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1 Introduction

Suppose that on the basis of observations X1, . .., Xp; Y1, . . ., Yy, from the cumulative dis-
tribution functions F and G, two major topics in the hypothesis testing are to test the
equivalence of either the center or the dispersion of the two populations of interest. The
hypotheses are stated, for some 6 # 0,

H,:F(x) = G(x) versus H,:F(x) = Gx—6), for allx,
which is known as the shift alternative and, for some o # 1,
H,:F(x) = G() versus H,:F(x) = G(xa_l) , for all x.

Wilcoxon (1945) proposed the ranking method for testing the significance of the dif-
ference of the two populations means, also known as the Wilcoxon rank-sum test, and
defined a statistic Wy, as the sum of the ranks of the y's in the combined and ordered
sequence of x’s and y's, equivalent to

n
Z{# of xs < y]'}—l—n(n;_l).
j=1
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Mann and Whitney (1947) introduced an elaboration of the ranking test, proposed the
statistic Ux = mn — Wy + ”(”; D and proved that the limiting distribution of the test
statistic Uy is

Ux —EUy) 1
VVar(Uy) — NO.D

as m and # go to infinity in any arbitrary manner where
E(Ux) = mnp,
and
Var(Ux) = mnpy(1 = p1) + mn(n = 1) (p2 = pi) + mn(m — 1) (p3 — p3),
with
p1 =PX>Y),

pr=PX>Y and X > Y'), (1)
p3 =PX>Y and X >Y),

where X, X" and Y, Y’ are independently distributed, X, X" with the distribution F, and
Y, Y’ with the distribution G. Intuitively, the power for the right-sided test can be found as

(Ux—E(UX) - ¢ — E(Ux) )
VVarUx) ~— Var(Uy) | “)

where c is the value such that

(2)

1
Cc— 2Wll’l

O] ‘HO >1-a.

llzmn(m +n+1)

Over the years, there have been studies on finding the exact or approximate power for
the rank-sum test. By choosing an appropriate alternative distribution function, Shieh
et al. (2006) derived the exact power for the uniform, normal, double exponential and
exponential shift models. Rosner and Glynn (2009) discussed power against the family of
alternatives of the form

O (Fy(y) = @1 (Fx(y)) + u forsome p # 0,

where the underlying distributions Fx and Fy are normal. Collings and Hamilton (1988)
presented a bootstrap method to find the empirical distribution functions in order to
approximate the power against the shift alternative. Lehmann (1953) derived the power

function as

k" = T(sp + jk —j) I(si41)
P(S1 =51,8 =s89,-++,8, =) = 1_[ j T ] ] -+

(") p T Tl +jk=p
where s; is the rank of y; in the combined samples for the alternative hypothesis of
Gy(x) = Fx(®)X, forall x,

where k is a positive integer. However, Lehmann (1998) pointed out that the power func-
tion of the rank-sum test, Equation (2), was only qualitative. Since the numerical values for
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assessing the probabilities in Equation (1) are considerably complicated in computation
when F and G are continuous distributions with F # G.

As the rank-sum test is widely adopted for testing the center differences of two dis-
tributions, it is natural to study the efficiency of a rank-sum test for variability (Ansari
and Bradley 1960). For decades, studies have focused on proposing new definitions of the
rank statistic and using the methods of Chernoff and Savage to show the relative effi-
ciency of the proposed statistic to the F-test, see for example Mood (1954), Siegel and
Tukey (1960), Ansari and Bradley (1960), and Klotz (1962). Ansari and Bradley (1960)
mentioned that if the means of the X and Ysamples cannot be considered equal, dif-
ferences in location have a severe impact on all the tests of dispersion. Klotz (1962)
showed the power of a rank test can be found by integrating the joint density of X
and Y samples over that part of the m + n dimensional space defined by the alterna-
tive orderings which lie in the critical region of the test, for which conditions are very
strict.

Our approach aims at releasing some of the conditions for finding the distribution of
the proposed rank statistic. We systematically imbed the random vector U, into a Markov
chain to induce the marginal and joint distributions of the rank statistics considering the
shift and scale parameter, respectively, under any form of two distribution functions. A
joint distribution of rank statistics, to the best of our knowledge, has not been studied in
the literature. The main strength of using the finite Markov chain imbedding approach
(FMCI) is to derive the distribution of the rank statistic without giving any conditions.
Therefore, under the null hypothesis of F = G, we are able to identify a proper critical
region and, under the alternative assumption, the power of the test can be determined
naturally. The distribution of the random vector U, independent of the form of the dis-
tribution function F, is also demonstrated under the null hypothesis of the distribution
equivalence.

