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Abstract
The ranking method used for testing the equivalence of two distributions has been
studied for decades and is widely adopted for its simplicity. However, due to the
complexity of calculations, the power of the test is either estimated by a normal
approximation or found when an appropriate alternative is given. Here, via the Finite
Markov chain imbedding technique, we are able to establish the marginal and joint
distributions of the rank statistics considering the shift and scale parameters,
respectively and simultaneously, under two different continuous distribution functions.
Furthermore, the procedures of distribution equivalence tests and their power
functions are discussed. Numerical results of a joint distribution of rank statistics under
the standard normal distribution and the powers for a sequence of alternative normal
distributions with means from −20 to 20 and standard deviations from 1 to 9 and their
reciprocal are presented. In addition, we discuss the powers of the rank statistics under
the Lehmann alternatives.
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1 Introduction
Suppose that on the basis of observations X1, . . . ,Xm;Y1, . . . ,Yn from the cumulative dis-
tribution functions F and G, two major topics in the hypothesis testing are to test the
equivalence of either the center or the dispersion of the two populations of interest. The
hypotheses are stated, for some θ �= 0,

Ho : F(x) = G(x) versus Ha : F(x) = G(x − θ), for all x,

which is known as the shift alternative and, for some σ �= 1,

Ho : F(x) = G(x) versus Ha : F(x) = G
(
xσ−1) , for all x.

Wilcoxon (1945) proposed the ranking method for testing the significance of the dif-
ference of the two populations means, also known as the Wilcoxon rank-sum test, and
defined a statistic WY , as the sum of the ranks of the y′s in the combined and ordered
sequence of x′s and y′s, equivalent to

n∑
j=1

{
# of x′

is < yj
} + n(n + 1)

2
.
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Mann and Whitney (1947) introduced an elaboration of the ranking test, proposed the
statistic UX = mn − WY + n(n+1)

2 , and proved that the limiting distribution of the test
statistic UX is

UX − E(UX )√
Var(UX)

L−→ N(0, 1)

asm and n go to infinity in any arbitrary manner where

E(UX ) = mnp1

and

Var(UX) = mnp1(1 − p1) + mn(n − 1)
(
p2 − p21

) + mn(m − 1)
(
p3 − p21

)
,

with

p1 = P(X > Y ),

p2 = P(X > Y and X > Y ′), (1)

p3 = P(X > Y and X′ > Y ),

where X,X′ and Y ,Y ′ are independently distributed, X,X′ with the distribution F , and
Y ,Y ′ with the distributionG. Intuitively, the power for the right-sided test can be found as

P
(
UX − E(UX)√

Var(UX)
>

c − E(UX)√
Var(UX)

∣∣∣∣ Ha

)
, (2)

where c is the value such that

�

⎛
⎜⎝ c − 1

2mn√
1
12mn(m + n + 1)

∣∣∣∣ Ho

⎞
⎟⎠ ≥ 1 − α.

Over the years, there have been studies on finding the exact or approximate power for
the rank-sum test. By choosing an appropriate alternative distribution function, Shieh
et al. (2006) derived the exact power for the uniform, normal, double exponential and
exponential shift models. Rosner and Glynn (2009) discussed power against the family of
alternatives of the form

�−1(FY (y)) = �−1(FX(y)) + μ for some μ �= 0,

where the underlying distributions FX and FY are normal. Collings and Hamilton (1988)
presented a bootstrap method to find the empirical distribution functions in order to
approximate the power against the shift alternative. Lehmann (1953) derived the power
function as

P(S1 = s1, S2 = s2, · · · , Sn = sn) = kn(m+n
m

) n∏
j=1

�(sj + jk − j)
�(sj)

�(sj+1)

�(sj+1 + jk − j)
,

where sj is the rank of yj in the combined samples for the alternative hypothesis of

GY (x) = FX(x)k , for all x,

where k is a positive integer. However, Lehmann (1998) pointed out that the power func-
tion of the rank-sum test, Equation (2), was only qualitative. Since the numerical values for
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assessing the probabilities in Equation (1) are considerably complicated in computation
when F and G are continuous distributions with F �= G.
As the rank-sum test is widely adopted for testing the center differences of two dis-

tributions, it is natural to study the efficiency of a rank-sum test for variability (Ansari
and Bradley 1960). For decades, studies have focused on proposing new definitions of the
rank statistic and using the methods of Chernoff and Savage to show the relative effi-
ciency of the proposed statistic to the F-test, see for example Mood (1954), Siegel and
Tukey (1960), Ansari and Bradley (1960), and Klotz (1962). Ansari and Bradley (1960)
mentioned that if the means of the X and Y samples cannot be considered equal, dif-
ferences in location have a severe impact on all the tests of dispersion. Klotz (1962)
showed the power of a rank test can be found by integrating the joint density of X
and Y samples over that part of the m + n dimensional space defined by the alterna-
tive orderings which lie in the critical region of the test, for which conditions are very
strict.
Our approach aims at releasing some of the conditions for finding the distribution of

