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Abstract

The Pareto distribution has long been recognized as a suitable model for many
non-negative socio-economic variables. Univariate and multivariate variations abound.
Some unification is possible by representing the Pareto variables in terms of
independent gamma distributed components. Further unification is sometimes
possible since some of the frequently used multivariate Pareto models share the same
copula. In some cases, inference strategies can be developed to take advantage of the
stochastic representations in terms of gamma components.
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1 Introduction
Discussion of Pareto and Pareto-like distributions can be traced back to Vilfredo Pareto’s
Economics textbook published in Rome in 1897. His observation that the number of per-
sons in a population whose incomes exceed x is often well approximated by Cx−α for
some positive C and some positive α, led inexorably to consideration of the following well
known model used for fitting univariate income data.

P(X > x) = FX(x) = (x/σ)−α , x > σ . (1)

Here σ , the scale parameter, is positive and α (Pareto’s index of inequality) is also
positive.
This model is typically referred to as the classical Pareto model. Improved fitting of data

is encountered whenmore general Pareto-like distributions are considered. In this survey,
the classical model will be embedded in a hierarchy of more complicated Pareto models.
In this hierarchy of generalized Pareto distributions, the classical model will be called the
Pareto (I) distribution. Multivariate income distributions are also of interest and, in that
arena, a hierarchy of multivariate Pareto distributions is available, paralleling and closely
related to the univariate hierarchy.
Even more flexible models have been proposed using these univariate and multivariate

Pareto models as building blocks. Several of these will be described in this paper.
The end result is an impressively flexible array of income models from which the

researcher can select a parsimonious model for the particular data set at hand. The
emphasis in this survey will be on distributional properties of the models but some
attention will be paid to estimation and inference strategies.
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2 A hierarchy of generalized Paretomodels
As the basic distribution in our hierarchy of generalized Pareto models we use the clas-
sical Pareto distribution, called here the Pareto (I) distribution. Its survival function is of
the form (1). In practice, α is frequently assumed to be larger than 1, so that the distri-
bution has a finite mean. If a random variable X has (1) as its survival function, then we
write X ∼ P(I)(σ ,α). In this basic model, the parameter σ has a dual role. It is indeed
a scale parameter, but also it determines the lower bound of the support of the distribu-
tion and, in a sense, plays to some extent the role of a location parameter. A slightly more
general model, which separates the roles of location and scale parameters has then been
frequently used.
This distribution will be called the Pareto (II) distribution. Its survival function is of the

form

F(x) =
[
1 +

(
x − μ

σ

)]−α

, x > μ (2)

where μ, the location parameter, is real valued, σ is positive and α is positive. In most
applications μ will be non-negative, but negative values for μ pose no problems. If X has
(2) as its survival function, we will write X ∼ P(II)(μ, σ ,α).
There is an intimate relation between the Pareto (II) distribution and the Pickands gen-

eralized Pareto model, which is much used in the study of extreme values and peaks over
thresholds. A good general reference for discussion of the role of the Pickands gener-
alized Pareto distribution is the book by Falk et al. (2011). The density of the Pickands
generalized Pareto model is

f (x; σ , k) = 1
σ

(
1 − kx

σ

)(1−k)/k
I(x > 0, (kx)/σ < 1). (3)

where σ > 0 and−∞ < k < ∞. The density corresponding to k = 0 is obtained by taking
the limit as k ↑ 0 in (3). This model, (3), includes three sub-models. When k < 0, it yields
a Pareto (II) density (with μ = 0), when k = 0 it yields an exponential density, while for
k > 0, it corresponds to a scaled Beta distribution (of the first or standard kind). In fact,
several results for the Pareto (II) distribution can be proved to remain valid in the more
general context of the Pickands generalized Pareto model. In an incomemodeling setting,
as Pareto observed, heavy tailed distributions are typically encountered and, for this rea-
son, we will concentrate on the Pareto (II) sub-model. We remark, in passing, that despite
Pareto’s insistence on the ubiquity of heavy tails, several authors have utilized scaled Beta
distributions as income models, and some have even argued in favor of the exponen-
tial distribution as a model. The most general model in our hierarchy, the Feller-Pareto
model will be seen to actually include some light-tailed distributions corresponding to
scaled Betamodels with an additional location parameter. Applications of such light tailed
models are more likely to be encountered outside of the income distribution context.
Truncated versions of the Pareto (II) distribution, which clearly are not heavy tailed, are

sometimes appropriate models for data sets which, for some reason, exclude large values.
Such distributions are of the form