The main contributions of this paper are as follows. In Section 2.1, we introduce the
procedures of deriving the distribution of the rank statistic considering the shift parame-
ter and its power function by using FMCI. The procedures are general and can be applied
to either two identical distribution functions of interest or two different continuous den-
sity functions. In Section 2.2, we address the steps for finding the distribution of the
rank statistic considering the scale parameter and its power function. In Section 2.3, we
retrieve the joint distribution of the rank statistics considering the location and scale
parameters simultaneously as well as its power function. Numerical results of a joint
distribution and some powers of the rank statistics against shift parameter and scale
parameter, individually and simultaneously, are presented in Section 3. We also discuss
the powers of the rank statistics under the Lehmann alternatives. We end this paper with
a short conclusion in Section 4.

2 Methods

2.1 Distributions of the rank statistic in the shift case

Let {X1,..., X} and {Y3,...,Y,} be two independent samples from the continuous
cumulative density distributions F(x) and G(x — 6), respectively. Given x = {x1,..., %}

and x[;) is the i" smallest number in the sample, we have

X1

pi=Px <Y <) = / gydy = G (x) — G (¥i-11)

Xli-1]
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fori = 1,2,...,m + 1 where xjgq) = —o0 and x[;;,41) = o0c. Therefore, we define the
sampling distribution of Y in the (m + 1) intervals as

p=(G(xu) —Gx@) - G (xpnrn) — G (¥pm1))
= PLP2 - Pmtl) - (3)

Givenm, fort =1,2,...,n, let
m+1
Q= u =), um1(®): Y wit) =tandu;(t) =0, i=1,...,m+1¢,
i=1
where u;(t) is the number of ¥'s in the interval [x;_1},%[;]) among y1, ...,y For each
u, = (ui(n), -, um+1(n)), we have a corresponding rank-sum of y’s in the combined
sample

m+1

m+1 2 m+1 m
R, = ) = 24 OO Sy (3w | @
i=1 j=it1

Theorem 1. The statistic R; is equivalent to the statistic Wy, which is addressed by
Wilcoxon in 1945.

Proof. Let

1 ifx <y
I(xi, y5) = G
0 otherwise.

The rank statistic Wy, sum of the ranks of y’s observations, can be determined by

> (Zl(x,-,y» +/> =Y > I+ i
j=1

j=1 \i=1 j=1 i=1

=YY Iy + n(n2+ D (5)

i=1 j=1

The first summation of the first term in Equation (5) can be interpreted as the number
of y observations larger than x[;; which is Z]yiﬁl u;(n) in our expression. It is not difficult
to see that Z:’:{l u;(n) equals n, the size of y sample. Therefore, the equation can be

rewritten as

(s S w0 4+ 2 0 i) (S wim) + S i)
Z Z uj(n) | + 9 .
i=1 \j=i+1

It is then easy to see that

m m+1 m+1 2 m+1

i ui(m)” + YT ui(n)
E (ui(n) + 1) E ui(m) | + = ) ' =Ry
i=1 Jj=i+1

Next, we demonstrate that for two random samples from the same population, the
distribution of the random vector U, is independent of the form of the distribution

function.
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Theorem 2. Distribution-free property of U,.

1 1

P(un = un|H0) = Cﬂrd(QVl) - (m;_q._n) '

(6)

Proof. We know the joint PDF of the ordered sample of x’s is given by

f e oxpm) = mt [ [ @)

i=1
and, when F = G, the conditional probability of the random vector U, given X =

(xl) X2y ent ;xm) is
! m+1 *[ ui(n)
PU, =u,| x1,%0,...,%, ) = m+1 l_[ f(y)dy ) @)
=1 wimt i \Jxiy

where xo) = —oo and x[,;,41] = 00. By taking the expected value of the conditional
probability, we have

P(U, = uy|Ho)
= / / P(un) %15 %m ) f (005 -0 Xpm)) dX[1) -+ A%
—o0 < x[l . < xm] < o0
x uy(n) F(x _Flx uy(n)
/ / /m o T2 win )‘( () (F (x121) (*011)
~(1-F (x[m]))um+1(n) mldF (xq1)) - - - dF (xpm) - ®)