the proposed rank statistic. We systematically imbed the random vectorUn into aMarkov
chain to induce the marginal and joint distributions of the rank statistics considering the
shift and scale parameter, respectively, under any form of two distribution functions. A
joint distribution of rank statistics, to the best of our knowledge, has not been studied in
the literature. The main strength of using the finite Markov chain imbedding approach
(FMCI) is to derive the distribution of the rank statistic without giving any conditions.
Therefore, under the null hypothesis of F = G, we are able to identify a proper critical
region and, under the alternative assumption, the power of the test can be determined
naturally. The distribution of the random vector Un, independent of the form of the dis-
tribution function F , is also demonstrated under the null hypothesis of the distribution
equivalence.
The main contributions of this paper are as follows. In Section 2.1, we introduce the

procedures of deriving the distribution of the rank statistic considering the shift parame-
ter and its power function by using FMCI. The procedures are general and can be applied
to either two identical distribution functions of interest or two different continuous den-
sity functions. In Section 2.2, we address the steps for finding the distribution of the
rank statistic considering the scale parameter and its power function. In Section 2.3, we
retrieve the joint distribution of the rank statistics considering the location and scale
parameters simultaneously as well as its power function. Numerical results of a joint
distribution and some powers of the rank statistics against shift parameter and scale
parameter, individually and simultaneously, are presented in Section 3. We also discuss
the powers of the rank statistics under the Lehmann alternatives. We end this paper with
a short conclusion in Section 4.

2 Methods
2.1 Distributions of the rank statistic in the shift case

Let {X1, . . . ,Xm} and {Y1, . . . ,Yn} be two independent samples from the continuous
cumulative density distributions F(x) and G(x − θ), respectively. Given x = {x1, . . . , xm}
and x[i] is the ith smallest number in the sample, we have

pi = P
(
x[i−1] < Y < x[i]

) =
∫ x[i]

x[i−1]

g(y)dy = G
(
x[i]

) − G
(
x[i−1]

)
,
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for i = 1, 2, . . . ,m + 1 where x[0] = −∞ and x[m+1] = ∞. Therefore, we define the
sampling distribution of Y in the (m + 1) intervals as

p = (
G
(
x[1]

) − G
(
x[0]

)
, . . . ,G

(
x[m+1]

) − G
(
x[m]

))
= (p1, p2, . . . , pm+1) . (3)

Givenm, for t = 1, 2, . . . , n, let

�t =
{
ut = (u1(t), · · · , um+1(t)) :

m+1∑
i=1

ui(t) = t and ui(t) ≥ 0, i = 1, . . . ,m + 1

}
,

where ui(t) is the number of y′s in the interval [x[i−1], x[i]) among y1, . . . , yt . For each
un = (u1(n), · · · , um+1(n)), we have a corresponding rank-sum of y’s in the combined
sample

Rl(Un = un|X) =
∑m+1

i=1 u2i (n) + ∑m+1
i=1 ui(n)

2
+

m∑
i=1

(ui(n) + 1)

⎛
⎝ m+1∑

j=i+1
uj(n)

⎞
⎠ . (4)

Theorem 1. The statistic Rl is equivalent to the statistic WY , which is addressed by
Wilcoxon in 1945.

Proof. Let

I(xi, yj) =
⎧⎨
⎩1 if xi < yj
0 otherwise.

The rank statisticWY , sum of the ranks of y’s observations, can be determined by
n∑

j=1

( m∑
i=1

I(xi, yj) + j

)
=

n∑
j=1

m∑
i=1

I(xi, yj) +
n∑

j=1
j

=
m∑
i=1

n∑
j=1

I(xi, yj) + n(n + 1)
2

. (5)

The first summation of the first term in Equation (5) can be interpreted as the number
of y observations larger than x[i] which is

∑m+1
j=i+1 uj(n) in our expression. It is not difficult

to see that
∑m+1

i=1 ui(n) equals n, the size of y sample. Therefore, the equation can be
rewritten as

m∑
i=1

⎛
⎝ m+1∑

j=i+1
uj(n)

⎞
⎠ +

∑m+1
i=1 ui(n)2 + 2

∑m
i=1 ui(n)

(∑m+1
j=i+1 uj(n)

)
+ ∑m+1

i=1 ui(n)

2
.

