu/b(q, 0,−n), where QY for exponential distribution.

(iii) Iq = Hq + 1
θ

∞∑
n=1

anSe(u/β)α (q, 0,−n), where QY for Weibull distribution.

(iv) Iq = Hq + 1
θ

∞∑
n=1

∞∑
j=0

an
(−n

j
)
S
(u/a)b(q, 0, j), where QY for log-logistic distribution.

(v) Iq = Hq + 1
θ

∞∑
n=1

anSe(u−a)/b(q,−∞, j), where QY for logistic distribution.

(vi) Iq = Hq + 1
θ

∞∑
n=1

n∑
j=0

(n
j
)( 1

2
)n−j

(−1)j an
π j Sarctan(u)

(
q,−∞, j

)
, where QY for Cauchy

distribution.

Theorem 4 and Corollary 6 can be used to obtain the mean deviations for T- Lind-
ley{uniform}, T- Lindley {exponential}, T- Lindley{Weibull}, T- Lindley{log-logistic}, T-
Lindley{logistic}, and T- Lindley{Cauchy} distributions.

4 Somemembers of the T-Lindley{Y} class of distributions
In this section, three new distributions of the class of T-Lindley{Y } are studied. The first
is a member of the T-L{E} subclass, the second is a member of the T-L{LL} subclass, and
the last one is a member of the T-L{C} subclass.

4.1 TheWeibull-Lindley{Exponential} distribution

Let the random variable T follows the Weibull distribution with parameters γ and
α, the CDF of T is then FT (x) = 1 − e−(x/γ )α , where x ≥ 0, γ ,α > 0.
Using Eq. (6), the CDF of the Weibull-Lindley{exponential} (W -L{E}) distribution is
defined as

FX(x) = 1 − e−{−b log[1−FR(x)]/γ }α .
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With β = b/γ and using Eq. (7), the corresponding PDF of W -L{E} distribution is given
by

fX(x) = αβθ2(1 + x)
1 + θ + θx

{−β log FR(x)
}α−1e−

{−β log FR(x)
}α
. (15)

When α = 1, Eq. (15) reduces to the exponential-Lindley{exponential} distribution, when
α = β = 1, Eq. (15) is reduced to exponentiated-Lindley distribution, and when α = β =
θ = 1, Eq. (15) is simply the Lindley distribution.
In Fig. 1, various plots of the W-L{E} are provided for different values of the parame-

ters θ , α, and β . The graphs show that the W-L{E} can be unimodal with monotonically
decreasing (reversed J-shape), skewed to the right, symmetric, or skewed to the left.
Using the general properties of the T-Lindley{Y } class of distributions derived in

Section 2, the following properties of theW-L{E} distribution are obtained:

(i) The Quantile function: By using Corollary 2 part (ii), the quantile function of the
W-L{E} is given by

QX(p) = −θ + 1
θ

− 1
θ
W−1

{
−(θ + 1)e−

(
(θ+1)+(− log(1−p))1/α/β

)}
.

(ii) Mode: By using corollary 3 part (ii), the mode of W-L{E} distribution is the
solution of the following equation which can be evaluated numerically

x + 1 = (θ − �
{
α zα−1ez

}− θ2(1 + x)/ (1 + θ(1 + x))
)−1,

where z = (−β log
{
(1 + θx/(θ + 1)) e−θx})α−1e−

(
β log

{
(1+θx/(θ+1))e−θx})α .

(iii) The rth non-central moments: By using Corollary 5 part (ii), the rth non-central
moments of W-L{E} distribution are given by

E(Xr) = θ−r
r∑

j=0

∞∑
n,i=0

cn,rbn,r
(−1)i

i!
(n + 1)i

β i 
(1 + i/α).

(iv) The Mean deviations: By using Theorem 4 and Corollary 6 part (ii), the mean
deviation from the mean and the mean deviation from the median of W-L{E} are
given by

Dμ = 2μ FT (QY (FR(μ))) − 2Iμ andDM = μ − 2IM,

Fig. 1 PDFs ofW-L{E} for various values of θ ,α and β
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Fig. 2 PDFs of E-L{LL} for various values of θ ,α and β

where Iq is given by Iq = Hq + 1
θ

∞∑
n=1

∞∑
i=0

(−1)ini
i! an 


[
1 + i

α
,
(− log FR(q)

)α] , and

(α, x) = ∫ x0 uα−1e−udu is the incomplete gamma function.