Using variable transformation, it is clear to see that the random variables
F(x1])---»F (%) have a Dirichlet distribution with parameters u1(n) + 1, ua(n)+
1,..., Uus1(n) + 1. Therefore, we have

P \H,) n!' m! 1
= U = =
TN im)! T Card(Q)

which is independent of the distribution function. [

This is the reason that the distribution of the rank statistic U, is distribution-free under
the null hypothesis. However, the distribution of the random vector U, is discrete uni-
form with the mass function one over the number of possible outcomes of the random
vector U, only when assuming F = G. In other words, the distribution of the random vec-
tor U}, can be found by the traditional combinatorial analysis when F = G. Unfortunately,
when F # G, we will not be able to establish the distribution of U}, through Equation (7)
as solving the multiple integral in Equation (8) is either tedious given some appropriate
alternative distribution function or difficult. Our understanding is that finding the power
of the test has not been solved in most cases. To overcome this situation, we bring in the
finite Markov chain imbedding approach.

Let Q4 t=0,1,...,n, be the state space which has

(")

Page 50of 16
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possible states, I, = {0,1,...,n} be an index set, and {Z; : ¢ € I',} be a non-
homogeneous Markov chain on the state space ;. As a transition probability matrix M;
for this chain, t =1, ..., n, consider

Q2

M= Q4 |: Puy_1,u :|
"

T ("

where

Puruy = P2y = ug|Zs 1 = up 1)
B ipi if wi(t—1)+1=u;(t) and wj(t —1) = uj(t) ¥j#i

’

0 otherwise
and p; is defined in Equation (3).

Theorem 3. R;(U,|X) is finite Markov chain imbeddable, and

P(R(Uy) = rIX) = § (]‘[ Mt> B'(C),

t=1

where B(Cy) = Y _j.pu,)=r € €k isal x (m::") unit row vector corresponding to state

Uy, E(= P(Zg = 1) = 1) is the initial probability and My, t = 1, ..., n, are the transition
probability matrices of the imbedded Markov chain defined on the state space ;.

Proof. For each u,, = (u1(n),- - - , uy41(n)) in the state space 2, we have a correspond-
ing rank R; as shown in Equation (4). Intuitively, the minimum rank 7 is n(n + 1) /2 and
the maximum rank ry, is n(2m 4+ n + 1) /2. In accordance with the possible values of the

rank R;, we define a finite partition {C, : r = ry, . .., rp} such that
n
P(Z, € Cilp) =& (]‘[ M:) B'(C)) )
t=1

m+n

M ) unit row vector corresponding to state

where B(C;) = 3 4 u,)=r €k €k 1521 x (
U, we then obtain the conditional probability of the rank R;. I

Then, the Law of Large Numbers is used to determine the probability of U, for any
continuous F and G

N

1

N > PU, =uyl X)) > P(U, = uy)
=1

where X; is the i sample of size m from the distribution function F. It is easy to see that

PR(U) =7r)= Y  PUy=uy). (10)

uy:R(u,)=r

To test

H,:F(x) = G(x) versus H,:F(x) = Gx—0),



Lee Journal of Statistical Distributions and Applications 2014, 1:6
http://www.jsdajournal.com/content/1/1/6

for some 6 # 0, the power function is approximated by

PRy(Uy) < rialHa) + P(R((Uy) = rag|Hy)

Fa Tlp
= Y P(R(Uy) =r|Ha) + Y P(R(Uy) = r|H,)
r=rig r=raqu
o Tip
=Y Y PUy=ulH)+ Y, Y. PUy=uylH,)
r=ris u,:R(u,)=r r=rya u,:R(u,)=r
o Tb
~y Y Z P(Uu\He XD+ Y Y. Z P(U,|Hy; X))
r=rig u,:R(u,)= r r=ra u,:R(u,)= r
1 Fla Tlp
= ZZ Y PU,Hg X)+ ) Z Y. P(U,Hg X))
r=ris i=1 u,:R(u,)=r r=raq i=1 wu,:R(u,)=r
1 N Ma Tlb
= v 2 | 22 PR =riHe; X0+ Y 0 PRUUL) = 11Has X)) |
i=1 r=ris r=ryy

where
P(Ry(Uy) < ralHy) + P(Ry(Uy) > 1o |Hy) < a.