F(x) = 0, x ≤ μ,

= 1−
(
1+ x−μ

σ

)−α

1−
(
1+ τ−μ

σ

)−α , μ < x < τ ,

= 1, x ≥ τ ,

(4)
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where −∞ < μ < τ < ∞, σ > 0, and α > 0. Some discussion of such models may be
found in Aban et al. (2006) and Arnold and Austin (1987).
The Pareto (III) distribution is a variant model with tail behavior comparable to that of

the Pareto (II) distribution. Its survival function is of the form

F(x) =
[
1 +

(
x − μ

σ

)1/γ
]−1

, x > μ (5)

where μ is real, σ is positive and γ is positive. We will call γ the inequality parameter. If
μ = 0 and γ ≤ 1, then γ turns out to be precisely the Gini index of inequality for this
distribution. If X has (5) as its survival function, we will write X ∼ P(III)(μ, σ , γ ).
If we introduce both a shape and an inequality parameter, we arrive at the Pareto (IV)

family:

F(x) =
[
1 +

(
x − μ

σ

)1/γ
]−α

, x > μ (6)

where μ (location) is real, σ (scale) is positive, γ (inequality) is positive and α (shape)
is positive. Although we continue to call γ the inequality parameter it will only be iden-
tifiable with the Gini index when α = 1 and μ = 0. One might argue instead that in
the P(IV) model both γ and α would be best described as shape parameters, since nei-
ther of them has a direct inequality interpretation. An anonymous referee points out that
the two parameters γ and α govern the behavior of the P(IV) density as x approaches μ

from above and as x approaches infinity. Thus, f (x;μ, σ , γ ,α) ∼ x−α/γ−1 as x → ∞ and
f (x − μ;μ, σ , γ ,α) ∼ (x − μ)1/γ−1 as x → μ. He suggests that an argument might be
advanced in favor of a reparameterization in which we define β = α/γ , to highlight the
roles of α and β in determining the limiting behavior of the density. However, in this paper,
to be consistent with the notation in Arnold (1983), we will continue with the μ, σ , γ ,α
parameterization and continue to call γ the inequality parameter. If a random variable X
has (6) as its survival function, we will write X ∼ P(IV)(μ, σ , γ ,α). Note that the Pareto
(IV) distribution, with μ = 0, is also known as a Burr Type XII distribution.
The three more specialized families. P(I)-P(III), may be identified as special cases of the

Pareto (IV) family as follows:

P(I)(σ ,α) = P(IV)(σ , σ , 1,α),

P(II)(μ, σ ,α) = P(IV)(μ, σ , 1,α), (7)

P(III)(μ, σ , γ ) = P(IV)(μ, σ , γ , 1).

Feller (1971), p. 49, suggested a different definition of a Pareto distribution. It can be
recognized as the distribution of a ratio of two independent gamma variables (a distribu-
tion also known as Beta distribution of the second kind). By considering a linear function
of a power of such a random variable, we arrive at a very general family, called the Feller–
Pareto family. Thus if Xi ∼ �(δi, 1) i = 1, 2, are independent random variables, and if for
μ real, σ > 0 and γ > 0 we define

W = μ + σ(X2/X1)
γ , (8)

thenW has a Feller–Pareto distribution, and we writeW ∼ FP(μ, σ , γ , δ1, δ2).
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It may be verified that the Pareto (IV) distributions are identifiable with the Feller–
Pareto distributions with δ2 = 1, i.e.,

P(IV)(μ, σ , γ ,α) = FP(μ, σ , γ ,α, 1). (9)

The density of the general Feller–Pareto distribution defined by (8) is of the form

fW (w) =
(
w − μ

σ

)(δ2/γ )−1
[
1 +

(
w − μ

σ

)1/γ
]−δ1−δ2 / [

γ σB(δ1, δ2)
]
,

w > μ. (10)

The corresponding survival function is obtainable from tables of the incomplete beta
function. For many computations it is simpler to work directly with the representation
(8). The Pareto (IV) distributions correspond to the case in which X2 has a gamma dis-
tribution while X1 has an exponential distribution. The Pareto (III) distributions are
encountered when both X1 and X2 are exponential variables.
Kalbfleisch and Prentice (1980) call the Feller-Pareto density (with μ = 0) a generalized

F density. Instead we might describe a Feller Pareto variable as being a location and scale
transform of a generalized beta variable of the second kind. Recall that a beta variable of
the second kind is just a ratio of independent gamma variables.
An even more general model might be built using independent variables Xi ∼ �(δi, 1),

i = 1, 2. One could define

W = μ + σ

(
Xγ2
2

Xγ1
1

)
. (11)

The additional flexibility provided by the introduction of such a sixth parameter in the
model has not been investigated.
The full array of generalized univariate Pareto distributions to be considered in this

paper are subsumed in the Feller–Pareto family and a unified derivation of many distri-
butional results is possible. However, in the case of Pareto (I)-(IV) distributions, some
alternative representations are also useful.
A random variable X has a P(I)(σ ,α) distribution if it is of the form

X = σ eV/α (12)

where V is a standard exponential random variable. An analogous representation of a
Pareto (II) variable in terms of an exponential random variable is possible, i.e.,

X = μ + σ
(
eV/α − 1

)
. (13)

