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Abstract

The distribution theory of runs and patterns has been successfully used in a variety of
applications including, for example, nonparametric hypothesis testing, reliability
theory, quality control, DNA sequence analysis, general applied probability and
computer science. The exact distributions of the number of runs and patterns are often
very hard to obtain or computationally problematic, especially when the pattern is
complex and n is very large. Normal, Poisson and compound Poisson approximations
are frequently used to approximate these distributions. In this manuscript, we (i) study
the asymptotic relative error of the normal, Poisson, compound Poisson and finite
Markov chain imbedding and large deviation approximations; and (ii) provide some
numerical studies to comparing these approximations with the exact probabilities for
moderately sized n. Both theoretical and numerical results show that, in the relative
sense, the finite Markov chain imbedding approximation performs the best in the left
tail and the large deviation approximation performs best in the right tail.
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Introduction and notation
Let {Xi}ni=1 be a sequence ofm-state trials (m ≥ 2) taking values in the set S = {s1, . . . , sm}
of m symbols. For simplicity, {Xi}ni=1 will be denoted {Xi} and n will be allowed to be ∞.
A simple pattern � = si1si2 · · · si� , of length �, is the juxtaposition of � (not necessarily
distinct) symbols from S . Given a simple pattern �, we let Xn(�) denote the number of
either non-overlapping or overlapping occurrences of � in the sequence {Xi}ni=1, where
the method of counting will be made clear by the context. The waiting timeW (�, x) until
the x’th occurrence of the simple pattern � in {Xi}ni=1 is thus defined by

W (�, x) = inf{n ∈ N : Xn(�) = x},

and, by convention, the waiting time for the first occurrence is denotedW (�) = W (�, 1).
Finally, we define the inter arrival times

Wi(�) = W (�, i) − W (�, i − 1), for i = 1, 2, . . .,

whereW (�, 0) := 0.
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We say that two patterns �1 and �2 are distinct if neither �1 appears in �2 nor �2
appears in �1. If �1, . . . ,�r are pairwise distinct simple patterns, we define the com-
pound pattern � = ⋃r

i=1 �i, where an occurrence of any �i is considered an occurrence
of �. For a compound pattern � = �1 ∪ · · · ∪ �r , we similarly define

Xn(�) =
r∑

j=1
Xn(�j).

The waiting times W (�, x), W (�) and Wi(�) are then defined as above, and often
referred to as sooner waiting times.
From these definitions it is easy to see that, for any simple or compound pattern �, x

and n, the events {Xn(�) < x} and {W (�, x) > n} are equivalent and hence

P{Xn(�) < x} = P{W (�, x) > n}, (1)

which provides a convenient way of studying the exact and approximate distribution of
Xn(�) through the waiting time distributions ofW (�, x).
Throughout this paper, unless specified otherwise, we assume that the trials {Xi} are

either independent and identically distributed (i.i.d.) or first order Markov dependent;
the pattern � is either simple or compound; and the counting of occurrences of � is in a
non-overlapping fashion.
The distribution of the number of runs and patterns in a sequence of multi-state tri-

als or random permutations of a set of integers have been successfully used in various
fields in applied probability, statistics and discrete mathematics. Examples include reli-
ability theory, quality control, DNA sequence analysis, psychology, ecology, astronomy,
nonparametric tests, successions, and the Eulerian and Simon-Newcomb numbers (the
latter 3 being defined for permutations). Two recent books, Balakrishnan and Koutras
(2002) and Fu and Lou (2003), provide some scope of the distribution theory of runs and
patterns and Martin et al. (2010) and Nuel et al. (2010) provides some extensions to sets
of sequences.
Given a pattern �, the exact distribution of Xn(�) traditionally has been determined

using combinatoric analysis on a case by case basis. The formulae for these distributions
are often very complex and computationally problematic. Even for many simple patterns,
their distributions in terms of combinatoric analysis remains unknown, especially when
the {Xi} are Markov dependent multi-state trials.
The waiting time W (�) for the first occurrence of certain types of runs and patterns

have been studied by many authors. See, for example, Blom and Thorburn (1982), Gerber
and Li (1981), Schwager (1983), and Solov’ev (1966). More recently, Fu and Koutras (1994)
developed a method for determining the exact distributions of Xn(�) and W (�) for any
simple or compound � in either i.i.d. or Markov dependent trials (see also Fu and Lou
2003). The method was referred to as the Finite Markov Chain Imbedding (FMCI) tech-
nique, which can be easily described as follows: given a simple or compound pattern �,
there exists a finiteMarkov chain {Yi} defined on a finite state space, say� = {1, . . . , d,α},
with an absorbing state α and transition probability matrix of the form