4.2 The exponential-Lindley{Log-logistic} distribution

Let the random variable T follows the exponential distribution with parameter γ and
with the CDF FT (x) = 1 − e−x/γ . Using Eq. (9), the CDF of the exponential-Lindley{Log-
Logistic} (E-L{LL}) distribution is defined as

FX(x) = 1 − e−{a(FR(x)/(1−FR(x)))1/β }/γ .

With α = a/γ and using Eq. (10), the PDF of the E-L{LL} distribution is given by

fX(x) = α(1 + θ)θ2

β

(1 + x)eθx

(1 + θ + θx)

(
FR(x)

1 − FR(x)

)−1+1/β
e−α

(
FR(x)

1−FR(x)

)1/β
.

Figures 2 and 3 provide different graphs of the E-L{LL} distribution for various values of
θ ,α and β . The plots show that the E-L{LL} distribution can be unimodal with either a
monotonically decreasing behavior or skewed.

Fig. 3 PDFs of E-L{LL} for various values of θ ,α and β



Hamed and Alzaghal Journal of Statistical Distributions and Applications            (2021) 8:11 Page 12 of 22

Fig. 4 PDFs of N-L{C} distribution for various values of θ ,μ and σ

4.3 The Normal-Lindley{Cauchy} distribution

Let the random variable T follows the normal distribution with parameters μ and σ ,
then the CDF and the PDF of T are FT (x) = �

( x−μ
σ

)
and fT (x) = σ−1φ

( x−μ
σ

) =
1√
2πσ

e
(−(x−μ)2/2σ 2), where φ(x) is N(μ, σ), �(x) is the CDF of φ(x), σ > 0, and −∞ <

x,μ < ∞.
Using Eq. (12), the CDF of the normal-Lindley{Cauchy}(N-L{C}) distribution is defined

as

FX(x) = � ((tan{π [ FR(x) − 0.5] } − μ)/σ) .

Using Eq. (13), the PDF of the N-L{C} distribution is given by

fX(x) =
√

π/2θ2

(1 + θ)σ
(1 + x) e−θxcsc2

(
πFR(x)

)
e
(−(tan(π [FR(x)−0.5])−μ)2/2σ 2)

,

Figures 4 and 5 provide different graphs of the N-L{C} distribution for various values of
θ ,μ and σ . Figure 4 shows that this new class of Lindley distribution can be unimodal with
either skewed right, left, or symmetric curves. While Fig. 5 is showing that the N-L{C}
distribution, with only three parameters, is flexible to assemble bimodality behavior.

Fig. 5 PDFs of N-L{C} distribution for various values of θ ,μ and σ
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5 Estimation and simulation for the parameters of the N-L{C} distribution
In this section, the unknown parameters of the N-L{C} distribution are estimated using
the maximum likelihood (ML) estimation method. Then, a simulation study to assist the
performance of the maximum likelihood estimates (MLEs) is presented.

5.1 Estimation

Let X1,X2, ....,Xn be a random sample of size n fromN-L{C} and � = (θ ,μ, σ)T be vector
of parameters of dimension 3.
By setting zi = 1+θ+θxi

1+θ
e−θxi , the log-likelihood function for � is given by

�(�) = C1 − n log σ −
n∑

i=1
log (1 + xi) − θ2

n∑
i=1

x2i + 2
n∑

i=1
log (cscπzi)

− 1
2σ 2

n∑
i=1

(μ − tanπ (0.5 − zi))2,

where C1 = 0.5n log(π
2 ) + 2n log θ + n log(1 + θ).