Likewise Pareto (III) and (IV) variables can be represented as X = μ+ σ
(
eV − 1

)γ and
X = μ + σ

(
eV/α − 1

)γ respectively. The representation (12) for a classical Pareto vari-
able (i.e., Pareto (I)) highlights the useful observation that the logarithm of such a variable
has a shifted exponential distribution. This will permit the recognition of many distribu-
tional properties of Pareto (I) variables as reflections of parallel properties of exponential
variables.
A second important representation of the Pareto (II) distribution, known to Maguire

et al. (1952), is as a mixture of exponentials.Wemay describe it in terms of the conditional
survival function, given an auxiliary gamma distributed random variable Z. Thus, if

P(X > x | Z = z) = e−z(x−μ)/σ , x > μ,
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i.e., a (translated) exponential distribution, and if Z ∼ �(α, 1), then it follows that uncon-
ditionally X ∼ P(II)(μ, σ ,α). Alternatively, this can be viewed as being equivalent to the
representation in (8) after setting γ = δ2 = 1.
This representation of the Pareto (II) distribution as a gamma mixture of exponential

distributions is often encountered in reliability and survival contexts, see e.g., Keiding
et al. (2002). It is also familiar in Bayesian analysis of exponential data, where the
gamma density enters as a convenient prior. In this context the Pareto (II) distribution is
sometimes called the Lomax distribution.
The Pareto (III) distribution was apparently first considered by (Fisk 1961a; 1961b) who

called it a sech2 distribution. It is closely related to the logistic distribution. We say that
a random variable X has a logistic (μ, σ) distribution, if its distribution function assumes
the form

FX(x) =
[
1 + e−(x−μ)/σ

]−1
, −∞< x < ∞

and we write X ∼ L(μ, σ). It is not difficult to verify that

X ∼ L(μ, σ) ⇔ eX ∼ P(III)(0, eμ, σ). (14)

It is as a consequence of the relation (14) that the Pareto (III) distribution, with μ = 0,
is sometimes called the log-logistic distribution.

Remark 1. Johnson et al. (1994) refer to a Pareto distribution of the third kind that is
not to be confused with the Pareto (III) distribution discussed in this paper. The survival
function of this “third kind” distribution is of the form

F(x) =
(
1 + x

σ

)−α

e−βx, x > 0. (15)

This distribution, which was suggested by Pareto (1897), was proposed to accommodate
cases in which the basic Pareto model (1) was inadequate for fitting certain data configu-
rations. This model is closely related to the Pareto (II) distribution, but with an additional
exponential factor. Note that it could be viewed as the distribution of the minimum of a
Pareto (II) variable (withμ = 0) and an independent exponential variable. This model has
been used infrequently, but recently it has reappeared, this time called a tapered Pareto
distribution (Kagan and Schoenberg 2001).

2.1 Distributional properties

The Feller–Pareto distributions are unimodal. The mode is at μ if γ > δ2, while if γ ≤ δ2,
we find (hereW ∼ FP(μ, σ , γ , δ1, δ2))

mode(W ) = μ + σ [(δ2 − γ )/(δ1 + γ )]γ (16)

In order to compute moments of the Pareto distributions, it is convenient to work with
the representation (8). With W ∼ FP(μ, σ , γ , δ1, δ2), if we define W ∗ = (W − μ)/σ ,
then W ∗ ∼ FP(0, 1, γ , δ1, δ2), i.e., W ∗ =d (X2/X1)γ where Xi ∼ �(δi, 1) i = 1, 2, are
independent random variables. It then can be readily verified that for a real number τ , the
τ ’th moment ofW ∗ when it exists is of the form

E
(
W ∗τ

) = �(δ1 − γ τ)�(δ2 + γ τ)/�(δ1)�(δ2), −(δ2/γ ) < τ < (δ1/γ ). (17)

From this expression moments for the Feller-Pareto and the P(II)-P(IV) distributions
are readily obtained.
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Moments of the Pareto (I) distribution cannot be obtained in this way since, for it, μ =
σ 
= 0. They are obtainable by direct integration:

(Pareto (I)) E(Xτ ) = σ τ
(
1 − τ

α

)−1
, τ < α. (18)

Sums of independent Pareto variables typically do not have analytically tractable dis-
tributions. If we multiply independent Pareto variables rather than adding them, it is
sometimes possible to get simple expressions for the density of the resulting product.
In the case of the Pareto I distribution the key lies in utilization of representation (12).
Thus, if X1,X2, . . . ,Xn are independent Pareto I variables withXi ∼ P(I)(σi,αi), then their
productW has the representation

W =
( n∏
i=1

σi

)
exp

( n∑
i=1

(Vi/αi)

)
(19)

where the Vi’s are independent standard exponential variables. In some cases expressions
are available for the distribution of

∑n
i=1 Vi/αi. In particular, if αi = α, (i = 1, 2, . . . , n),

then
∑n

i=1 Vi/α ∼ �(n, 1/α), and we may readily obtain the density ofW .
A second case in which simple closed form expressions are available is one in which all

the αi’s are distinct. In this situation we can use a result for weighted sums of exponentials
given in, for example, Feller (1971), p. 40, and write the survival function of the product
in the form:

P(W > w) =
n∑

i=1

(w
σ

)−αi
n∏

k=1
k 
=i

(
αk

αi − αk

)
, w > σ (20)

where σ = ∏n
i=1 σi and αi 
= αj if i 
= j. The distribution of products of independent

Pareto (IV) variables with μi’s equal to 0 can, via the representation (8), be reduced to a
problem involving the distribution of products of powers of independent gamma random
variables. Unlike the Pareto (I) case, closed form expressions for the resulting density are
apparently not obtainable, although moments of such products are readily available.
The Pareto (IV) family is closed under minimization when certain parameters are

common to the minimands. Thus, if X1 and X2 are independent random variables with
Xi ∼ P(IV)(μ, σ , γ ,αi), i = 1, 2, then

min(X1,X2) ∼ P(IV)(μ, σ , γ ,α1 + α2). (21)

Note that in this situation the Xi’s share common values for the parameters μ, σ and γ .
Pareto (III) variables exhibit an interesting closure property with respect to geometric

minimization and maximization. Indeed, this was used as a justification for use of the
Pareto (III) distribution as a suitable model for income distributions based on a scenario
involving competitive bidding for employment (Arnold and Laguna 1976). For this, con-
sider a sequence X1,X2, . . . of i.i.d. Pareto (III)(μ, σ , γ ) random variables. Suppose that
for some p ∈ (0, 1), Np is independent of the Xi’s and has a geometric(p) distribution, i.e.,
P(N = n) = p(1 − p)n−1, n = 1, 2, . . . . Define the corresponding random extrema by

Up = min{X1,X2, . . . ,XNp}, (22)

and

Vp = max{X1,X2, . . . ,XNp}. (23)
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It is readily verified, by conditioning on Np, that Up and Vp each have Pareto (III)
distributions. Thus

Up ∼ P(III)(μ, σpγ , γ ), (24)

and

Vp ∼ P(III)(μ, σp−γ , γ ). (25)

Observe that, if μ = 0, then

p−γUp
d= pγVp

d=X1.

Some characterization results based on this observation were discussed in Arnold et al.
(1986).
It is possible to write down expressions for the densities of order statistics from a Pareto

(IV) sample. The corresponding distribution functions will involve incomplete beta func-
tions. Simulation of such order statistics may be accomplished by utilizing the relatively
simple form of the Pareto (IV) quantile function, i.e.,

F−1(u) = μ + σ
[
(1 − u)−1/α − 1

]γ . (26)

From this we have that if Xi:n is the ith order statistic from a sample of size n from a
Pareto (IV) distribution, then

Xi:n
d= F−1(Ui:n) (27)

where d= means that the two random variables are identically distributed, where F−1 is
as given in (26), and where Ui:n is the ith order statistic of a sample of size n from a
uniform (0,1) distribution. It is well known (see e.g. David and Nagaraja 2003) that Ui:n ∼
Beta(i, n − i + 1).
In some special cases the density of the ith order statistic (27) assumes a known form.

For example:

Xi
′s ∼ P(III)(μ, σ , γ ) ⇒ Xi:n ∼ FP(μ, σ , γ , n − i + 1, i). (28)

Another case involves minima:

Xi
′s ∼ P(IV)(μ, σ , γ ,α) ⇒ X1:n ∼ P(IV)(μ, σ , γ , nα). (29)

3 Some related extensions
A variety of models have been proposed to add more flexibility to the generalized Pareto
models discussed in Section 2. Most of them include Pareto models as special cases. In
this Section we will make note of a selection of these models.
Many early researchers modeled the logarithm of income (called income power by

Champernowne (1937)). Thus, instead of postulating a simple distribution for income, a
relatively simple distribution was assumed for some function of income. More flexibil-
ity may be introduced by considering a parametric family of monotonic transformations
of the income data whose parameters must be estimated from the data. For example, we
might begin with a parametric family of increasing functions ψ(x; τ) with correspond-
ing inverse functions ψ−1(x; τ) and assume that ψ(X; τ) has a Pareto (IV)(0, σ , γ ,α)
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distribution. If we denote the corresponding P(IV )(0, σ , γ ,α) distribution by Fσ ,γ ,α(x)
then the distribution of X will be

FX(x; σ , γ ,α, τ) = Fσ ,γ ,α
(
ψ−1(x; τ)

)
. (30)

A parallel extension involves quantile functions instead of distribution functions. For
this the quantile function of X is assumed be of the form

F−1
X (u; σ , γ ,α, τ) = F−1

σ ,γ ,α
(
ψ̃(u; τ)

