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Abstract

We develop Bayesian reference analyses for linear regression models when the errors
follow an exponential power distribution. Specifically, we obtain explicit expressions for
reference priors for all the six possible orderings of the model parameters and show
that, associated with these six parameters orderings, there are only two reference
priors. Further, we show that both of these reference priors lead to proper posterior
distributions. Furthermore, we show that the proposed reference Bayesian analyses
compare favorably to an analysis based on a competing noninformative prior. Finally,
we illustrate these Bayesian reference analyses for exponential power regression
models with applications to two datasets. The first application analyzes per capita
spending in public schools in the United States. The second application studies the
relationship between sold home videos versus profits at the box office.
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1 Introduction
A flexible way to deal with outliers in linear regression is to assume that the errors fol-
low an exponential power (EP) distribution. Specifically, assuming an EP distribution
decreases the influence of outliers and, as a result, increases the robustness of the analysis
(Box and Tiao 1962; Liang et al. 2007; Salazar et al. 2012; West 1984). In addition, the EP
distribution includes the Gaussian distribution as a particular case. Further, the EP distri-
bution may have tails either lighter (platykurtic) or heavier (leptokurtic) than Gaussian.
Platykurtic distributions may be a result of truncation, whereas leptokurtic distributions
provide protection against outliers. Salazar et al. (2012) have developed three types of
Jeffreys priors for linear regression models with independent EP errors. Unfortunately,
two of those priors lead to useless improper posterior distributions and only one leads to
a proper posterior distribution. Here we develop explicit expressions for reference priors
for all the six possible orderings of the model parameters.
We show that the six parameters orderings lead to two distinct reference priors. The

parameter ordering corresponds to the order of importance of each parameter in the anal-
ysis, with themost important parameter appearing first and the least important appearing
last (Berger and Bernardo 1992a,b). In addition to the two formally obtained reference
priors, we propose an approximate reference prior that shares the same tail behavior

© 2014 Ferreira and Salazar; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto:ferreiram@missouri.edu
http://creativecommons.org/licenses/by/2.0


Ferreira and Salazar Journal of Statistical Distributions and Applications 2014, 1:12 Page 2 of 20
http://www.jsdajournal.com/content/1/1/12

but is much more straightforward to implement in practice. Finally, we show that the two
reference priors lead to useful proper posterior distributions.
To make sure that Bayesian reference procedures do not bias the data analysis in an

undesirable manner, it is important to study their frequentist properties. To study the
frequentist properties of our proposed procedures, we have performed a Monte Carlo
study that shows that our proposed Bayesian reference approaches compare favorably to
a posterior analysis based on a competing prior in terms of coverage of credible inter-
vals, relative mean squared error, andmean length of credible intervals. While the relative
mean squared error and the mean length of credible intervals should be judged in com-
parison with those yielded by competing priors, the coverage of credible intervals should
be as close as possible to the nominal level.
Coverage of credible intervals close to nominal provides a guarantee of level of perfor-

mance of the procedure when used automatically and independently by many researchers
in their problems. In our Monte Carlo study, we have found that the Bayesian reference
credible intervals that we have obtained have frequentist coverage close to nominal. These
good frequentist properties results agree with previous literature on Bayesian reference
analyses for other models such as, for example, Gaussian random fields (Berger et al.
2001), Markov random fields (Ferreira and De Oliveira 2007), multivariate normal mod-
els (Sun and Berger 2007), and elapsed times in continuous-time Markov chains (Ferreira
and Suchard 2008).
The EP density is given by

f (y|μ, σp, p) = [
2p1/pσp�(1 + 1/p)

]−1 exp
[
− (

pσ p
p
)−1 |y − μ|p

]
, −∞ < y < ∞, (1)

where p > 1, −∞ < μ < ∞ and σp > 0. The EP distribution has three parameters: the
location parameter μ = E(y), the scale parameter σp = [E(|y − μ|p)]1/p, and the shape
parameter p. The scale parameter σp can be seen as a variability index that generalizes the
standard deviation. Moreover, σp is also known as power deviation of order p (Vianelli
1963). In addition, the kurtosis is κ = �(1/p)�(5/p)/(�(3/p))2 , implying that the shape
parameter p determines the thickness of the tails of the EP density. Specifically, the EP
distribution is leptokurtic if p < 2 (κ > 3) and platykurtic if p > 2 (κ < 3). Finally,
the EP distribution has several important especial cases such as the Laplace distribution
(p = 1), the normal distribution (p = 2) and, when p → ∞, the uniform distribution on
the interval (μ − σp,μ + σp) (e.g., see Box and Tiao 1992).
There are just some few Bayesian procedures for the analysis of EP regression models

published to date. Moreover, there are no published reference priors for EP regression
models. Existing literature has considered the use of EP errors in a number of con-
texts such as, for example, EP errors to robustify linear models (Box and Tiao 1992;
Salazar et al. 2012), and mixtures of regressionmodels with EP errors (Achcar and Pereira
1999). In addition, the EP distribution has been used as a prior for a Gaussian model loca-
tion parameter (Choy and Smith 1997). To implement simulation-based computation for
models with EP errors, one may use representations of the EP distribution as a scale mix-
ture of normals (West 1987) or as a scale mixture of uniforms (Walker and Gutiérrez-Peña
1999). As an alternative, Salazar et al. (2012) have developed fast analysis for EP regres-
sion models using Laplace approximations and Newton-Cotes integration. Here we use
these latter fast computational methods.
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The remainder of the paper is organized as follows. Section 2 presents the linear model
with exponential power errors and the associated likelihood function. Section 3 derives
the two reference priors and shows that both of these priors lead to proper posterior dis-
tributions. Section 4.1 presents a simulation study of the frequentist properties of the
reference-priors-based Bayesian procedures and those of a competing noninformative
prior. Section 4.2 presents applications of Bayesian reference analysis to two datasets.
Section 5 concludes with a discussion of major findings and possible future research
directions.