By setting ti = (1+xi)
(1+θ+θxi) − 1

(1+θ)
− xi, the score vector

U(�) = (Uθ = ∂�/∂θ ,Uμ = ∂�/∂μ,Uσ = ∂�/∂σ)T ,

for the parameters θ ,μ, and σ are derived analytically as

Uθ = 2n
θ

+ n
1 + θ

−
∑n

i=1
xi − 2π

∑n

i=1
zi cot(πzi) (ti)

+ π

σ 2

∑n

i=1
zi(−ti)

(
sec2π (0.5 − zi)

)
(μ − tanπ (0.5 − zi)) ,

Uμ = −σ−2
∑n

i=1
(μ − tanπ (0.5 − zi)) ,

Uσ = − n
σ

+
∑n

i=1 (μ − tanπ (0.5 − zi))2

σ 3 ,

respectively. By setting the equations Uμ = 0 and Uσ = 0, the MLEs of μ̂ and σ̂ are given
by

μ̂ =
∑n

i=1 tan (0.5 − zi)
n

, and (16)

σ̂ =
√∑n

i=1
(
μ̂ − tan (0.5 − zi)

)2
n

. (17)

Hence, we first maximize the log-likelihood function

� = �(�) = C1 − n
2
log
(∑n

i=1

(∑n
i=1 tan(0.5 − zi)

n
− tan(0.5 − zi)

)2
/n
)

−
n∑

i=1
log (1 + xi) −

n∑
i=1

(θxi)2 + 2
n∑

i=1
log (cscπzi)

− n
2
∑n

i=1
(
μ̂ − tan (0.5 − zi)

)2
n∑

i=1

(∑n
i=1 tan (0.5 − zi)

n
−tanπ (0.5 − zi)

)2
,

with respect to θ , which gives the MLE of θ̂ , then substitute θ̂ into Eq. (16) to find the
MLE μ̂ for the parameter μ, and substitute θ̂ and μ̂ into Eq. (17) to find theMLE σ̂ for the
parameter σ . The SAS software was used to run all the needed analysis. The initial value
for the parameter θ is obtained by assuming the random sample xi, i = 1, 2 . . . , n is from
Lindley distribution with parameter θ .
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5.2 Simulation

A simulation is used to investigate the performance of the MLEs for the parameters’ of
the N-L{C} distribution. To generate a random sample form N-L{C}, we first generate a
random sample (ti, i = 1, 2 . . . , n) from the normal distribution with parameters μ and σ ,
then apply the transformation in Corollary 1 part (vi); X = KW−1 ((0.5 − (arctanT)/π)),
the resulting random sample will follow the N-L{C} class.
Five different sample sizes are considered (n = 25, 50, 100, 200, 500) with six different

combinations of parameters (θ = 0.5, 1.5, 2, μ = 0, 0.5, 1, 2, σ = 0.5, 1.5, 2). For each
parameters’ combination and each sample size, the simulation process is repeated 500
times. Table 2 gives the average biases (actual-estimated) and the standard deviations of
θ̂ , μ̂ and σ̂ . It can be concluded from the table that the efficiency of the ML estimation
method increased with the increase of the sample size where the bias and the standard
deviation got smaller.
Table 2 shows that the ML estimation method is an appropriate technique for estimat-

ing the parameters of the N-L{C} distribution. Similar estimation analysis was conducted

Table 2 Bias and standard deviations for the N-L{C} parameters

Actual Values Bias Standard deviation

θ μ σ n θ̂ μ̂ σ̂ θ̂ μ̂ σ̂

0.5R 0 0.5 25 -0.0128 -0.0307 -0.0116 0.0988 0.4183 0.0940
50 -0.0020 0.0001 -0.0009 0.0666 0.2668 0.0579
100 0.0013 0.0111 -0.0008 0.0446 0.1753 0.0413
200 -0.0011 -0.0022 -0.0005 0.0303 0.1180 0.0285
500 -0.0008 -0.0020 -0.0003 0.0186 0.0710 0.0174

0.5L 1 0.5 25 0.0038 -0.1409 -0.0753 0.1192 1.0857 0.4007
50 0.0094 -0.0006 -0.0093 0.0801 0.5569 0.1906
100 0.0075 0.0237 0.0012 0.0538 0.3532 0.1256
200 0.0025 0.0031 -0.0017 0.0369 0.2425 0.0870
500 0.0007 0.0001 -0.0009 0.0219 0.1409 0.0511

1.5S 0.5 0.5 25 -0.0096 -0.0412 -0.0218 0.3137 0.5165 0.1684
50 0.0115 0.0049 0.0002 0.2042 0.3071 0.0999
100 0.0114 0.0144 0.0021 0.1365 0.2000 0.0712
200 0.0007 -0.0021 -0.0018 0.1004 0.1503 0.0513
500 0.0004 -0.0002 -0.0004 0.0608 0.0886 0.0314