Note that the alternative hypothesis is subject to the purpose of the test. This simply
needs to be slightly modified if a one-sided test is adopted.

2.2 Distributions of the rank statistic in the scale case

We studied the distribution and the power function of the rank statistic R; considering
a shift in location. Now, the distribution and the power function of the rank statis-
tic considering the scale parameter will be addressed. For this purpose, we consider
Fx)=@G (xo_l) and state the null and alternative hypotheses as

H,:0=1 versus H,:0 # 1.

To do so, we begin with the procedure of finding the distribution of the rank statistic,
denoted R, considering the scale parameter through the random vector U,. The array of
ranks are given by

m+mn/2,...,3,2,1, 1,2,3,...,(m+n)/2;
if m + n is even, and
m+n-1)/2,...,3,2,1, 0 1,2,3,...,m+n—-1)/2

if m + n is odd. We first introduce how to determine the rank-sum of y’'s observations in
the combined samples, R;, with respect to

m+1
Qu={w = ()., upp2(m) 2 Y wi(n) =n
i=1
where u;(n) means the number of y observations belonging to [x_1),x[;). Let

med(x,y) be the median among x's and y's and belongs to [x[3, ¥[i+1]) Wthh will

Page 7 of 16
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then break U, into two parts U, and U,J{. If m + nis odd and med(x,y) = x[3,
then

Uy = (a7 =),y = wia (), -, u; = ()
isal x i vector and
U = (uf =uip1(n), uy = wiga(n), -+, w1 ;= thyy1(n))
isal x (m+ 1 — i) vector. The second possible case is, if m + n is odd and med(x, y) =
y[ziz1 uk(ﬂ)ﬂ}, then U, , a row vector with length i + 1, has the form
(”1_ =j—1, uy =ui(m), -+, U, =u1(n))
and U, a row vector with length m + 1 — i, is given by
(W = win1(n) =, uy = wip2(n), -, Uy g = U1 ().

The third possible case is, if 71 4 7 is even and xj;) is the smallest number larger than
med(x,y), the vectors are now defined as

U, =w =uin), uy =ui1(n), -+, u; =ui(n))
and
U;l" = (1,11+ =0, u; =uip1(n), ---, M:r,,+2,i = um+1(”)) .

i

The last possibility is, if m + n is even, y
{Z g (m)+j
k=1

] is the smallest number larger than

med(x,y). The vectors are now defined as
U, =Wy =j—1, uy =ui(n), -, u; =u1(n))
and
U = (uf =wipr(n) —j+1, uy =ua(n), -+, w1y = tmp1(n)).

Let 7~ be the length of the vector U,, and n™" be the length of the vector U}

Theorem 4. R;(U,|X) is finite Markov chain imbeddable, and

n
PR;(Uy) =711X) = § <HMt) B'(Cy),
t=1
where B(Cy) = Y tp (u,)=r €k €k isalx (m:”) unit row vector corresponding to state
U, &(= P(Zy = 1) = 1) is the initial probability and My, t = 1, ..., n are the transition
probability matrices of the imbedded Markov chain defined on the state space ;.

Proof. For each Uy, in the state space £2,,, we have a corresponding

Ry(UylX) = Ry(U,; 1X) + Ry (U} |X)

ZZ; (u_)2+zz; u- n —1 B n- 3
_ 1/<2 lk+Z(uk+1) Z”
k=1 j=k+1
nt +)2 wto+ ont-1 s
G ) A i Sy ()

2 7
k=1 j=k+1
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The smallest possible value of R;(U,,) is

”(”Iz) if m+ nisevenand # is even

(”+%”+3) if m+ niseven and #is odd
Tss = 2 . . . (12)
”4 if m+ nisoddand #is even

(”HL‘(”*D if m +nis odd and #is odd
and the largest possible value is

" (2”‘2”“) if m+ nisevenand # is even

”(2m+z+2)71 if m+ nisevenand #is odd

I'sp = (13)

n(ZWIZVI—l) if m +nisoddand #is even
n(ZWI")—l if m+ nisoddand #isodd

In accordance with Equation (11), we use the possible value of R; as a rule of the parti-
tion. The rest of the proof follows along the same line as that of Theorem 3, and here, is
omitted.