P = � − α

α

[
N c
0 1

]
, (2)
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where c is a column vector. The distribution of the waiting time for � is given by

P{W (�) = n} = ξ0Nn−1(I − N)1′ (3)

where ξ0 is the initial distribution,N is the essential transition probability matrix (i.e. the
sub-stochastic matrix consisting of only the transient states of {Yi}) as defined in (2), I
is a d × d identity matrix and 1 = (1, 1, . . . , 1) is a 1 × d row-vector. Furthermore, the
random variable Xn(�), the number of occurrences of � in {Xi}, is also finite Markov
chain imbeddable and its distribution is given by

P{Xn(�) < x} = P{W (�, x) > n} = ξ0Nn
x1′, (4)

where the essential transition probability matrix Nx has the form

Nx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N C
N C 0

. . . . . .
0 N C

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

the matrix N is given by (2), and the matrix C defines the “continuation” transition
probabilities from one occurrence to the next and depends on c in (2).
If the pattern � is long and complex and n is very large, then the computation

of P{Xn(�) = x} can become problematic and, to overcome this problem, various
asymptotic approximations have been developed for these probabilities.
In real applications, if the exact distribution is not available or is hard to compute, it is

important to know which approximations perform well and are easy to compute. Further-
more, it is important to know how these approximations perform with respect to each
other and the exact distribution from both a theoretical and numerical standpoint. The
aims of this manuscript are two-fold: (i) we first study the asymptotic relative error of
the normal, Poisson (or compound Poisson), and FMCI approximations with respect to
the exact distribution; and (ii) we then provide a numerical study of these three approx-
imations with the exact probabilities in cases where x is fixed and n → ∞ and when n
is fixed and x varies. As an important byproduct, the FMCI technique allows the normal
and Poisson approximations to be applied in more cases, for example, the distribution of
compound patterns and patterns in Markov dependent trials.

The approximations
Normal approximation

The normal approximation is one of the most popular for approximating the distribution
of the number of runs or patternsXn(�) in Statistics. In general, when� is simple or com-
pound, the trials are i.i.d., and the counting is non-overlapping, by appealing to (1) and
renewal arguments, it has been shown that Xn(�) is asymptotically normally distributed
(cf. Fu and Lou 2007; Karlin and Taylor 1975). The form of the approximation is

lim
n→∞P

⎧⎪⎨
⎪⎩
Xn(�) − n/μW√

nσ 2
Wμ−3

W

≤ u

⎫⎪⎬
⎪⎭ = �(u), (6)
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where �(·) denotes the standard normal distribution function and μW and σ 2
W are the

mean and variance ofW (�) respectively, which are given by

μW = ξ0(I − N)−11′, and (7)

σ 2
W = ξ0(I + N)(I − N)−21′ − μ2

W . (8)

Given a pattern �, it is well known that the mean μW and the variance σ 2
W are difficult

to obtain via combinatoric arguments, especially when � is a compound pattern or the
trials are Markov dependent. For example, as pointed out in Karlin (2005) and Kleffe and
Borodovski (1992), approximate values of μW and σ 2

W must sometimes be used. Since
W (�) is finite Markov chain imbeddeble, (7) and (8), provide the exact values.
The limit in (6) is appropriate when the sequence of inter arrival times {Wi(�)} are i.i.d.,

which is the case for simple and compound patterns when the {Xi} are i.i.d. and counting
is non-overlapping. When occurrences of � correspond to a delayed renewal process,
which can occur for Markov dependent trials and/or overlapping counting, we could use
the mean and variance ofW2(�) for the normalizing constants, which are easily obtained
by modifying ξ0 in (7) and (8). Even more general cases can be handled by making use of a
functional central limit theorem for Markov chains (see, for example, (Meyn and Tweedie
1993, §17.4) and (Asmussen 2003, Theorem 7.2, pg. 30) for the details).