2 EP linear model
Let y = (y1, . . . , yn)′ be the vector of observations and x = (x1, . . . , xn)′ be the n×k design
matrix of explanatory variables. We consider the linear model

y = xβ + ε, (2)

where β = (β1, . . . , βk)
′ ∈ R

k is a vector of regression coefficients, and ε = (ε1, . . . , εn)′

is a vector of errors such that ε1, . . . , εn are independent and identically distributed
and follow the exponential power distribution with location parameter equal to zero,
scale parameter σp, and shape parameter p. We reparameterize the model by defining
σ = p1/pσp�(1 + 1/p). This reparametrization has also been considered by Zhu and
Zinde-Walsh (2009) and Salazar et al. (2012). Let us denote the parameter vector by
θ = (β , σ , p) ∈ R

k × (0,∞) × (1,∞). Then, the log-likelihood function for the model
given in Equation (2) is

l(θ ; y, x) = −n log 2 − n log σ −
n∑

i=1

[
�(1 + 1/p)|yi − x′

iβ|
σ

]p
. (3)

We use the log-likelihood function to develop reference priors for the EP regression
model.

3 Methods
In this section, we obtain explicit expressions for reference priors for all the six possible
orderings of the parameters of the EP linear model, and show that associated with these
six parameters orderings there are only two reference priors. Finally, we show that both
of these reference priors lead to proper posterior distributions.
Specifically, we consider here the Bernardo reference priors (Bernardo 1979) that take

into account the Kulback-Leibler divergency between the prior distribution and the pos-
terior distribution. In a nutshell, the reference priors proposed by Bernardomaximize the
expected value of perfect information about the model parameters (p. 300, Bernardo and
Smith 1994). When the parameter space is one-dimensional and asymptotic normality of
the posterior distribution holds, the reference prior coincides with Jeffreys prior (Jeffreys
1961). However, when the parameter space is multidimensional Jeffreys prior is known
to lead to Bayesian procedures that may have undesirable frequentist properties, such as
for example frequentist coverage of credible intervals far away from the desired nominal
level.
For the multidimensional parameter case when the parameters may be partitioned in

a block of parameters of interest and another block of nuisance parameters, Bernardo
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(1979) suggested an approach in three stages. The first stage obtains the conditional dis-
tribution of the nuisance parameter conditional on the parameter of interest. The second
stage integrates out the nuisance parameter with respect to that conditional distribu-
tion to obtain a marginal likelihood. Finally, the third stage applies the reference prior
approach to the marginal likelihood to obtain the reference prior for the parameter of
interest. This idea can be naturally extended to partitions of the parameter vector with
more than two components. The resulting reference prior will then depend on the order-
ing of the parameter vector components. This multiparameter case has been developed in
a series of papers by Berger and Bernardo (1992a,b,c). Here we use the Berger-Bernardo
approach to develop reference priors for the parameters of the EP regression model.
As we show below, the reference priors obtained here are of the form

π(θ) ∝ π(p)
σ a , (4)

where a ∈ R is a hyperparameter and π(p) is the ‘marginal’ prior of the shape parameter
p. As shown by Salazar et al. (2012), the Jeffreys-rule prior and two independence Jeffreys
priors also have the functional form (4). Specifically, using the same notation as in Salazar
et al. (2012), the two independence Jeffreys priors have a = 1 and their marginal priors
for p are respectively given by

π I1(p) ∝ p−1 [(
1 + p−1)	 ′ (1 + p−1) − 1

]1/2 , (5)

and

π I2(p) ∝ p−3/2 [(
1 + p−1)	 ′ (1 + p−1)]1/2 . (6)

Meanwhile, the Jeffreys-rule prior is such that a = k + 1 and its marginal prior for p is

π J(p) ∝ [
�

(
p−1)�

(
2 − p−1)]k/2 π I1(p). (7)

In what follows we find that the reference priors for the EP regressionmodel are related
to the independence Jeffreys priors given in Equations (5) and (6). When developing
noninformative priors, it is crucial to study whether the resulting posterior distribution
is proper. Salazar et al. (2012) have shown that the Independence Jeffreys prior π I2(p)
yields a proper posterior distribution. Unfortunately, both the independence Jeffreys prior
π I1(p) and the Jeffreys-rule prior π J(p) yield improper posterior distributions.
The Berger-Bernardo approach to develop reference priors requires the Fisher infor-

mation matrix. Specifically, for the EP regression model the Fisher information matrix

H(θ), with elements φij given by φij = Ey|θ
[
− ∂2

∂θi∂θ ′
j
l(θ ; y, x)

]
with φij = φji and θj the jth

element of θ = (β , σ , p), is:

H(θ) =
⎡⎢⎣ σ−2�(p−1)�(2 − p−1)

∑n
i=1 xix′

i 0 0
0 npσ−2 −nσ−1p−1

0 −nσ−1p−1 np−3 (
1 + p−1) 	 ′ (1 + p−1)

⎤⎥⎦ ,

(8)

where 	(α) ≡ �′(α)/�(α) and 	 ′(α) ≡ ∂	(α)/∂α are the digamma and trigamma
functions, respectively.
The Fisher information matrix is block diagonal, with one block corresponding to β

and another block corresponding to (σ , p). One of the consequences of this structure is
that reference priors that consider β , σ , and p as three separate groups will depend on the
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ordering of the groups only with respect to whether σ or p appears first in the ordering.
The following theorem provides reference priors for the parameters of the EP regression
model.