[

Similarly, we apply the LLN to conclude that
1 & P
N le PR Xi) — PR
which establishes the distribution of R;.
Through FMCI we, again, successfully retrieved the distribution of R under selected
alternative distributions, for which the procedures are similar to those in the previous
section. In addition, it is quite intuitive to approximate the power function by

N Sla Tsh
;[ > (Z P(R;(Up) =51 X)) + ) P(Ry(Uy) =] x,->>,
i=1 \s=rgs §=52a

where

P(Rs(Uy) = s1a|H,) + P(Rs(Uy) = s20|H,) < cr.

2.3 Jointdistributions of the rank statistics in the shift and scale case
We have derived the marginal distributions of R; and Ry in terms of U, respectively,
which yield the following theorem.

Theorem 5. (R;(U,|X), Ry(U,|X)) is finite Markov chain imbeddable, and

n
P(Ri(Uy) = ri; R(Uy) =12|X) =& (HMt> B(Cy)
t=1
where B(C,) = Zk:R;(lI,,):rl & Ry(U,)=ry ks €k isalx (m:”) unit row vector corresponding
to state u,, E(= P(Zy = 1) = 1) is the initial probability and M, t = 1,...,n are
the transition probability matrices of the imbedded Markov chain defined on the state

space 2.

Proof. By Equations (4) and (11), we know each u, in the state space 2, has corre-
sponding values of R; and R;. The combinations of the values R; and R; are used to be

Page 9 of 16
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the standard of the partition. The rest of the proof follows along the same line as that of
Theorem 3. [

The joint distribution of the ranks considering both the location and scale parameters
which can be determined through our algorithm is yet to be studied in the litera-
ture. Our result allows us to test the homogeneity of the distribution functions F(x) =
G ((x — )0 ~1). We state the hypotheses as follows

Hy:0=0 and 0 =1 vs. H,:0 #0 or o #1. (14)

Also we are able to identify a proper critical region under the null hypothesis and

discuss its power when F # G. For example, a rectangular critical region can be
Co={R; =11, Rp 215, Ry <115 or Ry > 1o}
where ry;, 19y, 115 and rys are the critical values such that

PRy < ry|Hy) + P(R; = rylHy) + P(r1; < Ry < 195, Rs < 1r15|H))
+ P(riy < Ry <1y, Ry > ro5|H,y) < «

or an elliptic critical region

) R2 R2
g:i;4-;>c}

for some positive constants & and b such that
R} R
PP+ ~CH,) <a.
a b
According to the above defined rejection region, the power of the test can be found as

P(R; < rylHa) + PRy > rog|lHg) + P(ryy < Ry < rap, Rs < r15|Hg)
+ P(riy < Ry < o, Ry > 1a5|Hy) (15)

or
R? R2
P(’+ S>cw0. (16)
a b

Note that unless having a conjecture about the values of 8 and o, we tend to use a two-
sided test. However, with the knowledge of the center and shape of the distribution of
interest, deciding a sectorial critical region is a better choice, for which an example is
demonstrated in the numerical studies.

Page 10 of 16
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3 Numerical results and discussion

3.1 Ajoint distribution of R; and R

Let {X1,..., X5} ~ N(0,1) and {Y3, ..., Y7} ~ N(0,0). Figure 1 gives the joint distribu-
tion of the random variables R; and R, under the null hypothesis of 6 = 0 and 0 = 1. The
marginal distributions of R; and R can be easily established from their joint distribution.
Figure 1 also shows that the two random variables R; and R; are dependent. We construct
two critical regions as shown in Figure 2, according to their joint distribution. Outside the
yellow area in Figure 2 is the selected rectangular critical region Cp 1733 and outside the
red shadow is the elliptic one Cjj ;4.

3.2 Powers for a joint test using Ry and R;

The alternative of interest is stated in the preceding section (see Equation (14)). The
power functions of the test statistics R; and R; for a sequence of normally distributed
populations with 6 from -20 to 20 with an increment of 0.5 and ¢ from 1 to 10 with
an increment of 1, and its reciprocal under two types of critical regions are provided in
Figures 3 and 4. We adopt a two-sided test because of the selected values of the param-
eters. It should be slightly modified the critical region in the previous step in order to
calculate the powers if a one-sided test is adopted. Both critical regions roughly perform
equally well as shown in Figures 3 and 4. Figure 5 presents the performance of the two
critical regions for given various parameter settings. Figures 5(a) and (b) show that given
a standard deviation of 1 or a mean of 0, the powers of the two critical regions, rectan-
gular and elliptic, are high and similar. However, when the variation of the alternative
population reduces (¢ = 1/10) or increases (o = 10), the elliptic critical region performs
better than the rectangular one as shown in Figures 5(c) and (d). Therefore, we suggest
that when conducting a test for the equivalence of two distributions, an elliptic rejection

area should be used.

