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Abstract

Based on the trivariate pair-copula construction for the bivariate linear circular copula
by Perlman and Wellner (Symmetry 3:574-99, 2011) and the Theorem of Carathéodory,
which states that any valid correlation matrix is a finite convex combination of extreme
correlation matrices, we generate a class of closed-form analytical 3-universal copulas.
We derive explicit product and lifting copula formulas for the set of all extremal
correlation matrices. Our analytical proof makes use of a novel set of conditional
copula inequalities, which are of independent interest.
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1 Introduction
In practice, the joint normal transform method for dependence modelling, which consists

of transforming the margins to normal distributions, induce a dependence structure and

transform back, is rather popular (e.g. Kurowicka and Cooke (2006), Section 4.2). Applied

to a random vector (X1, X2,…, Xn) with invertible continuous marginal distributions

(F1, F2,…, Fn) this method follows three steps:

1) Specify the rank correlation matrix r = (rij), 1 ≤ i, j ≤ n, of this random vector, i.e. rij =

Cov[Fi(Xi), Fj(Xj)], 1 ≤ i, j ≤ n.

2) A random sample (Y1,Y2,…,Yn) is drawn from a joint normal distribution with

standard normal margins and the specified rank correlation matrix r = (rij).

3) Let Φ(x) denote the standard normal distribution. The random sample (X1,X2,…,Xn)

with margins (F1, F2,…, Fn) and the rank correlation matrix r = (rij) is obtained from

the inverse probability transform through X1;X2;…;Xnð Þ ¼
F−1
1 Φ Y 1ð Þð Þ; F−1

2 Φ Y 2ð Þð Þ;…; F−1
n Φ Ynð Þð Þ�

.

From a theoretical point of view this procedure suffers from several drawbacks. Con-

cerning (1), it is known that every 3-dimensional valid correlation matrix can be real-

ized as a rank correlation matrix, i.e. there exists a trivariate uniform distribution with

this rank correlation structure, the so-called 3-universality property of copulas. This

result is first stated in Joe (1997), Exercise 4.17, pp. 137–138. Kurowicka and Cooke

(2006), Section 4.4.6, p.102, produce such trivariate copulas using the pair-copula con-

struction for the so-called “elliptical copula” (see also Kurowicka and Cooke (2001)).
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Another recent proof is Devroye and Letac (2010). However, it is not yet known

whether copulas are n -universal for n ≥ 6 (see Letac (2010) for n < 6). Therefore (1) is

in general not necessarily consistent. The statement (2) causes similar difficulties. In-

deed, the compatibility conditions under which a joint normal distribution with a speci-

fied rank correlation matrix exist, imply that for any n ≥ 3 there are compatibility

counterexamples (see Hürlimann (2012a), Theorem 3.1 and Corollary 4.2). Moreover,

the probability of incompatibility increases with the dimension (e.g. Kurowicka and

Cooke (2001)), Section 4, Table 1, Ghosh and Henderson (2002), and Ghosh (2004),

Figure 3.1, p. 67). On the other hand, the 3-universality of the elliptical pair-copula

construction does not extend to the fourvariate case (e.g. Kurowicka and Cooke (2006),

Example 4.9). Therefore, to enable a rigorous use of any valid rank correlation matrix,

there is a need for a more comprehensive understanding of the class of universal cop-

ulas, at least in small dimensions.

In the present paper we offer an analytical approach to the pair-copula construction

for the bivariate linear circular copula derived by Perlman and Wellner (2011), whose

density obviously coincides with the “elliptical copula” introduced by Kurowicka et al.

(2000). To the best of our knowledge Section 5 presents for the first time simple

closed-form analytical 3-universal copula formulas. The possible extension to the

multivariate case is a challenging topic for future research (see Section 6). A more de-

tailed account of the content follows.

Section 2 recalls the trivariate pair-copula construction. We explain how the com-

bined use of extremal correlation matrices and bivariate elliptical copulas lead to extre-

mal lifting copulas whose bivariate product copula margins induce sharp bounds in the

concordance order. The latter include the set of all feasible rank correlation matrices.

Advocating the Theorem of Carathéodory, which states that any valid correlation

matrix can be written as a finite convex combination of extreme correlation matrices,

the generation of 3-universal copulas follows. Section 3 summarizes the needed bivari-

ate linear circular copula formulas. Section 4 presents the analytical closed-form prod-

uct copula formulas, and Section 5 states our main result about analytical 3-universal

copulas. Section 6 contains a simple two-dimensional algorithm for generating random

vectors with 3-universal linear circular copula, and many references to potential appli-

cations are provided. Detailed proofs follow in the Appendices 1 and 2.

2 Trivariate linear circular pair-copula construction
In response to the difficulties encountered with the multivariate normal copula, the

pair-copula construction of multivariate copulas has become more and more popular

as can be seen from the recent review by Czado (2010). The first pair-copula construc-

tion is due to Joe (1996), see also Joe (1997), Section 4.5. His construction is given in

terms of distribution functions, while Bedford and Cooke (2001) Bedford and Cooke

(2002) expressed these constructions in terms of densities, and Kurowicka and Cooke

(2006), Section 6.4, designed various sampling algorithms for them. A trivariate restate-

ment of these equivalent representations will play a major role.

As observed by Devroye and Letac (2010), any valid rank correlation matrix can be

written as a finite convex combination of extreme correlation matrices, also called ex-

treme points (Theorem of Carathéodory (1911) and Steinitz (1914)). By linearity it suf-

fices to restrict the attention to the pair-copula construction for extreme points. This
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way a finite algorithm that permits the construction of 3-universal copulas in terms of

the linear circular copula can be designed. The proposed approach is then made fully

analytical in Section 3 through the derivation of simple closed-form analytical 3-

universal copula formulas for the extreme points.

Recall the structure of the extreme points for the set of all positive semi-definite 3×3

correlation matrices. They have necessarily rank 1 or 2 and take the form (Ycart(1985),

Corollary, p. 611):

ρ ¼ ρ a; b; cð Þ ¼ ρij

� �
¼

1 cosc cosb
cosc 1 cosa
cosb cosa 1

0
@

1
A; aþ bþ c≡ 0 mod 2π: ð2:1Þ

One notes that there are four extreme points of rank one, namely

a; b; cð Þ ∈ 0; 0; 0ð Þ; 0;π;πð Þ; π; 0;πð Þ; π;π; 0ð Þf g ð2:2Þ

and the rank two extreme points are characterized by the condition

sin a; sin b; sin cð Þ≠ 0; 0; 0ð Þ ð2:3Þ

The following immediate consequence is crucial.
Lemma 2.1

The absolute value of the partial correlation of a 3×3 extreme correlation matrix of the

form (2.1) is always one. More precisely, one has

ρ12;3 ¼
ρ12−ρ13ρ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð Þ⋅ 1−ρ223ð Þp ¼ − sgn sin a⋅ sin bð Þ ¼ �1 ð2:4Þ