Theorem 1. Consider the EP regression model with log-likelihood function given in
Equation (3). Then, there are two reference priors for all six possible orderings of the model
parameters. Moreover, these two reference priors are of the form (4) with a = 1. For the
orderings (β , σ , p), (σ , β , p), and (σ , p, β) the ‘marginal’ reference prior for p is

π r1(p) ∝ p−3/2 [(
1 + p−1)	 ′ (1 + p−1)]1/2 , (9)

whereas for the orderings (β , p, σ), (p, β , σ), and (p, σ , β) the ‘marginal’ reference prior for
p is

π r2(p) ∝ p−3/2 [(
1 + p−1)	 ′ (1 + p−1) − 1

]1/2 . (10)

Proof. See the Appendix.

While reference prior π r2 is a new prior that has not appeared before in the literature,
there are similarities between the reference priors given in Theorem 1 and the indepen-
dence Jeffreys priors given in Equations (5) and (6). Reference prior π r1 coincides with the
independence Jeffreys prior π I2 given in Equation (6). Moreover, it is important to point
out that reference prior π r2 is somewhat similar to the independence Jeffreys prior π I1

given in Equation (5), differing only by a factor of p−1/2. However, as we show below this
difference between π I1 and π r2 is enough to make π I1 yield a useless improper posterior
distribution while the reference prior π r2 yields a useful proper posterior distribution.
Consider a prior of the form (4). Then the integrated likelihood for p is given by

LI(p; y) ∝
∫
Rk

∫ ∞

0
L(β , σ , p; y)σ−adσdβ .

Then the prior leads to a proper posterior distribution if and only if∫ ∞

1
LI(p; y)π(p)dp < ∞, (11)

Thus, in order to determine whether a prior of the form (4) leads to a proper posterior
distribution, one needs to investigate the tail behavior of both the marginal prior and the
integrated likelihood for p. The tail behavior of the marginal reference priors for p given
in Theorem 1 is given in the following lemma.

Lemma1. Themarginal priors for p given in Theorem 1 are continuous functions in [1,∞)

and are such that π r1(p) = O
(
p−3/2) and π r2(p) = O

(
p−3/2) as p → ∞.

Proof. Direct inspection shows that π r1(p) and π r2(p) are continuous functions in
[1,∞). Their tail behavior when p → ∞ follows from the fact that	 ′ (1 + p−1) → 1.6449
and �

(
p−1) = O(p) as p → ∞.

Theorem 1 and Lemma 1 suggest the definition of an approximate reference prior
inspired by priors π r1 and π r2 that has the same value for the hyperparameter a = 1 and
share their tail behavior with respect to p. We define such an approximate reference prior
in Definition 1.
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Definition 1. We define an approximate reference prior π r3 to be of the form (4) with
a = 1 and marginal prior for p equal to π r3(p) ∝ p−3/2.

Computation of prior π r3 is faster and more straightforward than that of priors π r1 and
π r2 . In addition, Section 4.1 shows that the frequentist properties of procedures based
on π r3 are similar to those based on π r1 and π r2 . As a consequence, the approximate
reference prior π r3 may become more widely used than the reference priors π r1 and
π r2 . Therefore, henceforth we drop the term “approximate” and simply refer to π r3 as a
reference prior.
The following lemma, that was proved by Salazar et al. (2012), provides the tail behavior

for the integrated likelihood for p.

Lemma 2 (Salazar et al.2012). Provided that n > k + 1 − a, the integrated likelihood for
p under the class of priors (4) is a continuous function in [1,∞) and is such that LI(p; y) =
O(1) as p → ∞.

The following proposition establishes that the two reference priors that we have
obtained yield proper posterior distributions.

Proposition 1. Provided that n > k + 1− a, the two reference priors π r1 and π r2 given in
Theorem 1 yield proper posterior distributions.

Proof. This proposition follows directly from condition (11), and Lemmas 1 and 2.

To implement posterior analysis for the parameters of the EP regression model based
on the reference priors developed here, we use an approach proposed by Salazar et al.
(2012) that combines Laplace approximations and Newton-Cotes integration.

4 Results and discussion
4.1 Frequentist properties

In this section we perform a simulation study to access the frequentist properties of
Bayesian procedures based on the reference priors π r1 , π r2 , and π r3 . In addition, we com-
pare the performance of these reference priors to that of a competing noninformative
prior πU that takes the form (4) with a = 1 and πU(p) ∝ 1 for 1 < p < 10 and πU(p) = 0
otherwise. The joint prior πU(θ) leads to a proper posterior distribution, however as we
see below the uniform prior πU(p) is a naïve way to express lack of information about
p. The Bayesian procedures we consider are the posterior modes and posterior medians
for point estimation, and the 95% highest posterior density (HPD) credible intervals for
interval estimation. Finally, we consider three frequentist measures of quality. For evaluat-
ing the quality of point estimation, we consider the square root of the frequentist relative
mean squared error. For evaluating the performance of interval estimation, we consider
two frequentist measures: the frequentist coverage and the mean length of the credible
intervals.
We have considered several combinations of sample sizes and parameters. Specifically,

we have considered three sample sizes: n = 30, n = 50 and n = 100. Moreover, we have
considered a grid of values for p on the interval from 1 to 3. Further, for each simulated
dataset we have used k = 2, xi = (1, x1i), x1i ∼ N(2, 1), β = (1.5,−3), and σ = 1.
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Finally, for each combination of parameter values and sample sizes, we have simulated
1,500 datasets to estimate the frequentist properties of the several procedures.
The square root of the relative mean squared error (RMSE),