It is then easy to see that

m∑
i=1

(ui(n) + 1)

⎛
⎝ m+1∑

j=i+1
uj(n)

⎞
⎠ +

∑m+1
i=1 ui(n)2 + ∑m+1

i=1 ui(n)
2

= Rl.

Next, we demonstrate that for two random samples from the same population, the
distribution of the random vector Un is independent of the form of the distribution
function.
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Theorem 2. Distribution-free property ofUn.

P (Un = un|Ho) = 1
Card(�n)

= 1(m+n
n

) . (6)

Proof. We know the joint PDF of the ordered sample of x′s is given by

f
(
x[1], . . . , x[m]

) = m!
m∏
i=1

f (xi)

and, when F = G, the conditional probability of the random vector Un given X =
(x1, x2, . . . , xm) is

P(Un = un| x1, x2, . . . , xm ) = n!∏m+1
i=1 ui(n)!

m+1∏
i=1

(∫ x[i]

x[i−1]

f (y)dy

)ui(n)

, (7)

where x[0] = −∞ and x[m+1] = ∞. By taking the expected value of the conditional
probability, we have

P(Un = un|Ho)

=
∫

· · ·
∫

−∞ ≤ x[1] ≤ · · · ≤ x[m] ≤ ∞
P(un| x1, . . . , xm ) f

(
x[1], . . . , x[m]

)
dx[1] · · · dx[m]

=
∫ ∞

−∞

∫ ∞

x[1]
· · ·

∫ ∞

x[m−1]

n!∏m+1
i=1 ui(n)!

(
F
(
x[1]

))u1(n) (F (
x[2]

) − F
(
x[1]

))u2(n)

· · · (1 − F
(
x[m]

))um+1(n) m! dF
(
x[1]

) · · ·dF (
x[m]

)
. (8)

Using variable transformation, it is clear to see that the random variables
F
(
x[1]

)
, . . . , F

(
x[m]

)
have a Dirichlet distribution with parameters u1(n) + 1, u2(n)+

1, . . . , um+1(n) + 1. Therefore, we have

P(Un = un|Ho) = n!m!
(n + m)!

= 1
Card(�n)

which is independent of the distribution function.

This is the reason that the distribution of the rank statisticUn is distribution-free under
the null hypothesis. However, the distribution of the random vector Un is discrete uni-
form with the mass function one over the number of possible outcomes of the random
vectorUn only when assuming F = G. In other words, the distribution of the random vec-
torUn can be found by the traditional combinatorial analysis when F = G. Unfortunately,
when F �= G, we will not be able to establish the distribution of Un through Equation (7)
as solving the multiple integral in Equation (8) is either tedious given some appropriate
alternative distribution function or difficult. Our understanding is that finding the power
of the test has not been solved in most cases. To overcome this situation, we bring in the
finite Markov chain imbedding approach.
Let �t , t = 0, 1, . . . , n, be the state space which has(

m + t
t

)
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possible states, �n = {0, 1, . . . , n} be an index set, and {Zt : t ∈ �n} be a non-
homogeneous Markov chain on the state space �t . As a transition probability matrix Mt

for this chain, t = 1, . . . , n, consider

�t

Mt = �t−1

[
put−1,ut

]
(m+t−1

t−1 )×(m+t
t )

,

where

put−1,ut = P(Zt = ut|Zt−1 = ut−1)

=
{
pi if ui(t − 1) + 1 = ui(t) and uj(t − 1) = uj(t) ∀ j �= i
0 otherwise

,

and pi is defined in Equation (3).

Theorem 3. Rl(Un|X) is finite Markov chain imbeddable, and

P(Rl(Un) = r|X) = ξ

( n∏
t=1

Mt

)
B′(Cr),

where B(Cr) = ∑
k:Rl(Un)=r ek , ek is a 1 × (m+n

n
)
unit row vector corresponding to state

un, ξ(= P(Z0 = 1) = 1) is the initial probability and Mt , t = 1, . . . , n, are the transition
probability matrices of the imbedded Markov chain defined on the state space �t .

Proof. For each un = (u1(n), · · · , um+1(n)) in the state space�n, we have a correspond-
ing rank Rl as shown in Equation (4). Intuitively, the minimum rank rls is n(n + 1)/2 and
the maximum rank rlb is n(2m + n + 1)/2. In accordance with the possible values of the
rank Rl, we define a finite partition {Cr : r = rls, . . . , rlb} such that

P(Zn ∈ Cr|p) = ξ

( n∏
t=1

Mt

)
B′(Cr) (9)

where B(Cr) = ∑
k:Rl(Un)=r ek , ek is a 1 × (m+n

n
)
unit row vector corresponding to state

Un, we then obtain the conditional probability of the rank Rl.