1.5B 0 1.5 25 -0.0263 -0.0658 0.0304 0.1607 0.4397 0.2512
50 -0.0043 -0.0172 0.0232 0.1054 0.2984 0.1665
100 -0.0005 0.0036 0.0089 0.0722 0.2057 0.1229
200 -0.0026 -0.0047 0.0020 0.0516 0.1454 0.0850
500 -0.0017 -0.0016 -0.0011 0.0319 0.0914 0.0516

2B 1 1.5 25 0.0005 -0.0578 0.0291 0.2208 0.5701 0.3653
50 0.0123 -0.0018 0.0344 0.1454 0.3653 0.2392
100 0.0085 0.0153 0.0166 0.0964 0.2464 0.1730
200 0.0017 -0.0009 0.0037 0.0711 0.1793 0.1246
500 0.0003 0.0008 0.0015 0.0418 0.1066 0.0745

1.5B 2 2 25 0.0206 -0.0385 0.0735 0.1638 0.9175 0.6150
50 0.0176 0.0270 0.0711 0.1069 0.5780 0.4045
100 0.0111 0.0390 0.0376 0.0706 0.3896 0.2904
200 0.0029 0.0016 0.0107 0.0501 0.2910 0.2042
500 0.0014 0.0046 0.0061 0.0299 0.1685 0.1235

RSkewed to the right, Ssymmetric, Lskewed to the left, Bbimodal distribution
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for W -L{E} and E-L{LL} distributions. The results show that the ML method is an
appropriate method for estimating the parameters of T-Lindley{Y } class of distributions.

6 Applications of some T-Lindley{Y} distributions
In this section, the applicability of W -L{E}, E-L{LL} and N-L{C} as members of the T-
Lindley{Y } class of distributions in modeling real data set is presented. Four different data
sets including right skewed, left skewed, symmetric and bimodal shapes are considered.
The flexibility of the T-L{Y } members are compared with other well-known distributions
The computations and the statistical analysis for the different applications were done
using the SAS software. For each one of the application, the ML estimation method is
used to estimate the parameters of the fitted distributions. The initial value for the param-
eter θ for theW -L{E} and E-L{LL} distributions is obtained in a similar manner to the one
used for the N-L{C} and the initial value for the rest of their parameters is set to 1.
To compare the different fitted models, the following goodness of fit tests were carried:

the value of two times the minus log-likelihood function −2 log l, Akaike information
criterion (AIC), Bayesian information criterion (BIC), Kolmogorov-Smirnov (K-S) and
its corresponding p-value. We have also considered the Anderson–Darling (A∗) and
Cramér–von Mises (W ∗), see Chen and Balakrishnan (1995) for details regarding these
statistics. In general, the smaller the value of any of the goodness fit test correspond to
a better fit for the data. Except for the p-value of the K-S test, the higher the p-value the
better the fit. The first three applications illustrate the different shapes of a unimodal data
sets; right skewed, symmetric and left skewed. The fourth and last application represents
the modeling of a bimodal data set.

6.1 The United Kingdom quarterly gas consumption between the years 1960-1986

In this first application, the quarterly logged demand for gas in the United Kingdom
between the years 1960 -1986 is used. The gas consumption data set is heavily skewed
to the right. Tahir et al. (2016) fitted this data using the Weibull-Dagum distribution
(WD) defined based on theWeibull-G class that is proposed by Bourguignon et al. (2014).
The WD flexibility in modeling this data set was compared to the one of Beta-Dagum
distribution (BD) introduced by Domma and Condino (2013). The BD distribution is a
sub-distribution of the beta-G class presented by Eugene et al. (2002).The five parameter
DB with the additional two positive shape parameters, placed second in fitting this data
set compared to the WD. Tahir et al. (2016) tests’ results for DW and BD are included
in Tables 3 and 4. To examine the flexibility of the three members of T-L{Y } class of
distributions with three parameters in fitting this data set, another two competitive Lind-
ley generalized distributions with three parameters were used in this comparison. The
first one is the Beta Lindley distribution (BL) proposed by Merovci and Sharma (2014),
and the second one is the Generalized Lindley distribution (GL) due to Zakerzadeh and
Dolati (2009). On examining the results in Tables 3 and 4, we observe that all the dis-
tributions specifically the T-L{Y } members give an adequate fit to the data. However,
the three-parameter N-L{C} distribution provides the smallest −2 log l, AIC, BIC, K-
S, A∗ and W ∗ values and the highest K-S p-value compared to the other competing
six distributions. This put the N-L{C} in top at fitting this skewed right data among
all the considered models including the four-parameter WD and the five-parameter BD
distributions.
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Table 3MLEs and −2 log l results for data 1