Poisson and compound poisson approximations

It is well known that, in a sequence of Bernoulli(p) trials, if np → λ as n → ∞, then
the probability of k successes in n trials can be approximated by a Poisson probability
with parameter λ, denoted P(λ). This idea has been extended to certain patterns � and,
under certain conditions, the distribution of Xn(�) can be approximated by a Poisson
distribution with parameter μn in the sense that

dTV(L (Xn(�)),P(μn)) < εn, (9)

where L (·) denotes the distribution (law) of a random variable and dTV(·, ·) denotes the
total variation distance.
The primary tool used to obtain μn and the bound εn is the Stein-Chen method

(Chen 1975), and this method has been refined by various authors Arratia et al. (1990),
Barbour and Eagleson (1983), Barbour and Eagleson (1984), Barbour and Eagleson (1987),
Barbour and Hall (1984), Godbole (1990a), Godbole (1990b), Godbole (1991), Godbole
and Schaffner (1993), and Holst et al. (1988). This method has also been extended to com-
pound Poisson approximations for the distributions of runs and patterns and Barbour and
Chryssaphinou (2001) provides an excellent theoretical review of these approximations.
In practice, μn = EXn(�) or the expectation of a closely related run statistic is used (cf.

Balakrishnan and Koutras 2002, §5.2.3) so that, in the former case,

P{Xn(�) = x} ≈ (EXn(�))x

x!
exp {−EXn(�)} . (10)

Finding EXn(�) and the bound εn is usually done on a case by case basis. For the mathe-
matical details, the books (Barbour et al. 1992a) and (Balakrishnan and Koutras 2002) are
recommended.
Let Pc(λ, ν) denote the compound Poisson distribution, that is, the distribution of the

random variable
∑M

j=1 Yj where the random variable M has a Poisson distribution with
parameter λ and the Yj are i.i.d. having distribution ν. A compound Poisson distribution
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for approximating nonnegative random variables was suggested in Barbour et al. (1992b)
(see also Barbour et al. (1995,1996)). The approximation is formulated similarly to the
Poisson approximation:

dTV(L (Xn(�)),Pc(λ, ν)) < εn. (11)

The distribution of Nn,k , the number of non-overlapping occurrences of k consecutive
successes in n i.i.d. Bernoulli trials, is one of the most important in this area and one of
the most studied in the literature. Reversing the roles of S (success) and F (failure), the
reliability of consecutive-k-out-of-n system, denoted C(k, n : F), is given by P{Nn,k = 0}.
Even in this simple case (i.e. � = SS · · · S), there are several ways to apply the Poisson
approximation techniques. For example, (Godbole 1991, Theorem 2) shows that approxi-
mating Nn,k with a P(ENn,k) distribution works well if certain conditions hold. Godbole
and Schaffner (Godbole and Schaffner 1993, pg. 340) suggests an improved Poisson
approximation for word patterns.
The primary difficulty in applying the Poisson approximation is the determination of

the optimal parameter μn, which is higly dependent on the structure of the pattern �. In
particular, if � is long and has several uneven overlapping sub-patterns, then finding μn
by their method can be very tedious. In the sequel, we show that even the (asymptotic)
best choice for μn for Poisson approximations does not perform well in the relative sense.

FMCI approximations

Approximations based on the FMCI approach depend on the spectral decomposition of
the essential transition probability matrix N.
LetN be a w×w essential transition probability matrix associated with a finite Markov

chain {Yn : n ≥ 0} corresponding to the distribution of the waiting time W (�). Let
1 > λ1 ≥ |λ2| ≥ · · · ≥ |λw| denote the ordered eigenvalues of N, repeated according
to their algebraic multiplicities, with associated (right) eigenvectors η′

1, η′
2, · · · , η′

w. When
the geometric multiplicity of λi is less than its algebraic multiplicity, we will use vectors of
0’s for the unspecified eigenvectors. The fact that λ1 can be taken as a positive real number
and that η1 can be taken to be non-negative are consequences of the Perron-Frobenious
Theorem for non-negative matrices (cf. Seneta 1981).