Then, the Law of Large Numbers is used to determine the probability of Un for any
continuous F and G

1
N

N∑
i=1

P(Un = un| Xi)
p−→ P(Un = un)

where X i is the ith sample of sizem from the distribution function F . It is easy to see that

P(Rl(Un) = r) =
∑

un:R(un)=r
P(Un = un). (10)

To test

Ho : F(x) = G(x) versus Ha : F(x) = G(x − θ),



Lee Journal of Statistical Distributions and Applications 2014, 1:6 Page 7 of 16
http://www.jsdajournal.com/content/1/1/6

for some θ �= 0, the power function is approximated by

P(Rl(Un) ≤ r1α|Ha) + P(Rl(Un) ≥ r2α|Ha)

=
r1α∑
r=rls

P(Rl(Un) = r|Ha) +
rlb∑

r=r2α
P(Rl(Un) = r|Ha)

=
r1α∑
r=rls

∑
un :R(un)=r

P(Un = un|Ha) +
rlb∑

r=r2α

∑
un :R(un)=r

P(Un = un|Ha)

≈
r1α∑
r=rls

∑
un :R(un)=r

1
N

N∑
i=1

P(Un|Ha; Xi) +
rlb∑

r=r2α

∑
un :R(un)=r

1
N

N∑
i=1

P(Un|Ha; Xi)

= 1
N

⎛
⎝ r1α∑

r=rls

N∑
i=1

∑
un :R(un)=r

P(Un|Ha; Xi) +
rlb∑

r=r2α

N∑
i=1

∑
un :R(un)=r

P(Un|Ha; Xi)

⎞
⎠

= 1
N

N∑
i=1

⎛
⎝ r1α∑

r=rls

P(Rl(Un) = r|Ha; Xi) +
rlb∑

r=r2α
P(Rl(Un) = r|Ha; Xi)

⎞
⎠ ,

where

P(Rl(Un) ≤ r1α|Ho) + P(Rl(Un) ≥ r2α|Ho) ≤ α.

Note that the alternative hypothesis is subject to the purpose of the test. This simply
needs to be slightly modified if a one-sided test is adopted.

2.2 Distributions of the rank statistic in the scale case

We studied the distribution and the power function of the rank statistic Rl considering
a shift in location. Now, the distribution and the power function of the rank statis-
tic considering the scale parameter will be addressed. For this purpose, we consider
F(x) = G

(
xσ−1) and state the null and alternative hypotheses as

Ho : σ = 1 versus Ha : σ �= 1.

To do so, we begin with the procedure of finding the distribution of the rank statistic,
denoted Rs, considering the scale parameter through the random vector Un. The array of
ranks are given by

(m + n)/2, . . . , 3, 2, 1, 1, 2, 3, . . . , (m + n)/2;

ifm + n is even, and

(m + n − 1)/2, . . . , 3, 2, 1, 0 1, 2, 3, . . . , (m + n − 1)/2

ifm + n is odd. We first introduce how to determine the rank-sum of y′s observations in
the combined samples, Rs, with respect to

�n =
{
un = (u1(n), . . . , um+1(n)) :

m+1∑
i=1

ui(n) = n

}

where ui(n) means the number of y observations belonging to [x[i−1], x[i]). Let
med(x, y) be the median among x′s and y′s and belongs to [x[i], x[i+1]) which will
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then break Un into two parts U−
n and U+

n . If m + n is odd and med(x, y) = x[i],
then

U−
n = (u−

1 = ui(n) , u−
2 = ui−1(n) , · · · , u−

i = u1(n))

is a 1 × i vector and

U+
n = (

u+
1 = ui+1(n) , u+

2 = ui+2(n) , · · · , u+
m+1−i = um+1(n)

)
is a 1 × (m + 1 − i) vector. The second possible case is, if m + n is odd and med(x, y) =
y[∑i

k=1 uk(n)+j
], thenU−

n , a row vector with length i + 1, has the form

(
u−
1 = j − 1 , u−

2 = ui(n) , · · · , u−
i+1 = u1(n)

)
and U+

n , a row vector with lengthm + 1 − i, is given by(
u+
1 = ui+1(n) − j , u+

2 = ui+2(n) , · · · , u+
m+1−i = um+1(n)

)
.

The third possible case is, if m + n is even and x[i] is the smallest number larger than
med(x, y), the vectors are now defined as

U−
n = (u−

1 = ui(n) , u−
2 = ui−1(n) , · · · , u−

i = u1(n))

and

U+
n = (

u+
1 = 0 , u+

2 = ui+1(n) , · · · , u+
m+2−i = um+1(n)

)
.