)
. (31)

where ψ̃(u; τ) is a parametric family of monotone functions mapping (0, 1) onto (0, 1).
A popular model of this genre, introduced by Jones (2004), makes use of the family of
quantile functions of Beta distributions. The density function of this Beta-generalized
Pareto distribution is given by

fX(x; σ , γ ,α, λ1, λ2) =
α

[
1 −

(
1 + ( x

σ

)1/γ )−α
]λ1−1 (

1 + ( x
σ

)1/γ )−αλ2−1 ( x
σ

)(1/γ )−1

σγB(λ1, λ2)
,

(32)

where x ∈ (0,∞). Of course, if λ1 = λ2 = 1, the Beta-generalized distribution simplifies
to become a Pareto distribution.
Another popular model of the form (31) involves the simple choice ψ̃(u) = u1/θ where

θ > 0. In such a case we have

FX(x; σ , γ ,α, θ) = [Fσ ,γ ,α(x)]θ , x > 0, (33)

and the distribution is usually called the exponentiated generalized Pareto distribution.
It can be recognized as a special case of the Beta-generalized Pareto model with the
parameters chosen to be λ1 = θ and λ2 = 1.
Instead of the Beta distribution, one might use the Kumaraswamy distribution to obtain

an alternative generalized Pareto distribution. First,we must recall the definition of the
Kumaraswamy distribution. We say that X has a Kumaraswamy (λ1, λ2) distribution if its
density and distribution functions are :

fK (x) = λ1λ2xλ1−1 (
1 − xλ1

)λ2−1 , 0 < x < 1, (34)

and

FK (x) = 1 − (
1 − xλ1

)λ2 , 0 < x < 1. (35)

See Jones (2009) for a comprehensive introduction to the Kumaraswamy distribu-
tion. Let FP(x) denote the Pareto (IV) distribution function and suppose that K has a
Kumaraswamy (λ1, λ2) distribution. Define Y = F−1

P (K), then Y has a Kumaraswamy-
Pareto (IV) distribution with corresponding density

fY (y) = fK (FP(y))fP(y).

Akinsete et al. (2008) consider some special subcases of the Beta-generalized Pareto
distribution, while Paranaiba et al. (2013) discuss the Kumaraswamy-generalized Pareto
distribution. Submodels of the Kumaraswamy-generalized Pareto model are often of
interest. For example the exponentiated generalized Pareto distribution (33) is such a
submodel.
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And, of course, one can concatenate these constructions and consider a Beta-
Kumaraswamy-Pareto distribution. Going one step further we would arrive at a
generalized-Beta-Kumaraswamy-Pareto model. Each generalization adds flexibility at the
cost of introducing more parameters. Some degree of parsimony is evidently called for
here.
Pillai (1991) suggested an extension of the Pareto (III) distribution, motivated by its

closure under geometric minimization. A random variable is said to have a semi-Pareto
(III) distribution if its survival function is of the form

F(x;μ, σ , γ , p) =
[
1 +

(
x − μ

σ

)1/γ
h

(
x − μ

σ

)]−1

, x > μ, (36)

where μ ∈ (−∞,∞), σ , γ ∈ (0,∞), p ∈ (0, 1) and h(x) is a periodic function of ln x
with period −2π/[γ ln p] , and with h(0) = 1. The case in which h(x) ≡ 1 for every
x corresponds to the usual Pareto (III) model. More generality can be arrived at if h(x)
is replaced by a suitable parametric family of periodic functions. Note that, in order for
(36) to be a valid survival function, it must be the case that x1/γ h(x) is a non-decreasing
function of x.
Hidden truncation or selection models may sometimes provide alternative models that

are more suitable than basic Pareto models. The corresponding scenario is one in which
the variable X is observed only if a covariable Y takes on a value less than some threshold
value. Thus the distribution of the observed X’s is of the form P(X ≤ x|Y ≤ y0). With this
in mind, consider the case in which (X,Y ) has a bivariate Pareto (IV) distribution with
the following joint survival function.

P(X > x,Y > y) =
[
1 +

(
x − μ

σ

)1/γ
+

(
y − ν

τ

)1/δ
]−α

, x > μ, y > ν. (37)

(Such distributions will be discussed in more detail in Section 5). This distribution has
Pareto (IV) marginals and has Pareto (IV) conditionals. After suitable reparameterization
the corresponding hidden truncation density for X, given that it can only be observed if
Y is not too large, is

fHT (x;μ, σ , γ ,α, θ) = α
( x−μ

σ

)(1/γ )−1

γ σ [1 − (1 + θ)−α]
(38)

×
⎡⎣(

1 +
(
x − μ

σ

)1/γ
)−(α+1)

−
(
1 +

(
x − μ

σ

)1/γ
+ θ

)−(α+1)
⎤⎦ , x > μ,

where a new parameter θ = [(y0 − ν)/τ ]1/δ has been introduced. In this model, μ

is a real valued parameter, often positive, while all of the other parameters, σ , γ ,α
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and θ are positive valued. An alternative representation of this density is possible as
follows.

fHT (x;μ, σ , γ ,α, θ)

= 1
1 − (1 + θ)−α

⎡⎣ α

γ σ

(
x − μ

σ

)(1/γ )−1
[
1 +

(
x − μ

σ

)1/γ
]−(α+1)