√
MSE(θ̂ )/θ , for estimators

of p and σ is shown as a function of p in Figure 1. As intuitively expected, for all priors and
for both posterior mode and median, as the sample size increases the RMSE decreases.
The most substantial differences are between the performances of the posterior mode
and posterior median, and between the performances of the reference priors when com-
pared with the πU prior. First, we compare the performance of the posterior median and
the posterior mode. For each prior, for the estimation of p, the posterior median provides
smaller RMSE than the posterior mode for most values of p considered except for p close
to one. And this advantage of the posterior mode becomes less pronounced as the sam-
ple size increases. For each prior, for the estimation of σ , the posterior median provides
smaller RMSE than the posterior mode. Therefore, for the reference analysis of the EP
regression model we recommend the use of the posterior median.
Second, we compare the RMSE performance of the different priors. For each type of

point estimator considered here, in terms of RMSE the reference priors π r1 , π r2 , and
π r3 provide qualitatively similar results, with π r1 and π r3 being slightly better for smaller
values of p and π r2 being slightly better for larger values of p. In addition, the difference in
performance of the three reference priors becomes smaller as the sample size increases. In
contrast, the performance of the reference priors differs dramatically from that of the πU

prior. For each class of estimators of p and for all values of p considered, when compared
to the πU prior the reference priors lead to smaller RMSE. For the estimation of σ , the
results are mixed; for small sample sizes while the reference priors lead to smaller RMSE
when p is small and πU leads to better results when p is larger. But for larger sample

Figure 1 Square root of the relative mean squared error (RMSE), as a function of p, of posterior mode
(black lines) and posterior median (blue lines) of p and σ based on the reference priors π r1 (solid
lines), π r2 (dashed lines), π r3 (long-dashed lines) and the noninformative prior πU (dotted lines).
Sample sizes: n = 30, 50 and 100.
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sizes the reference priors-based posterior medians have smaller RMSE for all considered
values of p.
The frequentist coverage (FC) of 95% HPD credible intervals for p and σ is shown, as

a function of p, in Figure 2. As the sample size increases, the FC of the credible intervals
based on the four priors becomes more similar. For both parameters, the π r1-, π r2-, and
π r3-based credible intervals have frequentist coverage closer to the nominal level. This
superiority of the Bayesian reference analysis is particularly pronounced for sample sizes
equal to 30 or 50 and when p < 2.
The mean length of the 95% HDP credible intervals for p and σ is shown, as a function

of p, in Figure 3. For the credible intervals based on the three reference priors, the mean
lengths of the credible intervals are similar with slightly better results for π r1 . For interval
estimation for σ , the mean lengths of the credible intervals based on the three reference
priors are smaller than the mean lengths of the credible intervals based on the πU when
p < 2 and are larger when p > 2. For interval estimation of p, in the range of values
that we consider the π r1 -, π r2 -, and π r3-based credible intervals are on average shorter
that those based on πU . Therefore, for the interval estimation of p, in the range of values
we consider, the credible intervals based on π r1 , π r2 and π r3 provide uniformly superior
results.
In summary, the reference priors π r1 , π r2 , and π r3 lead to procedures that have

similar frequentist properties. In addition, when compared to the competing noninfor-
mative prior πU , the reference priors π r1 , π r2 , and π r3 lead to overall superior results.
Finally, the reference prior π r3 has a simpler functional form and is more straightfor-
ward to be implemented. Therefore, in cases when there is no prior information for the
analysis of EP linear regression models, we recommend the use of the reference prior
π r3 .

Figure 2 Frequentist coverage, as a function of p, of 95% HPD credible intervals for p and σ based on
the reference priors π r1 (solid line), π r2 (dashed line), π r3 (long-dashed line) and the noninformative
prior πU (dotted line). Sample sizes: n = 30, 50 and 100. Horizontal line indicates the 95% nominal level.
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Figure 3 Mean length, as a function of p, of 95%HPD credible intervals for p and σ based on the
reference priors π r1 (solid line), π r2 (dashed line), π r3 (long-dashed line) and the noninformative
prior πU (dotted line). Sample sizes: n = 30, 50 and 100.

4.2 Applications

This section illustrates the use of the Bayesian reference analysis we propose for expo-
nential power regression models with applications to two real world datasets. The first
dataset illustrates leptokurtic errors and the second dataset illustrates platykurtic errors.
Because the results based on the reference priors π r1 and π r3 are extremely similar, we
show only the results for priors π r1 , π r2 , and πU .
In both applications, we use the same truncation point at p = 10 used for πU(p) in

Section 4.1 and assume πU(p) ∝ 1 for 1 < p < 10 and πU(p) = 0 otherwise. We have
chosen the truncation point at p = 10 because datasets generated with p = 10 or with p
close to 10 have similar statistical behavior. Hence, to distinguish whether a process fol-
lows an EP distribution with p = 10 or, say, p = 10.1 we would need an extremely large
data set. Moreover, the choice of truncation should be made before the analyst looks at
the data. For example, for the first application below, after looking at the scatterplot one
may think about truncating the prior for values of p that correspond to leptokurtic dis-
tributions, that is, 1 < p < 2. However, doing that would mean to use the data twice in
the Bayes Theorem formula: once through the prior, and another time through the like-
lihood. Usually, such double use of the data leads to underestimation of the uncertainty.
Therefore, we prefer to decide the truncation of the prior before looking at the data.