0.012
001
0.008 .|..--:

0006 1

Density

0004 | .

0002

o
3

Figure 1 Joint distribution of R; and R; in the case wherem = 5,n=7and F = G ~ N(0, 1).
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Figure 2 Critical Regions at size 17.38% for R;and R; form = 5andn = 7.

Next, we consider the problem of determining an optimum rank test. To conduct a test
of distributions equivalency, we can use either R; or R; as the test statistic. As mentioned
earlier, the marginal distribution R; or R, can be easily established from their joint dis-
tribution. Figures 6 and 7 provide the power functions for the test statistics R; and R;
at the level of significance 17.38%, respectively. Figure 7 shows that the rank test against
scale parameter is badly effected by the centre of the alternative population. This was
seen before by Ansari and Bradley (1960). By comparing Figures 6 and 7 with Figure 4, it
seems that the joint test would be much more reliable than either R; or R, alone for dis-
tributions equivalence tests. A joint test for distributions equivalency would like a better

option under most circumstances.
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Figure 7 Power functions of R; givenm = 5and n = 7.

Therefore, the larger the Ry is, the stronger the evidence against the null hypothesis will
be. For the variation of the distribution per se, the codomain of the density function is
compressed to larger numbers; therefore, in most cases, we have Var(Xy) < Var(X). We
then propose to reject the null hypothesis when Ry is large. For example, given F ~ U(0, 1)
and G = F¥, it is easy to see

Een(X) _ (k+17? _ s)
Er(X) k(k +2)
and
Varis1(X) (k+1)3
VareX)  k(k+2)(k+3)

for all k. We first find the marginal and joint distributions of the ranks R; and R; in order to

(19)

define critical regions for R; and R; individually and simultaneously. Due to the properties

Table 1 Power comparisons for a one-sided rank test Hg : F(x;0,,00) = G(X;0q4,04) V.S.
Hg : Fk(X; 00,00) = G(X;0q4,04q)
m=6 n=10 m=10 n=10 m=10 n=20

F Test B(F) B(F?) B(F®) B(FS) B(F) B(F?) BF3) B(F® BF) BFH B(F) B(FS)
R 090 411 647 900 09 49 761 967 099 591 845 984

Uuomn g 080 152 193 218 076 137 149 123 100 236 370 638
R&R; 100 452 699 934 100 531 799 981 100 622 878 992

R 0090 412 639 897 009 493 756 965 0099 574 841 987

t3 R, 0080 150 197 217 0076 137 152 121 0100 234 367 634
R&R; 0100 453 696 932 0100 528 798 980 0.100 606 874 993

R 0090 411 650 899 009 490 764 967 0099 579 841 987

Ep() g 0080 149 195 217 0076 140 152 122 0100 232 376 641
R&R; 000 451 702 933 0100 525 805 982 0.100 607 875 993

Note: A sectorial critical region is chosen for a simultaneous testing.
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of the mean and variance of the alternative distribution, as shown in Equations (17), (18)
and (19), we are cautious to define the critical regions. Table 1 provides powers for the
tests as we choose uniform, standard Normal, student-t with 3 degrees of freedom, expo-
nential distributions for the hypothesized distribution, a couple of different settings for
sample sizes m and #, and 2, 3, 6 for k. Clearly, a joint test considering both R; and R; for
the equality of distributions is best suited in comparison with tests considering only one
of the rank statistics.

4 Conclusion

Our proposed algorithm provides a solution for finding the power of distribution equiv-
alence tests considering the shift and scale parameters, respectively and simultaneously.
Numerical studies show that a joint test should be adopted for the test homogeneity of
distributions as well as under Lehmann alternatives. Also an elliptic critical region is a
better choice rather than a rectangular one for a joint test. In practice, it is reasonable
to have neither the normality assumption nor equal mean/variance of the interested dis-
tributions. However, our algorithm highly depends on the technology equipments as the
possible states in €2, grow rapidly when the sample sizes increase. Therefore, we can, so
far, only target small sample sizes in our work.
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