Estimates (Standard error)

Distribution θ̂ α̂ β̂ μ̂ σ̂ −2 log l

W-L{E} 0.01115 1.1022 0.4079 1442.4
(0.0112) (0.1673) (0.5492)

E-L{LL} 0.000992 9.5182 1.2670 1447.9
(0.0019) (27.5824) (0.0931)

N-L{C} 0.003924 -1.2257 2.1814 1411.3
(0.0002) (0.2708) (0.1513)

BL 0.03285 3.7594 0.1402 1426.1
(0.0012) (0.9457) (0.0156)

GL 0.006546 1.2101 488.66 1442.0
(0.0009) (0.2813) (98.4565)

WD 130.7596 0.5323 145.2258 1.7667 1416.2
(128.7734) (0.0832) (126.1961) (0.2007)

BD 1.0692 56.9652 1.4673 35.9480 1.3783 1424.8
(33.1823) (1499.3341) (1.4326) (1085.1941) (0.8115)

Figure 6 displays the histogram and the fitted density functions for the UK gas
consumption data set.

6.2 The annual maximum temperatures at England cities

The second data set is an approximately symmetric data set with 80 observations and is
about the annual maximum temperatures recorded in Oxford and Worthing at England
between the years 1901-1980. The data was first analyzed by Chandler and Bate (2007)
and recently, Alzaatreh et al. (2015) used members of the Weibull-gamma{Y } family to fit
this data set. The results of the four parameter Weibull-gamma{exponential} (W -G{E})
and Weibull-gamma{log-logistic} (W -G{LL}) were included in this study. In addition to
that, the flexibility of W -L{E}, E-L{LL} and N-L{C} distributions in fitting this data set
were compared to the performance of the BL and GL distributions (see application one).
With the lowest AIC, BIC andA∗ values, the three-parameter distributionsN-L{C} pro-

vides a good fit to this data set compared to the other competing distributions. With the
lowestW ∗ and K-S test values and the highest p-value for the K-S test, the four-parameter
W -G{LL} is also providing a good fit for this data set. But, with one less parameter and
very similar values of the K-S andW ∗ tests, theN-L{C} (once again) is considered the best
in fitting this data set. See Tables 5 and 6.
The histogram of the annual maximum temperature and the fitted PDFs of W -L{E},

N-L{C},W -G{E} andW -G{L} distributions are presented in Fig. 7.

Table 4 Goodness-of-fit tests for data 1

Statistics

Distribution K-S (p-value) A∗ W∗ AIC BIC

N-L{C} 0.0634 (0.7787) 0.5090 0.0690 1417.3 1425.4

BL 0.1196 (0.0911) 1.6426 0.3084 1432.1 1440.2

WD 0.0764 (0.5544) 0.6320 0.1128 1424.2 1435.0

BD 0.0859 (0.4022) 0.9385 0.1513 1434.7 1448.2
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Fig. 6 Fitted PDFs for the UK gas consumption data set

6.3 Time to AIDS

The third data set is about the times in years to infection with AIDS for 295 patients.
Those patients were infected with AIDS virus from a contaminated blood transfusion,
and the time in years it took each one of them to develop the AIDS was measured from
the date of infection. This data is taken from Klein and Moeschberger (1997). Recently,
Weibull Lindley distribution (WL) due to Asgharzadeh et al. (2018) and the extended
Lindley distribution (EL) due to Bakouch et al. (2015) were used to fit this left skewed
data set by Asgharzadeh et al. (2018). Both of these Lindley generalizations provided an
adequate fit to this data set using multiple measures. In this compression, The same T-
L{Y } members used in the previous applications;W -L{E},E-L{LL} and N-L{C} were fitted
to this data in addition to the BL,GL, WL and the EL distributions defined earlier. The
parameter estimates, and the various goodness of fit measures for these seven distribu-
tions in fitting this data set are recorded in Tables 7 and 8. It is obvious from the goodness
of fit measures that the three-parameter T-L{Y } members compete well with the other
distributions. But, based on all of the used goodness of fit measures the E-L{LL} rank first