Proof

Since a + b + c ≡ 0 mod 2π we have from the cosine addition law that cos c = cos(−(a + b) =

cos(a + b) = cos a ⋅ cos b − sin a ⋅ sin b. Inserted in the defining relation for the partial cor-

relation coefficient we get ρ12;3 ¼ − sina⋅ sinb
sina⋅ sinbj j, which implies (2.4). ◊

Now, in a first step, let us assume that all joint, marginal and conditional distribu-

tions are absolutely continuous, and that the corresponding densities exist. Let (X1, X2,

X3) be a trivariate random vector from the Fréchet space F(F13, F23) of all trivariate dis-

tributions with given bivariate margins F13(x1, x3), F23(x2, x3). Denote the marginal dis-

tributions by F1(x1), F2(x2), F3(x3), the conditional distributions obtained from F13, F23
by F1|3(x1|x3), F2|3(x2|x3), and the marginal densities by f1(x1), f2(x2), f3(x3). Let C13(u1,

u3),C23(u2, u3), respectively C12|3(u1, u2), be copulas associated to the random vectors

(X1, X3), (X2, X3), respectively to the conditional random vector (X1, X2|X3), which ne-

cessarily exist by the Theorem of Sklar (1959). The mixture of conditional distributions

defined by (e.g. Joe (1997), equation (4.37))

F123 x1; x2; x3ð Þ ¼
Zx3
−∞

C12j3ðF1j3ðx1 z3j Þ; F2j3 x2 z3j Þð ÞdF3 z3ð Þ

¼
Zx3
−∞

C12j3
∂C13 F1 x1ð Þ; F3 z3ð Þð Þ

∂u3
;
∂C23 F2 x2ð Þ; F3 z3ð Þð Þ

∂u3

� �
f 3 z3ð Þdz3;

ð2:5Þ
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is a proper trivariate distribution in F(F13, F23). In terms of densities, the joint trivariate

density corresponding to (2.5), if it exists, reads (e.g. Czado (2010) Section 2)

f 123 x1; x2; x3ð Þ
¼ c13 F1 x1ð Þ; F3 x3ð Þð Þc23 F2 x2ð Þ; F3 x3ð Þð Þc12j3ðF1j3ðx1jx3Þ; F2j3 x2 x3j Þð Þf 1 x1ð Þf 2 x2ð Þf 3 x3ð Þ;

ð2:6Þ
where c13(u1, u3), c23(u2, u3), c12|3(u1, u2) are the copula densities of C13(u1, u3),C23(u2, u3),

C12|3(u1, u2).

As we are looking for universal trivariate copulas we focus on uniform [0,1] marginal

distributions and copulas for bivariate marginal and bivariate conditional distributions.

Let (X1, X2, X3) be a trivariate random vector with uniform [0,1] margins. A random

sampling algorithm for the simulation of (X1, X2, X3) corresponding to (2.5) reads (e.g.

Kurowicka and Cooke (2006), equation (6.2)):

X3 ¼ U3; X2 ¼ F−1
2j3ðU2 U3j Þ; X1 ¼ F−1

1j3ðF−1
12j3;U2

U1ð Þ U3j Þ ð2:7Þ

where U1,U2,U3 are independent uniform [0,1] random variables, F−1
1j3ðx1 x3j Þ; F−1

2j3
x2 x3j Þð are the inverse cumulative distributions of F1|3(x1|x3), F2|3(x2|x3), and F−1

12j3;U2

x1ð Þ denotes the inverse cumulative distribution for X1 given U2 under the conditional

copula C12|3(u1, u2).

Kurowicka and Cooke (2006), Section 4.4.6, p.102, generate universal trivariate copulas

with arbitrary valid rank correlation matrices using the sampling algorithm (2.7) based on

the so-called “elliptical copula” for the involved copulas C13(u1, u3),C23(u2, u3), C12|3(u1, u2).

However, it seems that no attempt has been made so far to translate this Monte Carlo

simulation procedure into closed-form analytical copula formulas. For this, it is appro-

priate to restate the representation (2.5) for the trivariate copula C(u1, u2, u3) associated

to the uniform random vector (X1, X2, X3) as follows:

C u1;u2; u3ð Þ ¼
Zu3
0

C12j3
∂
∂t
C13 u1; tð Þ; ∂

∂t
C23 u2; tð Þ

� �
dt ð2:8Þ

It is important to remark that (2.8) is a special case of the following more general tri-

variate copula construction. Let A(u, v), B(u, v) be two bivariate copulas, and let C = {Ct

(u, v), t ∈ [0, 1]} be a family of bivariate copulas. Then, the mapping A ∗ CB : [0, 1]3→

[0, 1], defined by

A�CBð Þ u1; u2; u3ð Þ ¼
Zu3
0

Ct
∂
∂t
A u1; tð Þ; ∂

∂t
B u2; tð Þ

� �
dt ð2:9Þ

yields a trivariate copula, called the C-lifting of the copulas A and B (Durante et al.

(2007a), Proposition 3.2). The bivariate copula margins of the trivariate copula (2.9) are

(A ∗ CB)(u1, u2), A(u1, u3), B(u2, u3), where the bivariate copula

A�CBð Þ u1; u2ð Þ ¼
Z1
0

Ct
∂
∂t
A u1; tð Þ; ∂

∂t
B u2; tð Þ

� �
dt ð2:10Þ

is called the C-product of the copulas A and B (see Durante et al. (2007b) for details).

Clearly, the special instance (2.8) is obtained for the (constant) conditional copula fam-

ily Ct(u, v) ≡C12|3(u, v), t ∈ [0, 1].
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Specializing further to bivariate elliptical copulas and extremal correlation matrices

with the property ρ12;3 = ± 1 (see Lemma 2.1), and finite convex combinations from

these copulas, we claim that it suffices to consider the following two types of C-lifting

copulas (2.8):

Cþ u1;u2; u3ð Þ ¼
Zu3
0

min ∂
∂t
C13 u1; tð Þ; ∂

∂t
C23 u2; tð Þ

n o
dt; if ρ12;3 ¼ 1;

C− u1; u2;u3ð Þ ¼
Zu3
0

max ∂
∂t
C13 u1; tð Þ þ ∂

∂t
C23 u2; tð Þ−1; 0

n o
dt; if ρ12;3 ¼ −1;