4.2.1 School spending

We analyze the relationship between per capita spending in public schools and per capita
income by state in the United States. This dataset has been previously analyzed by Greene
(1997), Cribari-Neto et al. (2000), and Fonseca et al. (2008). Specifically, Greene (1997)
and Cribari-Neto et al. (2000) proposed analyses based on heuristic approaches to the so-
called problem of heterocedasticity-of-unknown-form. In contrast, Fonseca et al. (2008)
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have analyzed this dataset in the context of linear regression models with Student-t
errors. Fonseca et al. (2008) found that when errors with distributions with heavy tails are
assumed, a linear model is superior to a quadratic model. Here, we take a similar approach
as that of Fonseca et al. (2008) in that we assume a linear model with errors that may have
a heavy tail distribution. However, we assume that the errors follow an exponential power
distribution.
Table 1 presents the posterior summaries based on the priors πU , π r1 , π r2 . For all three

priors both the posterior mode and the posterior median for p are smaller than one. In
addition, bothπ r1- and π r2 -based 95% credible intervals for p are contained in the interval
(1, 2) indicating evidence that the errors are leptokurtic. In contrast, the πU-based 95%
credible interval for p is not fully contained in the interval (1, 2). However, from the results
in Section 4.1 we know that for small true values of p, the use of the πU prior leads to on
average wider credible intervals for p that have lower coverage than nominal. Thus, this
application provides an example when the superiority of the π r1 and π r2 priors matters to
the conclusion that in this data set the errors distribution is leptokurtic.
Figure 4(a) shows the scatterplot for the school spending data set along with the fit-

ted EP regression model based on π r1 (solid line), π r2 (dashed line), and πU (dotted
line). Figure 4(a) also shows the fitted Gaussian linear model (dot-dashed line). While the
Gaussian model fit is clearly and strongly influenced by the outlier, the use of exponen-
tial power errors (with the four priors considered here) automatically makes the analysis
robust against outliers. In particular, the model fits using the π r1 and π r2 priors (consid-
ering the posterior median) coincide and are equal to ŷ = −88.38 + 600.9x. Another way
to make the analysis robust against outliers is to use Student-t errors. Assuming Student-
t errors, a model fitted by Fonseca et al. (2008) was y = −75.3 + 583.2x. We can see
that both Student-t and exponential power errors fits are robust against outliers. How-
ever, the Student-t distribution cannot accommodate platykurtic errors and, therefore,
the exponential power distribution provides more flexibility.
Figure 4(b) presents the marginal posterior densities for p based on π r1 (solid line),

π r2 (dashed line), π r3 (long-dashed line) and πU (dotted line). In addition, the vertical
lines indicate the limits of the 95% HPD credible intervals. The three reference priors
lead to similar posterior densities for p, while the πU prior leads to a substantially dif-
ferent posterior density for p. Figure 4(b) illustrates why the πU leads to unnecessarily
wider credible intervals. That combined with πU -based credible intervals having cov-
erage lower than nominal leads us to prefer the data analysis based on the reference
priors.

4.2.2 Sold home videos vs. profits at the box office

We analyze a dataset about the relationship between the number of sold home videos in
thousands (videos: y) and the profits at the box office in million of dollars (gross: x). This
dataset has been previously analyzed by Levine et al. (2006) and Salazar et al. (2012) and
comprises observations on 30 movies. A scatterplot of the variables of interest is shown
in Figure 5(a). Using a linear model with EP errors and the independence Jeffreys prior
π I2 given in Equation (6), Salazar et al. (2012) found evidence of a platykurtic distribution
for the errors. Here we compare three analyses of this home videos dataset with an EP
linear regression model obtained by applying the reference priors π r1 and π r2 , and the
noninformative prior πU .



Ferreira
and

SalazarJournalofStatisticalD
istributionsand

A
pplications

2014,1:12
Page

11
of20

http
://w

w
w
.jsd

ajournal.com
/content/1/1/12

Table 1 School spending data set: Posterior summaries based on the noninformative prior πU and the reference priors π r1 and π r2

πU π r1 π r2

Mode Median 95% C.I. Mode Median 95% C.I. Mode Median 95% C.I.

p 1.18 1.33 (1.02, 2.03) 1.06 1.26 (1.00, 1.91) 1.08 1.27 (1.00, 1.92)

σ 52.73 54.75 (38.59, 74.44) 51.21 53.23 (38.08, 73.43) 51.72 53.23 (38.08, 73.43)

β1 -89.37 -92.51 (-131.79, -37.85) -91.51 -88.38 (-131.81, -36.86) -91.51 -88.38 (-131.81, -36.86)

β2 616.07 603.95 (525.16, 667.59) 609.99 600.90 (525.15, 667.57) 609.99 600.90 (525.15, 667.57)
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Figure 4 School spending data set. (a) Scatterplot of the data and fitted EP regression model based on π r1

(solid line), πU (dotted line) and considering Gaussian linear model (dot-dashed line). (b)Marginal posterior
densities for p based on π r1 (solid line), π r2 (dashed line), π r3 (long-dashed line) and πU (dotted line). Vertical
lines indicate the 95% HPD credible intervals, respectively.