⎤⎦

− (1 + θ)−α

1 − (1 + θ)−α

⎡⎣ α

γ σ1

(
x − μ

σ1

)(1/γ )−1
[
1 +

(
x − μ

σ1

)1/γ
]−(α+1)

⎤⎦
(39)

where σ1 = σ(1 + θ)γ . This is recognizable as a linear combination of two Pareto (IV)
densities. Note that the density is a linear combination of two Pareto (IV) densities, but
it is not a convex combination since, although the coefficients add up to 1, the second
coefficient is negative. Motivated by this example, one might also consider k-component
linear combinations of Pareto (IV) densities as income models, allowing k to be greater
than 2. Such models with positive coefficients are natural candidates for fitting multi-
modal income data sets which may well have a mixture genesis. Note that, by testing the
hypothesis that θ = 0 one can decide whether or not the data set at hand has been subject
to hidden truncation. More detailed discussion of these hidden truncation Pareto models,
in the Pareto (II) case, may be found in Arnold and Ghosh (2011).

4 Inference, briefly
Suppose that X1,X2, . . . ,Xn are independent identically distributed random variables
with a common Pareto (IV) distribution. The sample size should be reasonably large, since
we have four parameters to estimate. The sampleminimum, or someminor corrected ver-
sion of it, will be a suitable estimate of the location parameter μ. After subtracting it from
each of the observations, the remaining three parameters may be estimated using maxi-
mum likelihood. The corresponding Fisher information matrix is available (as indeed is
the Fisher information matrix for the Feller-Pareto model with μ = 0).
Either a global search or numerical solution of the likelihood equations will be required

to identify the location of the maximum of the likelihood function. In the Pareto (I) case,
a variety of alternative estimates are available including best unbiased estimates. Alter-
natively, in the Pareto (I) case one can take logarithms of the data and arrive at a shifted
exponential model, for which many estimation strategies have been developed.
A diffuse prior Bayesian analysis can be used for Pareto (IV) data. It will, predictably,

yield results similar to those obtained viamaximum likelihood. In the Pareto (I) case, Lwin
(1972) introduced a conjugate family of priors for (σ ,α) which can be used to incorpo-
rate some degree of prior knowledge of the parameters. Arnold et al. (1998) suggest use
of a more flexible family of what they call conditionally conjugate priors in this setting.
These priors are tailor-made for subsequent use of Gibbs sampling algorithms to generate
realizations from the corresponding posterior distribution.
More details on parametric inference for Pareto models may be found in Arnold (1983)

and Arnold (2008).
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5 Multivariate Paretomodels
The first author to systematically study k-dimensional Pareto distributions was Mardia
(1962). Mardia’s type I multivariate Pareto distribution has the attractive feature that
both marginals and conditional distributions are Paretian in nature. We will say that a
k-dimensional random vector X has a type I multivariate Pareto distribution, if the joint
survival function is of the form

F̄X(x) =
⎡⎣ k∑

i=1
(xi/σi) − k + 1

⎤⎦−α

, xi > σi (40)

and we write X ∼ MP(k)(I)(σ ,α). The σi’s are non-negative marginal scale parameters.
The non-negative parameter α is an inequality parameter (common to all marginals). It
follows from (40) that the one-dimensional marginals are classical Pareto distributions.
Thus Xi ∼ P(I)(σi,α), i = 1, 2, . . . , k. By setting selected xi’s equal to σi in (40), it is
apparent that, for any k1 < k, all k1 dimensional marginals are again multivariate Pareto.
If we use the notational device X = (Ẋ, Ẍ) where Ẋ is k1 dimensional, with an analogous
partition of the vector σ = (σ̇ , σ̈ ), we may write

Ẋ ∼ MP(k1)(I)(σ̇ ,α). (41)

Conditional distributions are also of the form (40), but with a change of location.
It is natural to extend this basic multivariate Pareto model by the introduction of loca-

tion, scale, inequality and shape parameters in a manner parallel to that used to develop
the univariate Pareto (II)-(IV) distributions, as follows:
(MP(k)(II)) We will say that X has a k-dimensional Pareto distribution of type II, if its

joint survival function is of the form

F̄X(x) =
⎡⎣1 +

k∑
i=1

(
xi − μi

σi

)⎤⎦−α

, xi > μi, (42)

i = 1, 2, . . . , k

and we write X ∼ MP(k)(II)(μ, σ ,α).
(MP(k)(III)) X has a k-dimensional Pareto distribution of type III, if its joint survival

function is of the form

F̄X(x) =
⎡⎣1 +

k∑
i=1

(
xi − μi

σi

)1/γi
⎤⎦−1

, xi > μi, (43)

i = 1, 2, . . . , k

and we write X ∼ MP(k)(III)(μ, σ , γ ).
(MP(k)(IV )) X has a k-dimensional Pareto distribution of type IV, if its joint survival

function is of the form

F̄X(x) =
⎡⎣1 +

k∑
i=1

(
xi − μi

σi

)1/γi
⎤⎦−α

, xi > μi, (44)

i = 1, 2, . . . , k

and we write X ∼ MP(k)(IV)(μ, σ , γ ,α).
The marginals and conditionals of an MP(k)(II) distribution are again of the MP(k)(II)

form. AnMP(k)(III) distribution hasMP(k)(III)marginals, but not conditionals. However
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anMP(k)(IV ) distribution does have both its marginals and conditionals of theMP(k)(IV )

form. Specifically, in theMP(k)(IV ) case, using the dot – double dot notation, we have