ð2:11Þ

where C13(u1, u3),C23(u2, u3) are bivariate elliptical copulas with correlation parameters

r13 = ρ13, r23 = ρ23. Indeed, choosing the Hoeffding-Fréchet bounds as conditional cop-

ulas C12|3(u1, u2) =M(u1, u2) = min{u1, u2}, resp. C12|3(u1, u2) =W(u1, u2) = max{u1 +

u2 − 1, 0}, corresponds to choosing the bivariate conditional elliptical copula for the ex-

treme conditional correlations r12|3 = ± 1 (note that the bivariate copula is a comprehen-

sive family, which realizes any correlation value in the interval (−1, 1)). But, for these

elliptical copula choices, the conditional correlation is constant and coincides with the

partial correlation (e.g. Kurowicka and Cooke (2006), Proposition 3.19, p.44). In particular,

we have r12|3 = ± 1 ⇔ ρ12;3 = ± 1, which shows that the construction (2.11) realizes the

extremal correlation matrices with the property

ρ12 ¼ ρ13ρ23 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð Þ⋅ 1−ρ223ð Þ

q
ð2:12Þ

In particular, this means that the correlations of the product copulas C+(u1, u2) =
(C13 ∗MC23)(u1, u2), C−(u1, u2) = (C13 ∗WC23)(u1, u2) coincide with (2.12). Moreover, ac-

cording to Durante et al. (2007a), Corollary 4.1, we have for all bivariate copulas C12 that

are compatible with C13,C23 the sharp bounds in the concordance order:

C− u1; u2ð Þ≤C12 u1;u2ð Þ ≤Cþ u1; u2ð Þ ð2:13Þ

But ρ13, ρ23 ∈ [−1, 1] are arbitrary and the correlation ρ12 of C12 in (2.12) varies be-
tween the two extreme bounds (2.12), hence all rank correlation matrices are feasible

(see also the special case n = 3 of Theorem 3.1 in Hürlimann (2012b)). The extreme lift-

ing copulas (2.11) together with appropriate finite convex combinations generate a class

of 3-universal copulas. In the next Sections, we show that the product and lifting cop-

ulas satisfy closed-form analytical expressions.

For reasons of symmetry it is more appropriate to work with uniform [−1,1] random
margins. Then a copula is defined on the centred cube Cn = [−1, 1]n, n ≥ 2, with uni-

form [−1,1] margins. In this setting and new notation, the lifting copulas (2.11) read:

Cþ x; y; zð Þ ¼
Zz
−1

min ∂
∂t
C13 x; tð Þ; ∂

∂t
C23 y; tð Þ

n o
dt;

C− x; y; zð Þ ¼
Zz
−1

max ∂
∂t
C13 x; tð Þ þ ∂

∂t
C23 y; tð Þ−1

2
; 0

n o
dt; x; y; zð Þ ∈C3:

ð2:14Þ
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In a first step, we compute the bivariate product copulas with extremal correlations

(2.12), i.e.

Cþ x; yð Þ ¼
Z1
−1

min ∂
∂t
C13 x; tð Þ; ∂

∂t
C23 y; tð Þ

n o
dt;

C− x; yð Þ ¼
Z1
−1

max ∂
∂t
C13 x; tð Þ þ ∂

∂t
C23 y; tð Þ−1

2
; 0

n o
dt; x; yð Þ ∈C2:

ð2:15Þ

For this we need the explicit formulas of the bivariate linear circular copula, which
are summarized in the Section 3.

3 The bivariate linear circular copula
Starting point is the unique circular symmetric distribution on the unit disk B2 in R2

with uniform [−1,1] margins. The associated so-called circular copula on C2 is given by

(Perlman and Wellner (2011), Theorem 3.1):

C u; vð Þ ¼ 1
4
uþ vþ 1ð Þ þ γ0 u; vð Þ; γ0 u; vð Þ ¼ α0 u; vð Þ; u2 þ v2 < 1;

β0 u; vð Þ; u2 þ v2 ≥ 1;

�
ð3:1Þ

With
α0 u; vð Þ ¼ 1
2π

⋅ u⋅ arcsin
vffiffiffiffiffiffiffiffiffiffi
1−u2

p
� �

þ v⋅ arcsin
uffiffiffiffiffiffiffiffiffiffi
1−v2

p
� �

− arcsin
uvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−u2ð Þ 1−v2ð Þp
 !( )

;

β0 u; vð Þ ¼ sgn uvð Þ⋅14 juj þ vj j−1ð Þ:
ð3:2Þ

Taking partial derivatives one obtains the corresponding copula density

c u; vð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−u2−v2

p ; u; vð Þ ∈ B2: ð3:3Þ

To obtain from this a one-parameter comprehensive family of copulas, let (U,V) ~
c(u, v) be the unique circular symmetric random vector on B2. For each angle φ∈ −π
2 ;

π
2ð Þ,

set r = sin(φ) ∈ (−1, 1), and consider the linear transformed random vector (X,Yr) de-

fined by

X ¼ U ; Y r ¼ r⋅U þ
ffiffiffiffiffiffiffiffiffiffi
1−r2

p
⋅V ð3:4Þ

which by circular symmetry generates a copula on C2. The support of (X,Yr) is the

ellipse

Er ¼ x; yð Þ j x2 þ y2−2rxy < 1−r2
	 
 ð3:5Þ

Clearly, the correlation coefficient (that is equal to the rank correlation) of the ran-

dom pair (X,Yr) is r ∈ (−1, 1). The corresponding comprehensive one-parameter family

of linear circular copulas has the explicit representation (Perlman and Wellner (2011),

Theorem 5.1):

Cr x; yð Þ ¼ 1
4
xþ yþ 1ð Þ þ γr x; yð Þ; γr x; yð Þ ¼ αr x; yð Þ; x; yð Þ∈ Er;

βr x; yð Þ; x; yð Þ∈ C2 jEr

�
ð3:6Þ
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with

αr x; yð Þ ¼ 1
2π

⋅

x⋅ arcsin
y−rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−r2ð Þ 1−x2ð Þp
 !

þ y⋅ arcsin
x−ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−r2ð Þ 1−y2ð Þp
 !

− arcsin
xy−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−x2ð Þ 1−y2ð Þp
 !

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð3:7Þ

and
βr x; yð Þ ¼
1
4 xþ y−1ð Þ; x; yð Þ ∈ L1 rð Þ :¼ C2 Erð Þ \ xþ y≥1þ rf g
1
4 x−yþ 1ð Þ; x; yð Þ ∈ L2 rð Þ :¼ C2 Erð Þ \ y−x≥1−rf g
1
4 −x−y−1ð Þ; x; yð Þ ∈ L3 rð Þ :¼ C2 Erð Þ \ xþ y≤−1−rf g
1
4 y−xþ 1ð Þ; x; yð Þ ∈ L4 rð Þ :¼ C2 Erð Þ \ y−x≤−1þ rf g

8>><
>>: ð3:8Þ

It is important to remark that the copula density coincides with the “elliptical copula”
density introduced in Kurowicka et al. (2000) and extensively used in the book by

Kurowicka and Cooke (2006). It is given by (Perlman and Wellner (2011), Proposition 5.1):

cr x; yð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r2ð Þ 1−x2ð Þ− y−rxð Þ2

q ⋅1Er x; yð Þ; x; yð Þ ∈ C2: ð3:9Þ

Since this family is obtained through linear transformation of the unique circular
copula it is natural to use the name “linear circular copula”. This new terminology

clearly distinguishes it from the ubiquitous class of “elliptical copulas” that is generated

by the multivariate elliptical distributions in any dimension. A further reason is that

Perlman and Wellner (2011), Section 6, consider the possibility to generate non-linear

circular copulas and provide an example.