Definition 1. We will say that {Yn : n ≥ 0}, or equivalently, N, satisfies the FMCI
Approximation Conditions if

(i) there exists constants a1, . . . , aw such that

1′ =
w∑
i=1

aiη′
i, (12)

(ii) λ1 has algebraic multiplicity g and λ1 > |λj| for all j > g.

Verifying these conditions is usually straightforward. They certainly hold if N is irre-
ducible and aperiodic, but also hold inmany other cases as well. For example, (12) requires
only that 1′ is in the linear space spanned by {η′

1, η′
2, · · · , η′

w}, which can hold even whenN
is defective (not diagonizable). Condition (ii) requires that the communication classes cor-
responding λ1 are aperiodic. That is, if� is a communication class andN[�] corresponds
to the substocastic matrix N restricted to the states in � , with largest eigenvalue λ1[�],
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then all � such that λ1[�]= λ1 should be aperiodic. We also mention that the algebraic
multiplicity of λ1 is the number of communication classes � such that λ1[�]= λ1.
Fu and Johnson (2009) give the following theorem.

Theorem 1. Let {Xi} be a sequence of i.i.d. trials taking values in S , let � be a simple
pattern of length �with d×d essential transition probability matrixN and let Xn(�) be the
number of non-overlapping occurrences of� in {Xi}. IfN satisfies the FMCI approximation
conditions then, for any fixed x ≥ 0,

P{Xn(�) = x} ∼ ax+1
(
n − x(� − 1)

x

)
(1 − λ1)

xλn−x
1 , (13)

where a = ∑g
j=1 aj(ξ0η′

j). If g = 1, as is usually the case, then a = a1(ξ0η′
1).

Given a pattern �, the approximation in (13) requires finding the Markov chain imbed-
ding associated with the waiting timeW (�), the essential transition probability matrixN
as well as its eigenvalues and associated eigenvectors. Usually, these steps are rather sim-
ple and can be easily automated together with (13). Even for very large n and large �, say
n = 1,000,000 and � = 50, the CPU time is negligible. Fu and Johnson (2009) also pro-
vide details on extending these results to compound patterns, overlapping counting and
Markov dependent trials.
For the purpose of comparing these approximations, we prefer to write (13) as

P{Xn(�) = x} ∼ ax+1
(
1 − λ1

λ1

)x (n − x(� − 1)
x

)
exp{n ln λ1} (14)

Note that the approximation havs three parts: a constant part; a polynomial in n of degree
x; and a third (dominant) part which converges to 0 exponentially fast as n → ∞.
More precisely, the FMCI approximation in (13) may be written as

P{Xn(�) = x} = ax+1
(
1 − λ1

λ1

)x (n − x(� − 1)
x

)

× exp{n ln λ1}
[
1 + o

(∣∣∣∣λg+1

λ1

∣∣∣∣
n/(x+1)−�

)]
.

(15)

Since |λg+1| < λ1, the term
∣∣λg+1/λ1

∣∣n/(x+1)−� tends to 0 exponentially as n → ∞ and
hence is negligible if n/(x + 1) − � is moderate or large (say ≥ 50).

Large deviation approximation

Fu et al. (2012) provide the following large deviation approximation for right-tail probabil-
ities for the number of non-overlapping occurrences for simple patterns �. The reasons
for providing only the right-tail large deviation approximation are (i) all of the above men-
tioned approximations fail to approximate the extreme right-tail probabilities and (ii) the
FMCI approximation provides an accurate approximation for left-tail probabilities.