Ẋ ∼ MP(k1)(IV)(μ̇, σ̇ , γ̇ ,α) (45)

and

Ẋ|Ẍ = ẍ ∼ MP(k1)(IV)(μ̇, τ̇ , γ̇ ,α + k − k1), (46)

where

τi = σi

⎡⎣1 +
k∑

j=k1+1

(xj − μj

σj

)1/γj
⎤⎦γi

, i = 1, 2, . . . , k1. (47)

Takahasi (1965) discussed the MP(k)(IV ) distribution with μ = 0 and σ = 1. He
called it a multivariate Burr’s distribution, and noted that the marginal and conditional
distributions were of the same form.
As in the univariate case, distributional properties of these multivariate Pareto distri-

butions and possible further extensions are more transparent if one uses a representation
of the variables as functions of certain independent gamma variables. Thus if X has
a k-dimensional Pareto distribution of type IV, we may act as if the Xi’s have the
representation

Xi = μi + σi(Wi/Z)γi , i = 1, 2, . . . , k (48)

where the Wi’s are independent identically distributed �(1, 1) variables (i.e., standard
exponential variables) and Z, independent of theWi’s, has a �(α, 1) distribution. This rep-
resentation, for example, makes it easy to compute the means, variances and covariances
of X.
A generalization of the representation (48) is one in which the Wi’s are gamma rather

than exponential variables. The resulting distribution will be called k-dimensional Feller-
Pareto, since its marginals are of the Feller-Pareto form. Thus X ∼ FP(k)(μ, σ , γ ,α,β) if

Xi = μi + σi(Wi/Z)γi , i = 1, 2, . . . , k (49)

where the Wi’s and Z are independent random variables with Wi ∼ �(βi, 1), (i =
1, 2, . . . , k), and Z ∼ �(α, 1). The marginal and conditional distributions of this mul-
tivariate Feller-Pareto distribution are again multivariate Feller-Pareto. The covariance
structure can be readily obtained from the representation (49). Parallel to the situation in
one dimension, there exist alternative names that could be applied to multivariate Feller-
Pareto variables. They could be called multivariate generalized F variables or multivariate
generalized beta of the second kind variables. An evident drawback of the multivariate
Feller-Pareto model (and its various submodels) is the presence of a common value of α

which appears in each marginal density. The consequences of this homogeneity are not
easy to pin down. Certainly amodel with Feller Paretomarginals with different α’s for each
of the marginals would be desirable, if one can be developed with attractive distributional
properties (e,g., “nice” conditional distributions).



Arnold Journal of Statistical Distributions and Applications 2014, 1:11 Page 13 of 16
http://www.jsdajournal.com/content/1/1/11

5.1 Other multivariate Pareto distributions

Although the title of this section promises discussion of multivariate models, only the
bivariate case will be treated. It will be left to the reader to visualize the, usually straight-
forward, extension to the multivariate case. Notational complexity is avoided to a great
extent by focusing on the case k = 2.
It is not difficult to verify that a P(IV)(μ, σ , γ ,α) distribution can be represented as

a scale mixture of Weibull distributions. Equivalently, as remarked earlier, that a P(IV )

random variable admits a representation as

X = μ + σ(U/Z)γ

whereU ∼ exp(1) and Z ∼ �(α, 1) are independent variables. A natural bivariate version
of this construction begins with (U1,U2) having a bivariate exponential distribution with
standard exponential marginals, perhaps one of the Marshall-Olkin type with parameters
1, 1 and λ. Then, with Z ∼ �(α, 1) independent of (U1,U2), we define (X1,X2) by

Xi = μi + σi(Ui/Z)γi , i = 1, 2. (50)

Observe that in any bivariate Pareto (IV) distribution generated by this method, the
marginals share a common value of α.
A second approach to generating bivariate P(IV ) distributions makes use of the

following representation of a P(IV ) variable. Suppose that U ∼ exp(1), then

μ + σ
(
eU/α − 1

)γ ∼ P(IV)(μ, σ , γ ,α) (51)

Here too then, we can begin with (U1,U2) having an arbitrary bivariate distribution with
standard exponential marginals and construct a variable (X1,X2) with a bivariate Pareto
(IV) distribution by defining

Xi = μi + σi
(
eUi/αi − 1

)γi , i = 1, 2. (52)