For later use in Section 4, we also need expressions for the conditional linear circular

copulas, i.e. the partial derivatives with respect to the arguments. For this, we first re-

write (3.6) for the outer part C2 \ Er of the ellipse as follows:

Cr x; yð Þ ¼
1
2 xþ yð Þ; x; yð Þ ∈ L1 rð Þ
1
2 xþ 1ð Þ; x; yð Þ ∈ L2 rð Þ
0; x; yð Þ ∈ L3 rð Þ
1
4 yþ 1ð Þ; x; yð Þ ∈ L4 rð Þ

8>><
>>: ð3:10Þ

Through partial derivation we obtain the following formula

∂Cr x; yð Þ
∂y

¼
1
4 þ 1

2π arcsin
x−ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r2ð Þ 1−y2ð Þ

p
� �

; x; yð Þ ∈ Er

1
2; x; yð Þ ∈ L1 rð Þ [ L4 rð Þ
0; x; yð Þ ∈ L2 rð Þ [ L3 rð Þ

8><
>: ð3:11Þ

4 Analytical product copula formulas
Using the explicit formulas (3.6)-(3.8) for the linear circular copula, it is now possible

to derive simple analytical expressions for the extreme linear circular product copulas

(2.15). Given are extreme correlation coefficients ρ13; ρ23; ρ
�
12

� �
such that ρ�12 ¼ ρ13ρ23�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ρ213ð Þ⋅ 1−ρ223ð Þp
, ρ13, ρ23 ∈ [−1, 1]. Consider the linear circular copulas C13 x; yð Þ ¼ Cr12

x; yð Þ;C23 x; yð Þ ¼ Cr23 x; yð Þ obtained from (3.6) by setting r13 = ρ13, r23 = ρ23. The
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abbreviations a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ223

p
, c± = ρ23a ∓ bρ13 are used throughout. Without

loss of generality we assume that a ≥ b.
Proposition 4.1

The upper extreme linear circular product copula Cþ x; yð Þ ¼
Z1
−1

min ∂
∂t
C13 x; tð Þ; ∂

∂t
C23 y; tð Þ

n o
dt;

x; yð Þ ∈ C2 satisfies the following analytical representation:

Case I: c+ = r23a − br13 ≥ 0

I:að ÞCþ x; yð Þ ¼ 1
2 xþ 1ð Þ; ay−bx ≥ cþ;

I:bð ÞCþ x; yð Þ ¼ 1
2 yþ 1ð Þ þ C13 x; ay−bxcþ

� �
−C23 y; ay−bxcþ

� �
; −cþ < ay−bx < cþ;

I:cð ÞCþ x; yð Þ ¼ 1
2 yþ 1ð Þ; ay−bx ≤ −cþ:

ð4:1Þ
Case II: c+ = r23a − br13 < 0

II:að ÞCþ x; yð Þ ¼ 1
2 xþ 1ð Þ; ay−bx ≥ −cþ;

II:bð ÞCþ x; yð Þ ¼ 1
2 xþ 1ð Þ−C13 x; ay−bxcþ

� �
þ C23 y; ay−bxcþ

� �
; cþ < ay−bx < −cþ;

II:cð ÞCþ x; yð Þ ¼ 1
2 yþ 1ð Þ; ay−bx ≤ cþ:

ð4:2Þ

The special case c+ = 0 occurs exactly when ρ13 ¼ ρ23∈ −1; 1½ �; ρþ12 ¼ 1, and (4.1) re-

duces to the formula Cþ x; yð Þ ¼ 1
2 xþ 1ð Þ; y ≥ x; Cþ x; yð Þ ¼ 1

2 yþ 1ð Þ; y ≤ x.
Proposition 4.2

The lower extreme linear circular product copula C− x; yð Þ ¼
Z1
−1

max ∂
∂t
C13 x; tð Þ þ ∂

∂t
C23

n

y; tð Þ−1
2; 0gdt; x; yð Þ ∈ C2, satisfies the following analytical representation:

Case I: c− = r23a + br13 ≥ 0

I:að ÞC− x; yð Þ ¼ 1
2 xþ yð Þ; ayþ bx ≥ c−;

I:bð ÞC− x; yð Þ ¼ C13 x; ayþ bx
c−

� �
þ C23 y; ayþ bx

c−

� �
−12 1þ ayþ bx

c−

� �
; −c− < ayþ bx < c−;

I:cð ÞC− x; yð Þ ¼ 0; ayþ bx ≤ −c−:

ð4:3Þ
Case II: c− = r23a + br13 < 0
II:að ÞC− x; yð Þ ¼ 1
2 xþ yð Þ; ayþ bx ≥ −c−;

II:bð ÞC− x; yð Þ ¼ 1
2 xþ yþ 1þ ayþ bx

c−

� �
−C13 x; ayþ bx

c−

� �
−C23 y; ayþ bx

c−

� �
; c− < ayþ bx < −c−;

II:cð ÞC− x; yð Þ ¼ 0; ayþ bx ≤ c−:

ð4:4Þ

The special case c− = 0 occurs exactly when ρ23 ¼ −ρ13∈ −1; 1½ �; ρ−12 ¼ −1, and (4.3) re-

duces to the formula C− x; yð Þ ¼ 1
2 xþ yð Þ; xþ y ≥ 0; C− x; yð Þ ¼ 0; xþ y ≤ 0.
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Remark 4.1

It has been stated after equation (2.12) that the (rank) correlations of the extreme linear

circular product copulas coincide with ρ�12 . The obtained formulas (4.1)-(4.4) can be

verified indirectly by showing that the rank correlations of these copulas are the right

ones, i.e.

ρ�12 ¼ 3⋅
Z1
−1

Z1
−1

C� x; yð Þdxdy− 3 ð4:5Þ

This can be done through analytical calculation or numerical integral computation

(the latter based on a computer algebra system, e.g. MATHCAD from MathSoft, Inc.).

In fact, before conjectural statement and mathematical proof, we have first checked the

simple case c± = 0, for which ρ�12 ¼ �1, and have verified numerically the formulas (4.5)

in the general case.

A direct analytical proof of the obtained formulas is based on a set of (firstly conjec-

tured) conditional copula inequalities, which are of independent interest, and are

proved in detail in Appendix 1 and 2. These inequalities are also of primordial import-

ance in Section 5.