Theorem 2. Let ε = xμ2
W /(1 + xμW )and let

ϕW (t) = 1 + (et − 1)ξ(I − etN)−11′, (16)
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be the moment generating function of W (�). Then

P{Xn(�) ≥ EXn(�)+nx} = e−nβ(ε,�) 1√
n
{
b0 + b1n−1 + · · · + bmn−m + O(n−m−1)

}
,

(17)

where

β(x,�) =
(

1
μW

+ x
)
h(ε, τ) =

(
1

μW
+ x

)[
− τμW
1 + xμW

− lnϕW (�)(−τ)

]
, (18)

h(ε, t) = εt − lnϕμW−W (�)(t), τ is the solution to h′(ε, τ) = 0, and

b0 = 1
στ
√
2π(μ−1 + x)

b1 = 1
στ
√
2π(μ−1 + x)3

{
− 1

σ 2τ 2
+ h(3)(ε, τ)

2τσ 4 − h(4)(ε, τ)

8σ 4 − 5(h(3)(ε, τ))2

24σ 6

}

σ =
√

−h′′(ε, τ).

(19)

Comparisons and relative error
For a given n, x and pattern �, we define the relative error of an approximation with
respect to the exact probability P{Xn(�) = x} as

R(x : E,A) = sgn(A − E)

[
max

(
E
A
,
A
E

)
− 1

]
,

where A stands for the approximate probability and E stands for the exact probability
P{Xn(�) = x}. This quantity, R(x : E,A), goes from −∞ to ∞ and treats the importance
of overestimation the same as underestimation. It is clear that R(x : E,A) > 0 implies
that the approximation is overestimating the exact probability and that R(x : E,A) < 0
implies that the approximation is underestimating the exact probability. Since, for fixed
x, the probability P{Xn(�) = x} converges to 0 exponentially fast as n → ∞, it follows
that R(x : E,A) → ±∞ implies that the approximation tends to 0 with the wrong rate. If
R(x : E,A) is near 0 then the approximation is close to the exact probability P{Xn(�) = x}.
Note that R(x : E,A) is a function of x, n and themethod of approximation used. The fol-

lowing theorem provides the asymptotic relative error for the Normal approximation (N),
the Poisson approximation (P(μn)) and the finiteMarkov chain imbedding approximation
(F).

Theorem 3. Let {Xi} be a sequence of i.i.d. multi-state trials taking values in S and let
� be a simple pattern defined on S . Then, for every fixed x, we have,

(i) lim
n→∞R(x : E, F) = 0; (20)

(ii) lim
n→∞R(x : E,P(μn)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞, if lim supn μn/n < − ln λ1;

c(x), if limn μn/n = − ln λ1;

−∞, if lim infn μn/n > − ln λ1;

(21)
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(iii) lim
n→∞R(x : E,N) =

⎧⎪⎨
⎪⎩

∞, if μW /2σ 2
W ≤ − ln λ1;

−∞, if μW /2σ 2
W > − ln λ1;

(22)

where the exact probability is computed using (4) and

c(x) = ax+1
(

λ1 − 1
λ1 ln λ1

)x
− 1.

Proof. Given a pattern � and x, for the finite Markov chain imbedding approximation
we have

lim
n→∞

P{Xn(�) = x}
ax+1

(
1 − λ1

λ1

)x (n − x(� − 1)
x

)
exp{n ln λ1}

= 1

and hence (i) follows immediately from the definition of R(x : E,A) and Theorem 1.
For the Poisson approximation we have, since E/F ∼ 1 by (i),

E
P(μn)

= E
F

× F
P(μn)

∼ F
P(μn)

and hence

E
P(μn)

= P{Xn(�) = x}
μx
n
x!

exp{−μn}

∼
ax+1

(
1 − λ1

λ1

)x (n − x(� − 1)
x

)
exp{n ln λ1}

μx
n
x!

exp{−μn}
. (23)