The last possibility is, if m + n is even, y[ i∑
k=1

uk(n)+j

] is the smallest number larger than

med(x, y). The vectors are now defined as

U−
n = (u−

1 = j − 1 , u−
2 = ui(n) , · · · , u−

i+1 = u1(n))

and

U+
n = (

u+
1 = ui+1(n) − j + 1 , u+

2 = ui+2(n) , · · · , u+
m+1−i = um+1(n)

)
.

Let n− be the length of the vector U−
n and n+ be the length of the vectorU+

n .

Theorem 4. Rs(Un|X) is finite Markov chain imbeddable, and

P(Rs(Un) = r|X) = ξ

( n∏
t=1

Mt

)
B′(Cr),

where B(Cr) = ∑
k:Rs(Un)=r ek , ek is a 1 × (m+n

n
)
unit row vector corresponding to state

Un, ξ(= P(Z0 = 1) = 1) is the initial probability and Mt, t = 1, . . . , n are the transition
probability matrices of the imbedded Markov chain defined on the state space �t .

Proof. For eachUn in the state space �n, we have a corresponding

Rs(Un|X) = Rs(U−
n |X) + Rs(U+

n |X)

=
∑n−

k=1
(
u−
k
)2 + ∑n−

k=1 u
−
k

2
+

n−−1∑
k=1

(
u−
k + 1

)⎛⎝ n−∑
j=k+1

u−
j

⎞
⎠

+
∑n+

k=1
(
u+
k
)2 + ∑n+

k=1 u
+
k

2
+

n+−1∑
k=1

(
u+
k + 1

)⎛⎝ n+∑
j=k+1

u+
j

⎞
⎠ . (11)
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The smallest possible value of Rs(Un) is

rss =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n(n+2)
4 if m + n is even and n is even

(n+1)(n+3)
4 if m + n is even and n is odd

n2
4 if m + n is odd and n is even
(n+1)(n−1)

4 if m + n is odd and n is odd

(12)

and the largest possible value is

rsb =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n(2m+n+2)
4 if m + n is even and n is even

n(2m+n+2)−1
4 if m + n is even and n is odd

n(2m+n−1)
4 if m + n is odd and n is even

n(2m+n)−1
4 if m + n is odd and n is odd

(13)

In accordance with Equation (11), we use the possible value of Rs as a rule of the parti-
tion. The rest of the proof follows along the same line as that of Theorem 3, and here, is
omitted.

Similarly, we apply the LLN to conclude that

1
N

N∑
i=1

P(Rs| Xi )
p−→ P(Rs)

which establishes the distribution of Rs.
Through FMCI we, again, successfully retrieved the distribution of Rs under selected

alternative distributions, for which the procedures are similar to those in the previous
section. In addition, it is quite intuitive to approximate the power function by

1
N

N∑
i=1

( s1α∑
s=rss

P(Rs(Un) = s| Xi) +
rsb∑

s=s2α
P(Rs(Un) = s| Xi)

)
,

where

P(Rs(Un) ≤ s1α|Ho) + P(Rs(Un) ≥ s2α|Ho) ≤ α.

2.3 Joint distributions of the rank statistics in the shift and scale case

We have derived the marginal distributions of Rl and Rs in terms of Un, respectively,
which yield the following theorem.

Theorem 5. (Rl(Un|X),Rs(Un|X)) is finite Markov chain imbeddable, and

P(Rl(Un) = r1;Rs(Un) = r2|X) = ξ

( n∏
t=1

Mt

)
B′(Cr)

where B(Cr) = ∑
k:Rl(Un)=r1 & Rs(Un)=r2 ek , ek is a 1× (m+n

n
)
unit row vector corresponding

to state un, ξ(= P(Z0 = 1) = 1) is the initial probability and Mt , t = 1, . . . , n are
the transition probability matrices of the imbedded Markov chain defined on the state
space �t .

Proof. By Equations (4) and (11), we know each un in the state space �n has corre-
sponding values of Rl and Rs. The combinations of the values Rl and Rs are used to be
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the standard of the partition. The rest of the proof follows along the same line as that of
Theorem 3.