Table 5MLEs and −2 log l results for data 2

Estimates (Standard error)

Distributions θ̂ α̂ β̂ μ̂ σ̂ −2 log l

W-L{E} 0.02659 14.818 0.8772 465.8
(0.0021) (1.211) (0.0994)

E-L{LL} 0.01493 0.09245 200.01 466.8
(0.0037) (0.0103) (22.4217)

N-L{C} 0.02363 0.3412 0.09365 458.1
(0.0058) (0.4681) (0.0259)

BL 0.02897 121.83 49.4720 471.4
(0.0053) (23.1719) (18.7428)

GL 2.0057 170.31 9.7207 480.9
(0.0171) (26.4789) (1.4234)

W-G{E} 1.4579 392.4465 0.2048 2.8324 457.97
(0.7993) (169.4705) (0.0901) (4.0113)

W-G{LL} 0.4753 423.0032 0.2232 0.0481 458.04
(0.1934) (169.6370) (0.0904) (0.1168)
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Table 6 Goodness-of-fit tests for data 2

Statistics

Distribution K-S (p-value) A∗ W∗ AIC BIC

W-L{E} 0.1109 (0.2791) 0.8926 0.1323 471.8 478.9

N-L{C} 0.0641 (0.8979) 0.3083 0.0506 464.1 471.2

W-G{E} 0.0643 (0.8958) 0.3094 0.0507 465.97 474.53

W-G{LL} 0.0640 (0.8987) 0.3086 0.0502 466.04 475.04

in fitting this data set by providing the lowest test values provided in Tables 7 and 8.While
the WL and EL distributions provided an adequate fit, they still ranked second and third
in fitting this data sets with the second and third lowest goodness of tests’ values. This
application illustrates the flexibility of the E-L{LL} distribution in fitting a left skewed data
set compared to other well-known Lindley generalizations. In Fig. 8, the histogram of the
time to AIDS data set and the fitted PDFs are presented.
The three previous applications show the flexibility of W -L{E}, E-L{LL} and N-L{C}

members of the T-L{Y } class of distributions in fitting the different shapes assembly by
unimodal data set well including skewed left, skewed right as well as symmetric. The
fourth and last application illustrates the flexibility of the N-L{C} distribution, a member
of the T-L{Y } class of distributions, in fitting a bimodal data set.

6.4 Times to death of psychiatric patients

The bimodal data set is about the times to death of twenty six psychiatric patients
admitted to the University of Iowa hospital during the period 1935-1948. This data set
is taken from Klein and Moeschberger (1997). Recently, Alzaghal and Hamed (2019)
analyzed this data using the bimodal normal-Lomax{Cauchy} distribution (N-Lo{C}).
Tables 9 and 10 provide the parameter estimates, and the different goodness of fit tests’
results for the different distributions included in this comparison. The performance of the
three-parameter N-L{C} distribution in modeling this data set was compared to the fol-
lowing bimodal competitive distributions: the four-parameter beta-normal distribution
(BN) defined by Famoye et al. (2004), the four-parameter Weibull-gamma{log logis-
tic} distribution (W -G{LL}) introduced by Alzaatreh et al. (2015), the three-parameter
logistic-normal{logistic} distribution (L-N{L}), a member of the T-normal{Y } introduced

Fig. 7 Fitted PDFs for the annual maximum temperatures in England cities data set
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Table 7MLEs and −2 log l results for data 3

Estimates (Standard error)

Distributions θ̂ α̂ β̂ μ̂ σ̂ −2 log l

W-L{E} 0.001891 1.8606 17954 1074.2
(0.0003) (0.0877) (6134.81)

E-L{LL} 0.4989 0.1883 0.7019 1064.2
(0.1272) (0.1377) (0.1083)

N-L{C} 0.5640 1.2689 1.3243 1088.7
(0.0150) (0.1469) (0.0969)

BL 0.03596 2.6808 2.6808 1099.4
(0.0017) (0.2169) (0.2169)

GL 1.402 5.099 3.872 1126.5
(0.1157) (0.5533) (4.373)