If lim infn μn/n > − ln λ1 then exp{n ln λ1 + μn} tends to 0 exponentially fast which
overrides the polynomial term and hence R(x : E,P(μn)) → −∞ as n → ∞ for all fixed
x. Similarly, if lim supn μn/n < − ln λ1, then R(x : E,P(μn)) → ∞ as n → ∞ for all fixed
x. Furthermore, if limn μn/n = − ln λ1, then the ratio yields

lim
n→∞R(x : E,P(−n ln λ1)) = ax+1

(
λ1 − 1
λ1 ln λ1

)x
− 1

and this completes the proof of (ii). Note also that, if lim supn μn/n > − ln λ1 and
lim infn μn/n < − ln λ1, then limn R(x : E,P(μn)) will not exist.
For the normal approximation we have that Xn(�) is approximately normal with mean

n/μW and variance nσ 2
W /μ3

W and hence

P{Xn(�) = x} ≈ N =
∫ x+1/2

x−1/2

1√
2πnσ 2

Wμ−3
W

exp
{

− (t − n/μW )2

2nσ 2
Wμ−3

W

}
dt

Hence, provided n > μW (x + 1/2), we have

N ≤ 1√
2πnσ 2

Wμ−3
W

exp
{

− (x + 1/2 − n/μW )2

2nσ 2
Wμ−3

W

}
.
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Therefore, as in the proof of (ii), we are interested in the asymptotics of F/N , which
yields

F
N

∼
√
2πnσ 2

W
μ3
W

ax+1
(
1 − λ1

λ1

)x (n − x(� − 1)
x

)

× exp
{
n ln λ1 + (x + 1/2 − n/μW )2

2nσ 2
Wμ−3

W

}
. (24)

We may rewrite the argument of the exponential function as

n
[
ln λ1 + μW

2σ 2
W

(
μW (x + 1/2)

n
− 1

)2
]
,

making it clear that (24) converges to∞ ifμW /2σ 2
W ≥ − ln λ1 and 0 otherwise. Therefore,

R(x : E,N) → ∞ if μW /2σ 2
W ≥ − ln λ1 and R(x : E,N) → −∞ if μW/2σ 2

W < − ln λ1
and the proof of (iii) is complete.

Theorem 3 (ii) implies that asymptotically (for fixed x and n → ∞), the Poisson approx-
imation performs poorly (in the relative sense) regardless of the value μn used. When �

is simple and does not have overlapping sub-patterns, taking μn = EXn(�) is normally
recommended for the Poisson approximation (cf. Arratia et al. 1990). In this case, non-
overlapping and overlapping counting is equivalent. The following corollary shows that,
for fixed x, the Poisson approximation will (asymptotically) always overestimate the exact
probability in the following sense.

Corollary 1. Let � be a simple pattern defined on an i.i.d. sequence of multi-state trials.
For μn = EXn(�), we have

lim
n→∞R(x : E,P(μn)) = ∞

for all fixed x.

Proof. Recall that, in this case, Xn(�) is a renewal process with i.i.d. inter-renewal times
with mean μW = EW (�) and hence, by the elementary renewal theorem, we have
EXn(�)/n → 1/μW so thatEXn(�) ∼ n/μW . Therefore, by Theorem 3 (ii), it is sufficient
to show that n/μW < −n ln λ1 for all sufficiently large n, or

e−1/μW > λ1.

Now, since 0 < λ1 ∈ R is a dominant eigenvalue ofN, it follows that: 0 < (1 − λ1)−1 ∈ R

is a dominant eigenvalue of the matrix (I − N)−1 = A = (aij); aij ≥ 0 with at least one
aij > 0; and A1′ = (I − N)−11′ ≤ μW1′. Hence, by a simple corollary to the Perron-
Frobenius Theorem for nonnegative matrices (cf. Karlin and Taylor 1975, Corollary 2.2,
pg. 551), we have

1
1 − λ1

= lim sup
n→∞

(
max
i,j

|a(n)
ij |
)1/n

≤ μW ,

where a(n)
ij = (An)ij. Therefore, provided μW < ∞,

e−1/μW > 1 − 1
μW

≥ λ1,

which completes the proof.
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Corollary 1 implies that, if μn ∼ EXn(�), then the Poisson approximation will always
overestimate the exact probability as n → ∞. Together with Theorem 3 (ii), this implies
that using μn ∼ −n ln λ1 results in the best Poisson approximation as n → ∞.
We also comment that, for the normal approximation, both μW /2σ 2

W < − ln λ1 and
μW /2σ 2

W ≥ − ln λ1 are possible. As a simple example, suppose we have a sequence of
i.i.d. Bernoulli(p) trials and � = SSS. If p = 1/2, we obtain

μW = 14, σ 2
W = 142 and λ1 = 0.9196434,

and
μW

2σ 2
W

= 0.04929577 < − ln λ1 = 0.08376932.