The joint distribution of the ranks considering both the location and scale parameters
which can be determined through our algorithm is yet to be studied in the litera-
ture. Our result allows us to test the homogeneity of the distribution functions F(x) =
G
(
(x − θ)σ−1). We state the hypotheses as follows

Ho : θ = 0 and σ = 1 v.s. Ha : θ �= 0 or σ �= 1. (14)

Also we are able to identify a proper critical region under the null hypothesis and
discuss its power when F �= G. For example, a rectangular critical region can be

Cα = {Rl ≤ r1l, Rl ≥ r2l, Rs ≤ r1s or Rs ≥ r2s}

where r1l, r2l, r1s and r2s are the critical values such that

P(Rl ≤ r1l|Ho) + P(Rl ≥ r2l|Ho) + P(r1l < Rl < r2l,Rs ≤ r1s|Ho)

+ P(r1l < Rl < r2l,Rs ≥ r2s|Ho) ≤ α

or an elliptic critical region

C′
α =

{
R2
l
a

+ R2
s
b

> C

}

for some positive constants a and b such that

P

(
R2
l
a

+ R2
s
b

> C|Ho

)
≤ α.

According to the above defined rejection region, the power of the test can be found as

P(Rl ≤ r1l|Ha) + P(Rl ≥ r2l|Ha) + P(r1l < Rl < r2l,Rs ≤ r1s|Ha)

+ P(r1l < Rl < r2l,Rs ≥ r2s|Ha) (15)

or

P

(
R2
l
a

+ R2
s
b

> C|Ha

)
. (16)

Note that unless having a conjecture about the values of θ and σ , we tend to use a two-
sided test. However, with the knowledge of the center and shape of the distribution of
interest, deciding a sectorial critical region is a better choice, for which an example is
demonstrated in the numerical studies.
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3 Numerical results and discussion
3.1 A joint distribution of Rl and Rs
Let {X1, . . . ,X5} ∼ N(0, 1) and {Y1, . . . ,Y7} ∼ N(θ , σ). Figure 1 gives the joint distribu-
tion of the random variables Rl and Rs under the null hypothesis of θ = 0 and σ = 1. The
marginal distributions of Rl and Rs can be easily established from their joint distribution.
Figure 1 also shows that the two random variables Rl and Rs are dependent. We construct
two critical regions as shown in Figure 2, according to their joint distribution. Outside the
yellow area in Figure 2 is the selected rectangular critical region C0.1738 and outside the
red shadow is the elliptic one C′

0.1738.

3.2 Powers for a joint test using Rl and Rs
The alternative of interest is stated in the preceding section (see Equation (14)). The
power functions of the test statistics Rl and Rs for a sequence of normally distributed
populations with θ from -20 to 20 with an increment of 0.5 and σ from 1 to 10 with
an increment of 1, and its reciprocal under two types of critical regions are provided in
Figures 3 and 4. We adopt a two-sided test because of the selected values of the param-
eters. It should be slightly modified the critical region in the previous step in order to
calculate the powers if a one-sided test is adopted. Both critical regions roughly perform
equally well as shown in Figures 3 and 4. Figure 5 presents the performance of the two
critical regions for given various parameter settings. Figures 5(a) and (b) show that given
a standard deviation of 1 or a mean of 0, the powers of the two critical regions, rectan-
gular and elliptic, are high and similar. However, when the variation of the alternative
population reduces (σ = 1/10) or increases (σ = 10), the elliptic critical region performs
better than the rectangular one as shown in Figures 5(c) and (d). Therefore, we suggest
that when conducting a test for the equivalence of two distributions, an elliptic rejection
area should be used.

Figure 1 Joint distribution of Rl and Rs in the case wherem = 5, n = 7 and F = G ∼ N(0, 1).
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0 0 0 0 0 0 0.00108 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.0012 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.00123 0.00125 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.00125 0 0.00128 0.00115 0 0 0 0 0 0 0 0

0 0 0 0 0 0.00126 0 0.00125 0 0.00251 0.00116 0 0 0 0 0 0 0

0 0 0 0 0.00127 0 0.00125 0 0.00253 0 0.00252 0.00118 0 0 0 0 0 0

0 0 0 0.00122 0 0.00126 0 0.00251 0.00126 0.00254 0 0.0037 0 0 0 0 0 0

0 0 0.00111 0 0.00126 0 0.00251 0.00127 0.00252 0.00129 0.0038 0 0.00252 0 0 0 0 0

0 0 0 0.0012 0 0.00249 0.00248 0.00253 0.00127 0.0038 0.00252 0.00258 0 0.00244 0 0 0 0

0 0 0 0 0.00241 0.00247 0.00253 0.00251 0.00377 0.00253 0.00256 0.00386 0.00251 0 0.00121 0 0 0

0 0 0 0 0.00367 0.00249 0.0025 0.00371 0.00502 0.00254 0.00386 0.00253 0.00378 0.00127 0 0.00123 0 0

0 0 0 0.00244 0 0.00375 0.00356 0.00505 0.00253 0.00765 0.00252 0.00381 0.00129 0.00381 0.00129 0 0 0