WL 0.1595 4.036 0.1949 1071.4
(0.0324) (0.4329) (0.0064)

EL 0.2066 -0.1425 3.503 1074.9
(0.0053) (0.0810) (0.2776)

by Alzaatreh et al. (2014), and the four-parameter N-Lo{C}. Finally, the three-parameter
WL distribution was also fitted to this data set. The N-L{C} distribution with only three-
parameter fitted this data well with the smallest AIC, BIC, K-S statistics and with the
highest K-S p-value. The four-parameter N-Lo{C} distribution got the smallest A∗ and
W ∗ tests’ values, and the same −2 log l test value as the N-L{C} making it a strong com-
petitive to theN-L{C} distribution in fitting this data set. But, with one less parameter the
N-L{C} is providing a superior fit to this data set. Comparing only the three-parameter
distributions applicability in fitting this data set, the WL distribution rank second with
the second smallest AIC, BIC, K-S, A∗, W ∗ tests’ values and with the second largest p-
value based on the K-S statistic after the N-L{C} distributions. In Fig. 9, the bimodality of
the data set is clearly captured by the N-L{C} distribution showing the superiority of the
N-L{C} in fitting this data set followed by the N-Lo{C} fit.

7 Conclusion
In this paper, we proposed a new class of distributions, so-called the T-Lindley{Y } class of
distributions. This new Lindley generalization is based on the T-R{Y } methodology. The
T-Lindley{Y } class of distributions have a variety of shapes varying between unimodal
and bimodal. Therefore, members of this class can effectively be used in analyzing uni-
modal as well as bimodal real-world data as presented in the application section. Different
statistical properties of the new proposed class of distributions are investigated. Six new
subclasses based on the quantile functions of uniform, exponential, Weibull, log-logistic,

Table 8 Goodness-of-fit tests for data 3

Statistics

Distribution K-S (p-value) A∗ W∗ AIC BIC

W-L{E} 0.0775 (0.0587) 1.3591 0.2159 1080.2 1091.3

E-L{LL} 0.0494 (0.4708) 0.6166 0.1038 1070.2 1081.3

WL 0.0549 (0.3384) 0.8520 0.1383 1077.4 1088.4

EL 0.0684 (0.1281) 1.0882 0.1826 1080.9 1092.0
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Fig. 8 Fitted PDFs for the times to AIDS data set

Table 9MLEs and −2 log l results for data 4

Estimates (Standard error)

Distributions θ̂ α̂ β̂ μ̂ λ̂ σ̂ −2 log l

BN 0.104 171.20 56.289 6.273 190
(0.1086) (316.81) (11.0402) (4.1968)

W-G{LL} 0.394 3.129 2.824 729.9 186.7
(0.1394) (2.3302) (1.1677) (948.98)

L-N{L} 21.171 0.0922 2.548 198.5
(1.009) (0.0154) (0.1528)

WL 9.901 0.0283 0.043 186.8
(2.822) (0.0101) (0.0105)

N-Lo{C} 604.69 6.2362 6176.5 5.119 176.6
(61.5094) (2.5175) (6.0013) (1.8651)

N-L{C} 0.1618 9.5079 10.4235 176.6
(0.0093) (3.0089) (3.0089)

Table 10 Goodness-of-fit tests for data 4

Statistics

Distribution K-S (p-value) A∗ W∗ AIC BIC

BN 0.1801 (0.3677) 0.7497 0.1254 198 203

W-G{LL} 0.1951 (0.2760) 1.0374 0.1561 194.7 199.8

WL 0.1158 (0.8765) 1.0035 0.0598 192.8 196.5

N-Lo{C} 0.0990 (0.9606) 0.2068 0.0287 184.6 189.6

N-L{C} 0.0876 (0.9884) 0.2504 0.0307 182.6 186.4
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Fig. 9 Fitted PDFs for the times to death of psychiatric patients’ data set

logistic and Cauchy are introduced. Three members from three different subclasses are
studied in more details. A simulation analysis is carried to study the performance of the
maximum likelihood estimation method in estimating the unknown parameters of the
three-parameter N-L{C} distribution. In the application section, the N-L{C} distribution
shows a superiority in fitting three out of the four data fitted in comparison to other
known distributions.
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