Figure 5(a) shows the model fit for each of the priors we consider. The fits based on the
reference priors visually coincide, whereas the fit based on πU is slightly different. This is
confirmed by Table 2, that shows that the slopes for the three fits are similar and around
4.33, whereas the intercept for the πU -based fit is about 4.5% larger than the intercept for
the π r1 - and π r2 -based fits. Even more striking are the differences between the reference
analyses and the πU -based analysis for σ and p. For σ , both posterior medians based on
π r1 and π r2 are very similar and equal to 67.37 and 68.38 respectively, while the posterior
median based on πU is 77.50. Moreover, the 95% credible intervals for σ based on π r1

and π r2 are very similar and equal to (38.08, 93.64) and (38.10, 93.64) respectively, while
the interval based on πU is substantially different and equal to (47.17, 98.69).
The reference analyses for p are also strikingly distinct from the πU -based analysis for

p. First, the posterior medians for p based on π r1 and π r2 coincide and are equal to 2.64
while the πU-based posterior median differs tremendously and is equal to 4.36. Second,
the 95% credible intervals for p based on π r1 and π r2 are similar and equal to (1.00, 7.01)
and (1.00, 7.18) respectively, while the πU-based interval for p differs tremendously from

Figure 5 Videos data set. (a) Scatterplot of the data and fitted EP regression model based on π r1 (solid line),
π r2 (dashed line), π r3 (long-dashed line) and πU (dotted line). (b)Marginal posterior densities for p based on
the three priors. Vertical lines indicate the 95% HPD credible intervals.
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Table 2 Videos data set: Posterior summaries based on the noninformative prior πU and the reference priors π r1 and π r2

πU π r1 π r2

Mode Median 95% C.I. Mode Median 95% C.I. Mode Median 95% C.I.

p 2.64 4.36 (1.36, 9.64) 1.82 2.64 (1.00, 7.01) 1.83 2.64 (1.00, 7.18)

σ 80.51 77.50 (47.17, 98.69) 67.37 67.37 (38.08, 93.64) 68.38 68.38 (38.10, 93.64)

β1 83.11 83.11 (54.92, 107.65) 79.39 79.40 (53.03, 105.76) 79.53 79.53 (53.16, 104.98)

β2 4.31 4.35 (3.42, 5.24) 4.32 4.32 (3.31, 5.33) 4.33 4.33 (3.32, 5.34)
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the reference CIs and is equal to (1.36, 9.64). Hence, the πU-based CI is more than 30%
wider than the reference CIs. This undesirable feature of πU-based CIs coincides with the
results from the simulation study presented in Section 4.1.
Finally, Figure 5(b) presents the marginal posterior densities for p based on π r1 , π r2 ,

and πU . This figure sheds light on the reason for the striking difference between the π r1-
and π r2-based CIs and the πU -based CI. The problem with the πU -based analysis is that
the right tail of the marginal posterior density for p decays too slowly. As a result, for the
home video dataset the πU-based CI depends dramatically on the right side truncation of
the prior, which in this manuscript has been fixed at 10. Figure 5(b) makes it really clear
that a larger truncation point would have a huge impact in the resulting πU -based CI for
p. This dataset clearly illustrates the superiority of the Bayesian reference analyses.

5 Conclusions
We have developed Bayesian reference analysis for linear models with exponential power
errors. Specifically, we have developed three reference priors that lead to useful proper
posterior distributions. In addition, we have shown through a simulation study that both
priors yield procedures that have better frequentist properties than procedures resulting
from a competing noninformative prior. Finally, we have illustrated our Bayesian reference
analysis methodology with two real world applications that highlight the flexibility of the
exponential power distribution to accommodate both cases when there are outliers in the
dataset and also cases when the errors follow a platykurtic distribution.
The fact that the reference priors we have obtained for the EP regression model lead to

proper posterior distributions is of substantial theoretical interest. The propriety of these
reference posterior distributions contrasts with the impropriety of the posterior distri-
bution associated with the Jeffreys-rule prior found by Salazar et al. (2012). Moreover,
Salazar et al. (2012) found two independence Jeffreys priors, one of which leads to an
improper posterior distribution whereas the other leads to a proper posterior distribu-
tion. We have found that the independence Jeffreys prior that yields a proper posterior
distribution coincides with our reference prior π r1 . Further, the independence Jeffreys
prior that yields a useless improper posterior distribution differs only by a factor of p−1/2

from the reference prior π r2 . However, this difference is enough to make our reference
prior π r2 yield a useful proper posterior distribution.
Our results motivate many possible directions for future research. First, an open ques-

tion is whether there exist general conditions under which reference priors yield proper
posterior distributions. In addition, the existence of general conditions for posterior pro-
priety may be investigated for Jeffreys-rule and independence Jeffreys priors. The search
of general conditions for posterior propriety may benefit from our present work on EP
regression and previous literature on examples of impropriety of posterior distributions
for distinct objective Bayes priors (Berger et al. 2001; Ferreira and De Oliveira 2007;
Salazar et al. 2012; Wasserman 2000).
We have considered the frequentist properties of the proposed Bayesian approaches

via a simulation study. In particular, we have shown that credible intervals based on π r1 ,
π r2 , and π r3 have similar frequentist properties with coverage close to nominal for p and
σ . This is a reflection of the fact that for any prior satisfying some regularity conditions
the frequentist coverage of credible intervals and the nominal level agree up to O(n−1/2)

(for a discussion and conditions, see Ghosh et al. 2006). A prior that leads to a more
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stringent agreement of order O(n−1) is called a first-order probability matching prior.
Such priors have to be derived with a specific parameter of interest in mind, and their
derivation is far from trivial. Therefore, promising directions for future research for the
EP regression model would be the derivation of priors that lead to Bayesian predictions
that have approximate frequentist validity (Datta et al. 2000b) and the derivation of first-
order probability matching priors (Datta and Ghosh 1995; Datta et al. 2000a).