A third approach makes use of the fact that minima of independent Pareto (IV) random
variables themselves have Pareto (IV) distributions. Thus if Xi, i = 1, 2, are independent
with Xi ∼ P(IV)(μ, σ , γ ,αi), then min(X1,X2) ∼ P(IV)(μ, σ , γ ,α1 + α2). We then begin
with three independent random variables Y1, Y2, Y3 with Yi ∼ P(IV)(μ, σ , γ ,αi) and
define

X1 = min(Y1,Y3),
X2 = min(Y2,Y3)

(53)

(this approach is often called the method of trivariate reduction). In addition to having
Pareto IV marginals, it is clear that the distribution described by (54) has the property
that min(X1,X2) ∼ P(IV)(μ, σ , γ ,α1 + α2 + α3). This distribution has the perhaps unde-
sirable property that P(X1 = X2) > 0, and has another unfortunate property in that the
marginals share common values ofμ, σ and γ . This latter problem can be avoided to some
extent by assuming that the Yi’s have P(IV)(0, 1, γ ,αi) distributions and then defining

X1 = μ1 + σ1 min(Y1,Y3),
X2 = μ2 + σ2 min(Y2,Y3).

(54)

In this case the Xi’s share only a common value of γ .
Finally we mention the popular Copula based approach to constructing bivariate dis-

tributions with given marginals. For this, we begin with an analytically tractable bivariate
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distribution for (Z1,Z2) and apply marginal transformations to produce a bivariate dis-
tribution with Pareto (IV) marginals. A popular choice for the distribution of (Z1,Z2) is
a bivariate normal with standard normal marginals and correlation ρ, but of course any
other bivariate distribution can be used in its place. Now using Fμ,σ ,γ ,α to denote the
distribution function of a P(IV)(μ, σ , γ ,α) random variable and � to denote a standard
normal distribution function, we define

X1 = F−1
μ1,σ1,γ1,α1(�(Z1)),

X2 = F−1
μ2,σ2,γ2,α2(�(Z2)).

(55)

The correlation structure of the Xi’s is inherited from the correlation structure of the
Zi’s. In this case the extension to k dimensions is particularly transparent. Note also
that the model has one dependence parameter which, if set equal to 0, yields a model
with independent P(IV ) marginals. It will be noted that this feature of having a sin-
gle dependence parameter is shared by the other bivariate models introduced in this
Section.

6 Multivariate extensions
Several of the univariate extensions, discussed in Section 3, can be readily modified to
yield k-dimensional versions. For example a random variable with the univariate Beta-
generalized-Pareto (IV) distribution can be viewed as being defined by

X = F−1
μ,σ ,γ ,α(V ), (56)

where V ∼ Beta(λ1, λ2). For a bivariate version of this construction, we begin with
(V1,V2) having a bivariate Beta distribution, perhaps of the the type introduced by Arnold
and Ng (2011), and make suitable marginal transformations. Thus we define

X1 = F−1
μ1,σ1,γ1,α1(V1),

X2 = F−1
μ2,σ2,γ2,α2(V2).

(57)

Higher dimensional versions of this construction require only the identification of a
suitable k-dimensional Beta distribution. A Dirichlet distribution might be used here.
Some other alternatives are described in Arnold and Ng (2011).
To identify a suitable bivariate analog of the Kumaraswamy-Pareto (IV) distribution, all

that is required is a bivariate-Kumaraswamy distribution. One possible such distribution
was suggested by Nadarajah et al. (2011).
Hidden truncationmodels, likewise, can be considered in higher dimensions. For exam-

ple we may begin with X ∼ MP(k)(IV)(μ, σ , γ ,α). Then, using our dot – double dot
notation, we have

fHT (ẋ) = fẊ|Ẍ≤ẍ(ẋ) = fẊ(ẋ)
P(Ẍ ≤ ẍ|Ẋ = ẋ)

P(Ẍ ≤ ẍ)
(58)

which is not difficult to evaluate, since the conditional distribution of Ẍ given that Ẋ = ẋ
is of the MP(k−k1)(IV ) form (refer to equation (46), being careful to switch the roles of Ẋ
and Ẍ).



Arnold Journal of Statistical Distributions and Applications 2014, 1:11 Page 15 of 16
http://www.jsdajournal.com/content/1/1/11

We conclude this section by noting the availability of multivariate distributions with
Pareto conditionals rather than Pareto marginals. Detailed discussion of suchmodels may
be found in Arnold et al. (1999), Chapter 5.

7 Envoi
The survey presented in this paper is far from complete. A more detailed and extensive
survey (though somewhat out of date) can be found in Arnold (1983). A revision of that
book is, however, currently in preparation. In the interim, see Arnold (2008) for a more
up-to-date presentation and, as mentioned in Section 4, for more details on inferential
strategies. More work is still needed on the development of estimation and hypothe-
sis testing strategies, especially for multivariate Pareto data. Creative Bayesian analyses
involving informative priors, in multivariate settings and in cases involving covariates,
are also notable for their absence. Finally, I apologize to those readers whose important
contributions have been overlooked in this survey. I excuse myself by repeating that the
survey is necessarily incomplete. However, please do advise me of any glaring omissions
that you might note.
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