However, with p = 0.9, we obtain

μW = 3.717421, σ 2
W = 2.145694 and λ1 = 0.5419067;

and
μW

2σ 2
W

= 0.8662513 > − ln λ1 = 0.6126614.

Thus, R(x : E,N) → ±∞ are both possible depending on x, the pattern, and the
probability structure of the {Xi}.

Numerical comparisons
In the previous section we showed that, for fixed x and n → ∞, the approximation
based on the finite Markov chain imbedding technique outperforms the Poisson and nor-
mal approximations. In practice, however, one is interested in the performance of these
approximations not only when x is fixed and n → ∞, but also when n is fixed (at some
moderate value) and x varies. The reason we consider only large or moderate n in our
numerical study is that, for small n, the FMCI technique easily gives the exact results.
In this section we present some numerical experiments to illustrate the advantages (and
disadvantages) of the methods discussed.
The approximations we compare are: the finite Markov chain approximation in (13)

(FMCI); the Poisson approximation with μn = n/μW (∼ EXn(�)) where μW is cal-
culated using (7) (Poisson); The normal approximation given in (6) (Normal); and the
large deviation approximation given in Theorem 2 (LD), which is only for right-tail
probabilities.

Reliability ofC(k,n:F) systems

A consecutive-k-out-of-n:F system is a system of n independent and linearly connected
components, each with common (continuous) lifetime distribution F, in which the system
fails if k consecutive components fail. At a given time t > 0, the probability a component
is working is p = 1 − F(t) and the probability a single component has failed is q = 1 − p
and hence the probability the system has failed is equivalent to the probability that k (or
more) consecutive components have failed, which is equivalent to the probability of k
consecutive failures in a sequence of n Bernoulli trials with success probability p. Barbour
et al. (1995) present a table of various bounds for system reliability based on a Poisson
approximation and a compound approximation and compare these to bounds found in Fu
(1985). Table 1 shows the exact probabilities and relative errors for the FMCI and Poisson
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Table 1 Approximation errors forC(k,n :F) systems

n k q Exact FMCI Poisson CP

5 2 0.01 0.99960 0.00000 -0.00010 0.00000

5 2 0.10 0.96309 0.00000 -0.00788 0.00119

5 2 0.25 0.79980 -0.00002 -0.02697 0.04654

10 2 0.01 0.99911 0.00000 -0.00010 0.00000

10 2 0.10 0.91975 0.00000 -0.00728 0.00312

10 2 0.25 0.61180 0.00000 -0.00869 0.12266

10 4 0.01 1.00000 0.00000 0.00000 0.00000

10 4 0.10 0.99936 0.00000 -0.00026 0.00000

10 4 0.25 0.97855 0.00000 -0.00776 0.00038

50 2 0.01 0.99516 0.00000 -0.00010 0.00000

50 2 0.10 0.63633 0.00000 -0.00251 0.01871

50 2 0.25 0.07173 0.00000 0.14441 0.96838

50 4 0.01 1.00000 0.00000 0.00000 0.00000

50 4 0.10 0.99577 0.00000 -0.00026 0.00000

50 4 0.25 0.86897 0.00000 -0.00663 0.00312

100 2 0.01 0.99024 0.00000 -0.00010 0.00000

100 2 0.10 0.40151 0.00000 0.00343 0.03854

100 2 0.25 0.00492 0.00000 0.36933 2.97133

100 4 0.01 1.00000 0.00000 0.00000 0.00000

100 4 0.10 0.99129 0.00000 -0.00026 0.00001

100 4 0.25 0.74908 0.00000 -0.00523 0.00656

500 4 0.20 0.52721 0.00000 -0.00086 0.00611

1,000 4 0.20 0.27696 0.00000 0.00183 0.01232

10,000 5 0.20 0.07710 0.00000 0.00183 0.00560

approximations as well as the compound Poisson approximation in Barbour et al. (1995)
(CP).
The FMCI approximation performs very well for the parameters tested here. As

expected, the Poisson and compound Poisson approximations perform well when nqk

is relatively small. When the reliability of the system is relatively low, the Poisson and
compound Poisson approximations begin to degrade.