Appendix
Proof of Theorem 1. To prove Theorem 1, we follow the methodology to obtain refer-
ence priors proposed by Berger and Bernardo (1992a). In particular, we assume that the
reader is familiar with both the notation and the methodology of Berger and Bernardo
(1992a). This proof is divided in two parts. In the first part, we obtain the reference prior
for the orderings (β , σ , p), (σ , β , p), and (σ , p, β). Because the proofs are analogous for
each of these three orderings, in the first part we obtain the reference prior for the order-
ing (σ , β , p). In the second part, we obtain the reference prior for the orderings (β , p, σ),
(p, β , σ), and (p, σ , β). Because the proofs are analogous for each of these three orderings,
in the second part we obtain the reference prior for the ordering (p, β , σ).

Part 1. Consider the ordering θ = (σ , β , p).
After rearranging the Fisher information matrix H(θ) given in Equation (8) to conform

to this ordering, the inverse of the Fisher information matrix becomes

S(θ)=H−1(θ)=

⎡⎢⎢⎣
σ2

np
(1+p−1)	 ′(1+p−1)

(1+p−1)	 ′(1+p−1)−1 0 σp
n

1
(1+p−1)	 ′(1+p−1)−1

0 σ 2 {
�

(
p−1) �

(
2 − p−1)∑n

i=1 xix′
i
}−1 0

σp
n

1
(1+p−1)	 ′(1+p−1)−1 0 p3

n
1

(1+p−1)	 ′(1+p−1)−1

⎤⎥⎥⎦.

Thus,

S1 = σ 2

np

(
1 + p−1)	 ′ (1 + p−1)(

1 + p−1
)
	 ′ (1 + p−1

) − 1
,

S2 =
[

σ 2

np
(1+p−1)	′(1+p−1)

(1+p−1)	′(1+p−1)−1 0
0 σ 2 {

�
(
p−1)�

(
2 − p−1)∑n

i=1 xix′
i
}−1

]
,

and S3 = S(θ). Moreover, let Hj = S−1
j . Thus,

H1 = np
σ 2

(
1 + p−1)	 ′ (1 + p−1) − 1(
1 + p−1

)
	 ′ (1 + p−1

) ,

H2 =
[

np
σ 2

(1+p−1)	′(1+p−1)−1
(1+p−1)	′(1+p−1)

0
0 σ−2�

(
p−1)�

(
2 − p−1)∑n

i=1 xix′
i

]
,

and H3 = H(θ).
Let hj be the nj × nj lower right corner of Hj. Thus,

h1 = np
σ 2

(
1 + p−1)	 ′ (1 + p−1) − 1(
1 + p−1

)
	 ′ (1 + p−1

) ,

h2 = σ−2�
(
p−1) �

(
2 − p−1) n∑

i=1
xix′

i, and

h3 = np−3 (
1 + p−1) 	 ′ (1 + p−1) .
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Let θ(1) = σ , θ(2) = β , and θ(3) = p. In addition, let θ[1] = θ(1) = σ , θ[2] =
(θ(1), θ(2)) = (σ , β), and θ[3] = (θ(1), θ(2), θ(3)) = (σ , β , p). Moreover, let
θ[∼1] = (θ(2), θ(3)) = (β , p) and θ[∼2] = (θ(3)) = p. Further, consider the following
compact sets: for σ , 
l

(1) = [l−1, l]; for β , 
l
(2) = [−l, l]k ; for p, 
l

(3) = [1, l].
Then,

π l
3(p | σ , β) = π l

3
(
θ[∼2] | θ[2]

)
=

|h3(θ)|1/21

l

(3)

(
θ(3)

)∫

l

(3)
|h3(θ)|1/2dθ(3)

=
{
np−3 (

1 + p−1)	 ′ (1 + p−1)}1/2 1[1,l](p)∫ l
1
{
np−3

(
1 + p−1

)
	 ′ (1 + p−1

)}1/2 dp
= {c1(l)}−1 p−3/2 (

1 + p−1)1/2 {
	 ′ (1 + p−1)}1/2 1[1,l](p),

where c1(l) = ∫ l
1p

−3/2(1 + p−1)1/2
{
	 ′(1 + p−1)

}1/2 dp.
Now,

π l
2(β , p | σ) = π l

2
(
θ[∼1] | θ[1]

)
=

π l
3
(
θ[∼2] | θ[2]

)
exp

{
0.5El2

[
log |h2(θ)|∣∣θ[2]]} 1


l
(2)

(
θ(2)

)
∫

l

(2)
exp

{
0.5El2

[
log |h2(θ)|∣∣θ[2]]} dθ(2)

,

where

El2
[
log |h2(θ)|∣∣θ[2]] =

∫

l

(3)

log |h2(θ)|π l
3(θ[∼2] | θ[2])dθ[∼2]

=
∫ l

1

{
−2klog σ +k log�

(
p−1)+k log�

(
2 − p−1)+log

∣∣∣∣ n∑
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xix′
i
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}

{c1(l)}−1 p−3/2 (
1 + p−1)1/2 {

	 ′ (1 + p−1)}1/2 dp
= −2k log σ + c2(l),

with
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1

{
k log�

(
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(
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xix′
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Hence,

π l
2(β , p | σ) = π l

3(p|σ , β) exp
{
0.5[−2k log σ + c2(l)]

}
1[−l,l]k (β)∫

[−l,l]k exp
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}
dβ

= π l
3(p|σ , β)(2l)−k1[−l,l]k (β).