Theorem 4.1

(Upper conditional product copula or UPC inequalities) In the above notations the fol-

lowing inequalities hold for all x, y, t ∈ [−1, 1]:

Case (I.a), ay − bx ≥ c+: ∂
∂t C13 x; tð Þ≤ ∂

∂tC23 y; tð Þ
Case (I.b), − c+ < ay − bx < c+:

∂
∂t C13 x; tð Þ≤ ∂

∂t C23 y; tð Þ; −1 ≤ t ≤ ay−bx
cþ ;

∂
∂t C13 x; tð Þ≥ ∂

∂t C23 y; tð Þ; ay−bx
cþ ≤ t ≤ 1

Case (I.c), ay − bx ≤ − c+: ∂
∂t C13 x; tð Þ ≥ ∂

∂tC23 y; tð Þ
Case (II.a), ay − bx ≥ − c+: ∂

∂t C13 x; tð Þ ≤ ∂
∂tC23 y; tð Þ

Case (II.b), c+ < ay − bx < − c+:
∂
∂t C13 x; tð Þ≥ ∂

∂t C23 y; tð Þ; −1 ≤ t ≤ ay−bx
cþ ;

∂
∂t C13 x; tð Þ≤ ∂

∂t C23 y; tð Þ; ay−bx
cþ ≤ t ≤ 1

Case (II.c), ay − bx ≤ c+: ∂
∂t C13 x; tð Þ≥ ∂

∂tC23 y; tð Þ

Theorem 4.2

(Lower conditional product copula or LPC inequalities) In the above notations the fol-

lowing inequalities hold for all x, y, t ∈ [−1, 1]:

Case (I.a), ay + bx ≥ c−: ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ≥ 0

Case (I.b), − c− < ay + bx < c−:
∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−12 ≥ 0; −1 ≤ t ≤ ayþ bx
c− ;

∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−12 ≤ 0; ayþ bx
c− ≤ t ≤ 1

Case (I.c), ay + bx ≤ − c−: ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ≤ 0

Case (II.a), ay + bx ≥ − c−: ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ≥ 0

Case (II.b), c− < ay + bx < − c−:
∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−12 ≥0; ayþ bx
c− ≤ t ≤ 1;

∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−12 ≤0; −1≤ t ≤ ayþ bx
c−

Case (II.c), ay + bx ≤ c−: ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ≤ 0

Proof of the Propositions 4.1 and 4.2

Inserting the inequalities from Theorem 4.1 (4.2) case by case into the upper (lower)

product copula (2.15) shows the desired formulas. ◊
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5 Analytical closed-form 3-universal copulas
Based on the relevant conditional copula inequalities provided in the Theorems 4.1 and

4.2, we derive first analytical closed-form expressions for the extreme linear circular

lifting copulas (2.14). We use the same notations, abbreviations and assumptions as in

the preceding Section.

Theorem 5.1

The upper extreme linear circular lifting copula (2.14) satisfies the following analytical

representation:

Case I: c+ = r23a − br13 ≥ 0

I:að ÞCþ x; y; zð Þ ¼ C13 x; zð Þ; ay−bx≥cþ;
I:bð ÞCþ x; y; zð Þ ¼ C13 x; ay−bxcþ

� �
þ C23 y; zð Þ−C23 y; ay−bxcþ

� �
; z > ay−bx

cþ > −1;

Cþ x; y; zð Þ ¼ C13 x; zð Þ; z≤ay−bxcþ < 1;
I:cð ÞCþ x; yð Þ ¼ C23 y; zð Þ; ay−bx≤−cþ:

ð5:1Þ
Case II: c+ = r23a − br13 < 0
II:að ÞCþ x; y; zð Þ ¼ C13 x; zð Þ; ay−bx≥−cþ;
II:bð ÞCþ x; y; zð Þ ¼ C13 x; zð Þ−C13 x; ay−bxcþ

� �
þ C23 y; ay−bxcþ

� �
; z > ay−bx

cþ > −1;

Cþ x; y; zð Þ ¼ C23 y; zð Þ; z≤ay−bxcþ < 1;
II:cð ÞCþ x; y; zð Þ ¼ C23 y; zð Þ; ay−bx≤cþ:

ð5:2Þ
The special case c+ = 0 occurs exactly when r ¼ ρ13 ¼ ρ23∈ −1; 1½ �; ρþ12 ¼ 1, and (5.1)

reduces to the formula C+(x, y, z) = Cr(x, z), y ≥ x, C+(x, y, z) =Cr(y, z), y ≤ x.

Theorem 5.2

The lower extreme linear circular lifting copula (2.14) satisfies the following analytical

representation:

Case I: c− = r23a + br13 ≥ 0

I:að ÞC− x; y; zð Þ ¼ C13 x; zð Þ þ C23 y; zð Þ−12 1þ zð Þ; ayþ bx≥c−;

I:bð ÞC− x; y; zð Þ ¼ C13 x; min ayþ bx
c− ; z

n o� �
þ C23 y; min ayþ bx

c− ; z
n o� �

−12 1þ min ayþ bx
c− ; z

n o� �
; −c− < ayþ bx < c−;

I:cð ÞC− x; y; zð Þ ¼ 0; ayþ bx≤−c−:

ð5:3Þ

Case II: c− = r23a + br13 < 0

II:að ÞC− x; y; zð Þ ¼ C13 x; zð Þ þ C23 y; zð Þ−12 1þ zð Þ; ayþ bx≥−c−;

II:bð ÞC− x; y; zð Þ ¼ C13 x; zð Þ−C13 x; ayþ bx
c−

� �
þ C23 y; zð Þ−C23 y; ayþ bx

c−

� �
;

z > ayþ bx
c− > −1; C− x; y; zð Þ ¼ 0; z≤ayþ bx

c− < 1;
II:cð ÞC− x; y; zð Þ ¼ 0; ayþ bx≤c−:

ð5:4Þ

The special case c− = 0 occurs exactly when ρ13 ¼ ρ23 ¼ 0; ρ−12 ¼ −1 , and (5.3) re-

duces to the formula C− x; y; zð Þ ¼ C0 x; zð Þ þ C0 y; zð Þ−1
2 1þ zð Þ; xþ y≥0; C− x; y; zð Þ ¼

0; xþ y≤0.
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Proof of the Theorems 5.1 and 5.2

Inserting the inequalities from Theorem 4.1 (4.2) case by case into the upper (lower)

lifting copula (2.14) shows the desired formulas. ◊
By the Theorem of Carathéodory, the obtained results show the existence of a 3-

universal linear circular based copula. However, instead of linearly combining four ex-

treme points (Carathéodory’s result), two such points suffice here, as shown in the next

main result. Recall that the linear circular lifting copulas C±(x, y, z) belong to the ex-

treme points ρ� ¼ ρ13; ρ23; ρ
�
12

� �
.