0 0 0.00244 0 0.00248 0 0.00754 0.00249 0.00763 0.00378 0.00759 0.00128 0.00385 0.00132 0.00384 0 0 0

0 0.00122 0 0.00247 0 0.00505 0 0.0114 0.00378 0.00755 0.00249 0.00767 0.00129 0.00386 0 0.00251 0 0

0.00118 0 0.0012 0 0.005 0 0.00768 0.0026 0.01132 0.00248 0.00761 0.0038 0.00773 0 0.00256 0 0.00125 0

0 0.00121 0 0.00247 0 0.00759 0.00391 0.00759 0.00254 0.01136 0.00369 0.00761 0.00257 0.00511 0 0.0013 0 0.00127

0 0 0.00244 0 0.00377 0.00395 0.00754 0.00383 0.0076 0.0051 0.01146 0.00253 0.00508 0.00388 0.00262 0 0.00132 0

0 0 0 0.00372 0.00398 0.00377 0.00384 0.00753 0.00767 0.00762 0.00506 0.00755 0.00378 0.00258 0.0025 0.00266 0 0

0 0 0 0.00391 0.00373 0.0039 0.00375 0.00763 0.00762 0.00764 0.00508 0.00754 0.0038 0.00253 0.0026 0.00255 0 0

0 0 0.00264 0 0.00384 0.00368 0.00765 0.0038 0.00753 0.00509 0.01146 0.00255 0.00503 0.00379 0.00258 0 0.00127 0

0 0.00132 0 0.00261 0 0.00763 0.00376 0.00756 0.00256 0.01135 0.00387 0.0076 0.00257 0.00512 0 0.0013 0 0.00131

0.00135 0 0.00131 0 0.00509 0 0.00757 0.00245 0.01137 0.00246 0.00756 0.00381 0.00762 0 0.00261 0 0.00133 0

0 0.00128 0 0.00257 0 0.00504 0 0.01132 0.00375 0.00757 0.00252 0.00764 0.00122 0.00381 0 0.00261 0 0

0 0 0.00257 0 0.00254 0 0.00745 0.00254 0.00753 0.00375 0.00759 0.00128 0.00383 0.00124 0.00382 0 0 0

0 0 0 0.0025 0 0.00372 0.00376 0.00501 0.00252 0.00753 0.00256 0.00379 0.00129 0.00379 0.00126 0 0 0

0 0 0 0 0.00369 0.0025 0.00249 0.00378 0.00496 0.00252 0.00374 0.00258 0.00379 0.00128 0 0.00133 0 0

0 0 0 0 0.0024 0.00251 0.00256 0.00244 0.00379 0.00248 0.00252 0.00375 0.00257 0 0.00131 0 0 0

0 0 0 0.00118 0 0.0025 0.00249 0.00259 0.00122 0.00378 0.00248 0.0025 0 0.00251 0 0 0 0

0 0 0.00118 0 0.00125 0 0.00257 0.00126 0.00257 0.00121 0.00373 0 0.00251 0 0 0 0 0

0 0 0 0.00125 0 0.00128 0 0.00257 0.00121 0.00252 0 0.00374 0 0 0 0 0 0

0 0 0 0 0.00128 0 0.00129 0 0.00252 0 0.00249 0.00131 0 0 0 0 0 0

0 0 0 0 0 0.00128 0 0.00128 0 0.00245 0.00127 0 0 0 0 0 0 0

0 0 0 0 0 0 0.00125 0 0.00126 0.00119 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.00124 0.00124 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.00123 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.00122 0 0 0 0 0 0 0 0 0 0 0

Figure 2 Critical Regions at size 17.38% for Rl and Rs form = 5 and n = 7.

Next, we consider the problem of determining an optimum rank test. To conduct a test
of distributions equivalency, we can use either Rl or Rs as the test statistic. As mentioned
earlier, the marginal distribution Rl or Rs can be easily established from their joint dis-
tribution. Figures 6 and 7 provide the power functions for the test statistics Rl and Rs

at the level of significance 17.38%, respectively. Figure 7 shows that the rank test against
scale parameter is badly effected by the centre of the alternative population. This was
seen before by Ansari and Bradley (1960). By comparing Figures 6 and 7 with Figure 4, it
seems that the joint test would be much more reliable than either Rl or Rs alone for dis-
tributions equivalence tests. A joint test for distributions equivalency would like a better
option under most circumstances.
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Figure 3 Power functions of Rl and Rs form = 5 and n = 7 under Cα .