Finally,

π l
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1
(
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)
=

π l
2
(
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exp
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(
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,
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with

El1
[
log |h1(θ)|∣∣θ[1]] =

∫
[−l,l]k

∫ l

1
log

{
np
σ 2

(
1 + p−1)	 ′ (1 + p−1) − 1(
1 + p−1

)
	 ′ (1 + p−1

) }
π l
2(β , p | σ)dpdβ

= −2 log σ + c3(l),

where

c3(l) =
∫
[−l,l]k

∫ l

1
log

{
np

(
1 + p−1)	 ′ (1 + p−1) − 1(
1 + p−1

)
	 ′ (1 + p−1

) }
π l
2(β , p | σ)dpdβ

does not depend on θ = (σ , β , p).
Hence,

π l
1(σ , β , p) = π l

2(β , p|σ) exp{0.5[2 logσ + c3(l)] }1(l−1,l)(σ )∫ l
l−1 exp{0.5[2 logσ + c3(l)] }dσ

= π l
2(β , p|σ)σ−11(l−1,l)(σ )

2 log l
Thus,

π l
1(σ ,β, p) = σ−1p−3/2 (

1 + p−1)1/2 {
	 ′ (1 + p−1)}1/2

× {c1(l)}−1(2l)−k(2 log l)−11[l−1,l](σ )1[−l,l]k (β)1[1,l](p).

Now take any point θ∗ = (σ ∗, β∗, p∗) ∈ [l−1, l]×[−l, l]k ×[1, l]. Then, the reference
prior for the ordering (σ , β , p) is

π(σ , β , p) ∝ lim
l→∞

π l
1(σ , β , p)

π l
1(σ

∗, β∗, p∗)

= σ−1p−3/2 (
1 + p−1)1/2 {

	 ′ (1 + p−1)}1/2 ,
which is of the form (4).

Part 2. Consider the ordering θ = (p, β , σ).

After rearranging the Fisher information matrix H(θ) given in Equation (8) to conform
to this ordering, the inverse of the Fisher information matrix becomes

S(θ)=H−1(θ)=

⎡⎢⎢⎣
p3
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,

and S3 = S(θ). Moreover, let Hj = S−1
j . Thus,

H1 = np−3{(1 + p−1)	 ′(1 + p−1) − 1},

H2 =
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np−3{(1 + p−1) 	 ′ (1 + p−1) − 1} 0
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,

and H3 = H(θ).
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Let hj be the nj × nj lower right corner of Hj. Thus,

h1 = np−3{(1 + p−1)	 ′(1 + p−1) − 1}, h2 = σ−2�
(
p−1) �

(
2 − p−1) n∑

i=1
xix′

i, and h3 = npσ−2.

Let θ(1) = p, θ(2) = β , and θ(3) = σ . In addition, let θ[1] = θ(1) = p, θ[2] = (θ(1), θ(2)) =
(p, β), and θ[3] = (θ(1), θ(2), θ(3)) = (p, β , σ). Moreover, let θ[∼1] = (θ(2), θ(3)) = (β , σ) and
θ[∼2] = (θ(3)) = σ . Further, consider the following compact sets: for p, 
l

(1) = [1, l]; for
β , 
l

(2) = [−l, l]k ; for σ , 
l
(3) = [l−1, l].

Then,

π l
3(σ | p, β) = π l

3
(
θ[∼2] | θ[2]

)
=

|h3(θ)|1/21

l

(3)

(
θ(3)

)∫

l

(3)
|h3(θ)|1/2dθ(3)

=
{
npσ−2}1/2 1[l−1,l](σ )∫ l
l−1

{
npσ−2

}1/2 dσ

= σ−1(2 log l)−11[l−1,l](σ ).

Moreover,

π l
2(β , p | σ) = π l

2(θ[∼1] | θ[1])

=
π l
3(θ[∼2] | θ[2]) exp
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0.5El2
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log |h2(θ)|∣∣θ[2]]} 1


l
(2)
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l

(2)
exp

{
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[
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,

where

El2
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log |h2(θ)|∣∣θ[2]] =

∫
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}

σ−1(2 log l)−1dσ

= c1(l, p), which does not depend on β .

Hence,
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3(σ |p, β) exp
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}
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{
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}
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3(σ |p, β)(2l)−k1[−l,l]k (β).

Further,
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,

with
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Hence,

π l
1(σ , β , p) = π l

2(β , σ |p) exp{0.5 log [
np−3{(1 + p−1)	 ′(1 + p−1) − 1}]}1(1,l)(p)∫ l

1 exp{0.5 log
[
np−3{(1 + p−1)	 ′(1 + p−1) − 1}]}dp

= π l
2(β , p|σ)p−3/2{(1 + p−1)	 ′(1 + p−1) − 1}1/2c2(l)1[1,l](p),

where

{c2(l)}−1 =
∫ l

1
exp{0.5 log [

np−3{(1 + p−1)	 ′(1 + p−1) − 1}]}dp.
Thus,

π l
1(p,β,σ)= σ−1p−3/2{(1+p−1)	 ′(1+p−1)−1}1/2c2(l)(2l)−k(2 log l)−11[1,l](p)1[−l,l]k (β)1[l−1,l](σ ).

Now take any point θ∗ = (p∗, β∗, σ ∗) ∈ [1, l]× [−l, l]k × [l−1, l]. Then, the reference
prior for the ordering (p, β , σ) is

π(p, β , σ) ∝ lim
l→∞

π l
1(p, β , σ)

π l
1(p∗, β∗, σ ∗)

= σ−1p−3/2{(1 + p−1)	 ′(1 + p−1) − 1}1/2,
which is of the form (4).
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