Theorem 5.3

(3-universal linear circular copula) Let ρ = (ρ13, ρ23, ρ12) belong to an arbitrary 3×3 posi-

tive semi-definite rank correlation matrix. Then, the following 3-copula is universal:

Cρ x; y; zð Þ ¼ λ−C− x; y; zð Þ þ λþCþ x; y; zð Þ; x; y; zð Þ ∈ C3;

λ− ¼ 1
2

ρþ12−ρ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð Þ⋅ 1−ρ223ð Þ

p ≥ 0; λþ ¼ 1
2

ρ12−ρ
−
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ρ213ð Þ⋅ 1−ρ223ð Þ
p ≥ 0; λ− þ λþ ¼ 1:

Proof
This follows from the preceding results by noting that ρ = λ−ρ− + λ+ρ+. ◊

6 Applications and conclusions
As an immediate statistical application, we show that the sampling algorithm for tri-

variate canonical vine copulas (Kurowicka and Cooke (2006), Section 6.4.2) reduces to

a two-dimensional simulation algorithm for the uniform [0,1] random vectors X� ¼
X�

1 ;X
�
2 ;X

�
3

� �
with lower and upper extreme linear circular lifting copulas C±(u, v,w), (u,

v,w) ∈ [0, 1]3. Invoking Theorem 5.3, this yields below a simple two-dimensional algo-

rithm for generating random vectors X = (X1, X2, X3) with 3-universal linear circular cop-

ula. To show this, one needs some regression properties of the linear circular copula of

Section 3.

Proposition 6.1

(Kurowicka and Cooke (2006), Proposition 3.18) Let U, V be uniform [0,1] random var-

iables joined by the linear circular copula with correlation ρ.

Then one has

E ½V Uj � ¼ 1
2
1−ρð Þ þ ρU ð6:1Þ

Var ½V Uj � ¼ 1
2
1−ρ2
� �

U 1−Uð Þ ð6:2Þ

FV jUðv uj Þ ¼ 1
2
þ 1

π
arcsin v−ρu−1

2 1−ρð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2ð Þu 1−uð Þp

� �
; u; v ∈ 0; 1½ � ð6:3Þ

F−1
V jUðξ uj Þ ¼ 1

2
1−ρð Þ þ ρuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2ð Þu 1−uð Þ

p
⋅ sin πξ−π

2

� �
; u; ξ ∈ 0; 1½ � ð6:4Þ

Of further relevance is the following result, which states that conditional correlations

are constant and equal to partial correlations for the linear circular copula.
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Proposition 6.2

Kurowicka and Cooke (2006), Proposition 3.19) Let U1, U2, U3 be uniform [0,1] ran-

dom variables, and let U1, U2 and U2, U3 be joined by the linear circular copula with

correlations ρ12 and ρ13 respectively. Assume that the conditional copula for U2, U3

given U1 does not depend on U1. Then, the conditional correlation ρ23|1 = ρ(U2|U1,U3|

U1) is constant in U1 and ρ23j1 ¼ ρ23;1 ¼ ρ23−ρ12ρ13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ212ð Þ⋅ 1−ρ223ð Þp .

Now, let U1, U2, U3 be uniform [0,1] random variables. To generate a random vector

X = (X1, X2, X3) with valid rank correlation matrix ρ = (ρ13, ρ23, ρ12), one uses the general

sampling algorithm by Kurowicka and Cooke (2006), Section 6.4.2, which in the linear

circular copula case reads as follows (use equation (6.4)):

X1 ¼ U1; X2 ¼ F−1
ρ12;U1

U2ð Þ ¼ 1
2 1−ρ12ð Þ þ ρ12U1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ212ð ÞU1 1−U1ð Þ

p
⋅ sin πU2−π2ð Þ;

X3 ¼ F−1
ρ13;U1

ðF−1
ρ23j1;U2

U3ð ÞÞ ¼ 1
2 1−ρ13
� �þ ρ13U1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð ÞU1 1−U1ð Þp

⋅ sinðπF−1
ρ23j1;U2

U3ð Þ−π2Þ;

F−1
ρ23j1;U2

U3ð Þ ¼ 1
2 ð1−ρ23j1Þ þ ρ23j1U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ223j1
� �

U2 1−U2ð Þ
r

⋅ sin πU3−π2ð Þ:

For the extreme points ρ� ¼ ρ ; ρ� ; ρ
� �

with ρ� ¼ ρ ρ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2ð Þ⋅ 1−ρ2ð Þp
13 23 12 23 12 13 12 13

one has ρ�23j1 ¼ ρ�23;1 ¼ �1 by Proposition 6.2 (see also Kurowicka and Cooke (2006),

p.102). To generate uniform [0,1] random vectors X� ¼ X�
1 ;X

�
2 ;X

�
3

� �
with correlation

matrices ρ±, one uses two times the preceding equations. In case ρþ23j1 ¼ 1 one has

F−1
ρþ
23j1;U2

U3ð Þ ¼ U2, and in case ρ−23j1 ¼ −1 one has F−1
ρ−
23j1;U2

U3ð Þ ¼ 1−U2.

It follows that

X�
1 ¼ U1; X�

2 ¼ 1
2 1−ρ12ð Þ þ ρ12U1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ212ð ÞU1 1−U1ð Þ

p
⋅ sin πU2−π2ð Þ;

X�
3 ¼ 1

2 1−ρ13
� �þ ρ13U1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð ÞU1 1−U1ð Þp

⋅ sin πU2−π2ð Þ: ð6:5Þ

Theorem 6.1

Let U1, U2 be uniform [0,1] random variables, and let ρ = (ρ13, ρ23, ρ12) be a valid rank

correlation matrix. Then, the sampling procedure

X1 ¼ U1; X2 ¼ 1
2 1−ρ12ð Þ þ ρ12U1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ212ð ÞU1 1−U1ð Þ

p
⋅ sin πU2−π2ð Þ;

X3 ¼ 1
2 1−ρ13
� �þ ρ13U1 þ ρ23;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ213ð ÞU1 1−U1ð Þ

p
⋅ sin πU2−π2ð Þ; ð6:6Þ

generates a random vector with 3-universal linear circular copula that has correlation

matrix ρ.

Proof

With a permutation of indices, one has by Theorem 5.3 that X = λ−X− + λ+X+, with

λ− ¼ 1
2

ρþ23−ρ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ212ð Þ⋅ 1−ρ213ð Þp ≥0; λþ ¼ 1

2
ρ23−ρ

−
23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ρ212ð Þ⋅ 1−ρ213ð Þp ≥0; λ− þ λþ ¼ 1:

The result follows by combining the equations (6.5) noting that λ+ − λ− = ρ23;1. ◊
Let us conclude. Since simulation algorithms are almost always used in vine copula

applications, any dimension reduction of such algorithms is a significant computational

improvement. Vine copulas have received a lot of attention in recent years with appli-

cations in nearly all branches of mathematical sciences. Some further representative

works on theory and applications of (vine) copulas include Cherubini et al. (2004),
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Mauguis and Guégan (2010), Vaz de Melo Mendes et al. (2010), Hürlimann (2011), Joe

and Kurowicka (2011), Bernard and Czado (2012), Czado et al. (2012), Allen et al.