3.3 Lehmann alternatives
Consider the one-sided alternative F(x; θ , σ) > G(x; θ , σ), Lehmann (1953) proposed
a test of Ho : F(x; θ , σ) = G(x; θ , σ) against Ha : F(x; θ , σ)k = G(x; θ , σ) which is
known as the family of Lehmann alternative. Note F(x; θ , σ)k is the cumulative distribu-
tion of max1≤i≤k(xi) when Xi ∼ F and, under the alternative hypothesis, G(x; θ , σ) is
stochastically larger than F(x; θ , σ). First of all, we know

Ek(X) =
∫ 0

−∞
−G(x)dx +

∫ ∞

0
1 − G(x)dx

>

∫ 0

−∞
−F(x)dx +

∫ ∞

0
1 − F(x)dx = E(X). (17)

1/9
1/7

1/5
1/3

1
3

5
7

9

−20
−15

−10
−5

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

σθ

P
ow

er

Figure 4 Power functions of Rl and Rs form = 5 and n = 7 under C′
α .
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Figure 5 Power comparisons of the joint test Rl and Rs form = 5 and n = 7 with the values of the
parameters σ or θ given on top of figure (a), (b), (c), and (d).
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Figure 6 Power functions of Rl givenm = 5 and n = 7.
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Figure 7 Power functions of Rs givenm = 5 and n = 7.

Therefore, the larger the Rl is, the stronger the evidence against the null hypothesis will
be. For the variation of the distribution per se, the codomain of the density function is
compressed to larger numbers; therefore, in most cases, we have Var(Xk) < Var(X). We
then propose to reject the null hypothesis when Rs is large. For example, given F ∼ U(0, 1)
and G = Fk , it is easy to see

Ek+1(X)

Ek(X)
= (k + 1)2

k(k + 2)
> 1 (18)

and
Vark+1(X)

Vark(X)
= (k + 1)3

k(k + 2)(k + 3)
< 1 (19)

for all k.We first find themarginal and joint distributions of the ranks Rl and Rs in order to
define critical regions for Rl and Rs individually and simultaneously. Due to the properties

Table 1 Power comparisons for a one-sided rank testH0 : F(x; θo ,σo) = G(x; θa ,σa) v.s.
Ha : Fk(x; θo ,σo) = G(x; θa ,σa)

m = 6 n = 10 m = 10 n = 10 m = 10 n = 20

F Test β(F) β(F2) β(F3) β(F6) β(F) β(F2) β(F3) β(F6) β(F) β(F2) β(F3) β(F6)

U(0, 1)

Rl .090 .411 .647 .900 .096 .496 .761 .967 .099 .591 .845 .984

Rs .080 .152 .193 .218 .076 .137 .149 .123 .100 .236 .370 .638

Rl&Rs .100 .452 .699 .934 .100 .531 .799 .981 .100 .622 .878 .992

t(3)

Rl 0.090 .412 .639 .897 0.096 .493 .756 .965 0.099 .574 .841 .987

Rs 0.080 .150 .197 .217 0.076 .137 .152 .121 0.100 .234 .367 .634

Rl&Rs 0.100 .453 .696 .932 0.100 .528 .798 .980 0.100 .606 .874 .993

Exp(1)

Rl 0.090 .411 .650 .899 0.096 .490 .764 .967 0.099 .579 .841 .987

Rs 0.080 .149 .195 .217 0.076 .140 .152 .122 0.100 .232 .376 .641

Rl&Rs 0.100 .451 .702 .933 0.100 .525 .805 .982 0.100 .607 .875 .993

Note: A sectorial critical region is chosen for a simultaneous testing.
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of the mean and variance of the alternative distribution, as shown in Equations (17), (18)
and (19), we are cautious to define the critical regions. Table 1 provides powers for the
tests as we choose uniform, standard Normal, student-t with 3 degrees of freedom, expo-
nential distributions for the hypothesized distribution, a couple of different settings for
sample sizesm and n, and 2, 3, 6 for k. Clearly, a joint test considering both Rl and Rs for
the equality of distributions is best suited in comparison with tests considering only one
of the rank statistics.

4 Conclusion
Our proposed algorithm provides a solution for finding the power of distribution equiv-
alence tests considering the shift and scale parameters, respectively and simultaneously.
Numerical studies show that a joint test should be adopted for the test homogeneity of
distributions as well as under Lehmann alternatives. Also an elliptic critical region is a
better choice rather than a rectangular one for a joint test. In practice, it is reasonable
to have neither the normality assumption nor equal mean/variance of the interested dis-
tributions. However, our algorithm highly depends on the technology equipments as the
possible states in �n grow rapidly when the sample sizes increase. Therefore, we can, so
far, only target small sample sizes in our work.
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