Approximating the distribution ofNn,k

Recall that Nn,k is the number of non-overlapping occurrences of k consecutive successes
in {Xi} (i.e. Nn,k = Xn(�) with � = SS · · · S of length k). By reversing the roles of suc-
cess and failure, the reliability of C(k, n : F) systems can be related to the distribution of
Nn,k . In this section we present some examples of approximating P{Nn,k = x} with the
approximations FMCI, Normal, Poisson and LD.
Figure 1 shows the relative error R(x : E,A) in these approximations for (a) N2000,4; (b)

N5000,4; and (c) N250000,6 when the probability of success is p = 0.3. On all of the figures,
the top axis is on a standard z-scale making use of the asymptotic mean and variance of
Xn(�) — namely,

z = x − n/μW√
nσ 2

Wμ−3
W

.

We notice that the Finite Markov chain imbedding approximation (FMCI) performs
very well in the left tail of the distribution in all cases. Its performance degrades as x gets
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Figure 1 Relative errors of the FMCI, Normal, Poisson and LD approximationsN2000,4,N5000,4 and
N250000,6 with p = 0.3.

large but its performance is more consistent than both the Poisson and Normal approxi-
mations in this case. The large deviation approximation performs well in the right tail in
all cases. In (c), the FMCI approximation performs very well throughout most of the sup-
port. The Poisson approximations also perform well over most of the x considered. The
normal approximation performs well in the neighbourhood ofEXn(�) but not in the tails.
As the probability of success p increases, the FMCI approximation still performs very

well in the left tail, but it’s performance tends to degrade more quickly as x increases. The
Poisson approximations also quickly degrades as p increases since ENn,k increases. For
larger p, the Normal approximation tends to work better near the mean. In the far left
tail, the FMCI approximation is preferred and in the far right tail, the LD approximation
is preferred.

Biological sequences

Sequences of DNA nucleotides are of great interest (as are sequences of amino acids
and other biological sequences). Figure 2 shows the relative errors for approximating
P{Xn(�) = x} with � = ACG (n = 1,000 and 10,000) and � = CATTAG (n = 500,000).
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Figure 2 Relative errors of the FMCI, normal, Poisson and large deviation approximations for the
patterns� = ACGwith n = 1,000 and 10,000 and� = CATTAGwith n = 500,000.

We see that the FMCI approximation again performs very well in the left tail, although,
in (b), the performance degrades somewhat as x gets large. The large deviation approxi-
mation performs very well in the right tail, especially when x is greater than 3 standard
deviations above the mean. While it is difficult to give a rule of thumb, the FMCI approx-
imation seems to perform very well when x ≤ O(n1/2). The normal approximation works
best within a few standard deviations of the mean and performs best in this region when
EXn(�) is relatively large.

Discussion and conclusions
The finite Markov chain imbedding approximations (FMCI and LD) provide an alterna-
tive to the usual normal and Poisson approximations for the distributions of runs and
patterns. While the FMCI approximation is simple, accurate and fast, it has one disad-
vantage over the normal and Poisson approximations — it requires the use of the FMCI
technique, which is non-traditional and less known in the Statistics community, except in
the area of system reliability (cf. Cui et al. 2010). On the other hand, the FMCI technique
does not require the rather strong conditions necessary for the Poisson techniques, such
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as npk → λ. This condition is seldom satisfied in practical applications. For example, in
DNA sequence analysis, the probabilities pA, pC , pG and pT do not tend to 0 as n increases.
They may not all be in the neighbourhood of 1/4 but they are bounded away from 0.
For all of the numeric results in the previous section, the exact probabilities P{Xn(�) =

x} are obtained via the FMCI technique and their CPU times were only a few seconds or
less than a minute even in the case of � = CATTAG and n = 500,000. Based on our
experience, if the length of the pattern is less than 20 and n is less than 1,000,000, the
exact probability should be computed.
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