(2013), Brechmann and Czado (2013), etc. Vine copulas are especially useful in higher

dimensions. Unfortunately, due to its complexity, the present work could not be so far

extended beyond dimension three. This is an important challenge for future research.

For n < 6 Letac (2010) has announced some universal copulas, which use quite ad-

vanced mathematics, however. As stated by him, a difficulty lies in the lack of an easy

characterization of the extreme points of the convex set of correlation matrices of order

n. One can ask whether in higher dimensions the explicit recursive closed form correl-

ation bounds for positive semi-definite correlation matrices derived in Hürlimann

(2012b) are of help in this matter, as is the case in dimension three.

Explicit simpler constructions than ours are also open for investigation. Note that

one of the most elementary approach, which is based on bivariate linear Spearman cop-

ulas, though completely classified, does not lead to 3-universal copulas, as shown in

Hürlimann (2012c).

Appendix 1
Some preliminary identities and inequalities

We begin with some preliminary material that will be used throughout in Appendix 2.

Due to the structure of the bivariate linear circular copula, the analysis of the con-

jectured inequalities requires a case by case analysis of whether or not the coordinates

(x, t), respectively (y, t), belong to one of the following disjoint regions of the centred

square C2. For (x, t) these are the regions defined and denoted by

E r13ð Þ ¼ x; tð Þ : x2 þ t2−2r13xt < 1−r213
	 


: inner of ellipse

E− r13ð Þ ¼ x; tð Þ : t≤r13x−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r213ð Þ 1−x2ð Þ

pn o
: lower outer part of ellipse

Eþ r13ð Þ ¼ x; tð Þ : t≥r13xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r213ð Þ 1−x2ð Þpn o

: upper outer part of ellipse

L1(r13) = (C2 \ E(r13)) ∩ {x + t ≥ 1 + r13}: outer part of ellipse above line in 1st quadrant

L2(r13) = (C2 \ E(r13)) ∩ {t − x ≥ 1 − r13}: outer part of ellipse above line in 2nd quadrant

L3(r13) = (C2 \ E(r13)) ∩ {x + t ≤ − 1 − r13}: outer part of ellipse below line in 3rd quadrant

L4(r13) = (C2 \ E(r13)) ∩ {t − x ≤ − 1 + r13}: outer part of ellipse below line in 4th quadrant

For (y, t) these are the disjoint regions defined and denoted by

E r23ð Þ ¼ y; tð Þ : y2 þ t2−2r23yt < 1−r223
	 


: inner of ellipse

E− r23ð Þ ¼ y; tð Þ : t≤r23y−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r223ð Þ 1−y2ð Þ

pn o
: lower outer part of ellipse

Eþ r23ð Þ ¼ y; tð Þ : t≥r13yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r223ð Þ 1−y2ð Þpn o

: upper outer part of ellipse

L1(r23) = (C2 \ E(r23)) ∩ {y + t ≥ 1 + r23}: outer part of ellipse above line in 1st quadrant

L2(r23) = (C2 \ E(r23)) ∩ {t − y ≥ 1 − r23}: outer part of ellipse above line in 2nd quadrant

L3(r23) = (C2 \ E(r23)) ∩ {y + t ≤ − 1 − r23}: outer part of ellipse below line in 3rd quadrant

L4(r23) = (C2 \ E(r23)) ∩ {t − y ≤ − 1 + r23}: outer part of ellipse below line in 4th quadrant

We note that involved expressions of the type uv� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−u2ð Þ 1−v2ð Þp

necessarily be-

long to the interval [−1, 1] in virtue of the following slightly more general property.
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Lemma A1.1

For x, y, z ∈ [−1, 1] the function defined by w x; y; zð Þ ¼ xyþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2ð Þ 1−y2ð Þp

takes

values in [−1,1].

Proof

See the proof of Lemma 4.7 in Kurowicka and Cooke (2006), pp. 121–122. ◊

Some inequality properties of the function w x; y;�1ð Þ ¼ xy� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2ð Þ 1−y2ð Þp

defined

in Lemma A1.1 will be useful throughout the proofs.

Lemma A1.2

The following properties hold:

(P1) w(x, y, − 1) ≤ x + y − 1 ⇔ x + y ≥ 0

(P2) w(x, y, 1) ≥ x − y + 1 ⇔ x − y ≤ 0

(P3) ∂w x;y;−1ð Þ
∂x ≥0 ⇔ xþ y≥0; ∂w x;y;−1ð Þ

∂y ≥0 ⇔ xþ y≥0
(P4) ∂w x;y;1ð Þ

∂x ≥0 ⇔ x−y≤0; ∂w x;y;1ð Þ
∂y ≥0 ⇔ x−y≤0

(P5) if x, y < 1 then w(x, y, 1) > x + y − 1

(P6) if x, y < 1 then w(x, y, − 1) < 1 + y − x, w(x, y, − 1) < 1 + x − y

Proof

This is obtained without difficulty through standard algebraic calculation. ◊

Lemma A1.3

The quantities r13; r23∈ −1; 1½ �; a ¼
ffiffiffiffiffiffiffiffiffiffiffi
1−r213

p
≥b ¼

ffiffiffiffiffiffiffiffiffiffiffi
1−r223

p
and c± = ar23 ∓ br13 satisfy the

following identities:

b� c�r13
a

¼ a−c�r23
b

;
a−c�r23

b

� �2

¼ 1− c�
� �2 ðA1:1Þ

Proof

The first identity is shown by verifying the following equivalences:

b2 � bc�r13 ¼ a2−ac�r23 ⇔ c� ar23 � br13ð Þ ¼ a2−b2

⇔ a2r223−b
2r213 ¼ a2−b2 ⇔ a2 1−b2

� �
−b2 1−a2ð Þ ¼ a2−b2

The second one is shown similarly as follows:

a2−2ac�r23 þ c�ð Þ2r223 ¼ b2−b2 c�ð Þ2 ⇔ a2−2ac�r23 þ c�ð Þ2 ¼ b2

⇔ c� 2ar23−c�ð Þ ¼ a2−b2 ⇔ c� ar23 � bρ13
� � ¼ a2−b2

Since the last identity is true by the preceding equivalences, the result is shown. ◊

Lemma A1.4

The functions defined by

u� ¼ u� xð Þ ¼ c�⋅w x; r13;�1ð Þ � bx
a

; v� ¼ v� yð Þ ¼ � ay−c�⋅w y; r23;�1ð Þ
b

� �
ðA1:2Þ
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have the following inverse functions

x ¼ u�� u�ð Þ ¼ � a−c�r23
b

� �
⋅u� � c�⋅

ffiffiffiffiffiffiffiffiffiffiffi
1−u2�

p ¼ c�r13 � b
a

� �
⋅u� � c�⋅

ffiffiffiffiffiffiffiffiffiffiffi
1−u2�

p
;

y ¼ v�� v−ð Þ ¼ � a−c�r23
b

� �
⋅v� � c�⋅

ffiffiffiffiffiffiffiffiffiffiffi
1−v2�

p ¼ c�r13 � b
a

� �
⋅v� � c�⋅

ffiffiffiffiffiffiffiffiffiffiffi
1−v2�

p
ðA1:3Þ

Proof

This is obtained through straightforward calculation using the identities (A1.1). ◊

Appendix 2
Proof of the conditional product copula inequalities

Starting point are the following preliminary remarks. According to (3.11), in case (x,

t) ∈ E(r13), (y, t) ∈ E(r23), we have ∂
∂t C13 x; tð Þ≤∂

∂tC23 y; tð Þ if, and only if

arcsin
x−r13t

a
ffiffiffiffiffiffiffiffiffi
1−t2

p
� �

≤ arcsin
y−r23t

b
ffiffiffiffiffiffiffiffiffi
1−t2

p
� �

⇔ cþt≤ay−bx ðA2:1Þ

and similarly, we have ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≥0 if, and only if

arcsin
x−r13t

a
ffiffiffiffiffiffiffiffiffi
1−t2

p
� �

þ arcsin
y−r23t

b
ffiffiffiffiffiffiffiffiffi
1−t2

p
� �

≥0 ⇔ c−t≤ayþ bx ðA2:2Þ

By symmetry it suffices to show the inequalities for Case I. The proof is done through
exhaustive analysis of all possible disjoint regions that can contain the coordinates (x, t),

respectively (y, t). We assume c± > 0 and identify the cases c± = 0 as limiting cases c±→ 0.

Items related to Theorem 4.1 (4.2) are distinguished using the abbreviation UPC (LPC)

for upper (lower) conditional product copula inequalities unless quantities involving c±

are used.

(1) (x, t) ∈ E−(r13) (y, t) arbitrary
(1.1) x + r13 ≥ 0 (UPC), x + r13 < 0 (LPC)

First of all, we note that ∂
∂t C13 x; tð Þ ¼ 1

2 ðUPCÞ; ∂
∂tC13 x; tð Þ ¼ 0 (LPC). To show this

we use the properties of Lemma A1.2 and (3.11) as follows:

(UPC): (P1) ⇒ t ≤w(x, r13, − 1) ≤ x + r13 − 1 ⇒ (x, t) ∈ L4(r13)
(LPC): (i) using (P6) of Lemma 3.2: t ≤w(x, r13, − 1) < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)

(ii) using x + r13 < 0 t ≥ − 1 > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

Furthermore, we must have y + r23 ≥ 0 in Cases (I.a) and (I.b), which is shown as

follows:

(UPC) Case (I.a): if y < − r23 then 0 ≤ c+ ≤ ay − bx < − ar23 − br13 = − c+ ≤ 0 a contradiction

(UPC) Case (I.b): y > (−c+ + bx)/a ≥ − (c+ + br13)/a = − r23
(LPC) Case (I.a): if y < − r23, then 0 ≤ c− ≤ ay + bx < − ar23 − br13 = − c− ≤ 0 a contradiction

(LPC) Case (I.b): if y < − r23 then − c− < ay + bx < − ar23 − br13 = − c− a contradiction
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If one assumes that t ≤w(y, r23, − 1), then ∂
∂t C23 y; tð Þ ¼ 1

2 in virtue of (3.11) because

(P1) ⇒ t ≤w(y, r23, − 1) ≤ y + r23 − 1 ⇒ (y, t) ∈ L4(r23)
We distinguish between three main cases:

(a) c±t ≥ ay ∓ bx (Case (I.c) and possibly Case (I.b))

Since ∂
∂t C23 y; tð Þ≤1

2 we have necessarily ∂
∂t C13 x; tð Þ ¼ 1

2 ≥∂
∂tC23 y; tð Þ (UPC), and ∂

∂t C13

x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≤0 (LPC), as in the desired inequalities.

(b) c±t ≤ ay ∓ bx < c± ⋅ w(y, r23, − 1) (possible in Cases (I.a) and (I.b))

By the above we have ∂
∂t C13 x; tð Þ ¼ ∂

∂t C23 y; tð Þ ¼ 1
2 (UPC) and

∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−
1
2 ¼ 0 (LPC), which is consistent with the desired inequalities.

(c) c±t ≤ ay ∓ bx and c± ⋅w(y, r23, − 1) ≤ ay ∓ bx (possible in Cases (I.a) and (I.b))

We derive the inequality (C1.1) t ≤w(x, r13, − 1) ≤w(y, r23, − 1) which again implies

that ∂
∂t C13 x; tð Þ ¼ ∂

∂t C23 y; tð Þ ¼ 1
2 (UPC) and ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2 ¼ 0 (LPC). We

use the transformation of variable z = z(y) = ± (ay − c± ⋅ w(y, r23, − 1))/b and its in-

verse y ¼ y zð Þ ¼ � a−c�r23ð Þ=b⋅z � c�⋅
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
in (A1.3), where the second “±” signs hold

for both (UPC) and (LPC). We show (C1.1), that is Δ(x, y) :=w(y, r23, − 1) −w(x, r13, − 1) ≥
0 under the constraints − r13 ≤ x ≤ z(y) (UPC), z(y) ≤ x < − r13 (LPC), − r23 ≤ y ≤ 1. By (P3)

of Lemma A1.2 the function w(x, r13, − 1) is increasing in x (UPC), decreasing in x (LPC).

It follows that Δ(x, y) ≥Δ*(y, z(y)) :=w(y, r23, − 1) −w(z(y), r13, − 1). Using the transform-

ation z(y) we can write w(y, r23, − 1) = (ay ∓ bz(y))/c±. Making also use of the inverse y = y(z)

we see that (use the first identity in (A1.1)) Δ� zð Þ :¼ Δ� y zð Þ; zð Þ ¼ ay zð Þ∓bz
c�

−w

z; r13;−1ð Þ ¼ a
c�

� a−c�r23
� �

=b⋅z � c⋅
ffiffiffiffiffiffiffiffiffiffi
1−z2

p� �
∓
b
c�

z−r13z þ a
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
¼ a

ffiffiffiffiffiffiffiffiffiffi
1−z2

p
1� 1ð Þ;

which implies that Δ(x, y) ≥ Δ*(y, z(y)) = Δ*(z) ≥ 0 as desired.

(1.2) x + r13 < 0 (UPC), x + r13 ≥ 0 (LPC)

We have ∂
∂t C13 x; tð Þ ¼ 0 ∂

∂t C13 x; tð Þ ¼ 1
2 (UPC), (LPC), which is shown as follows:

(UPC): (i) using (P6) of Lemma A1.2: t ≤w(x, r13, − 1) < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using x + r13 < 0: t ≥ − 1 > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(LPC): (P1) of Lemma A1.2 ⇒ t ≤w(x, r13, − 1) ≤ x + r13 − 1 ⇒ (x, t) ∈ L4(r13)
We distinguish between two main cases:

(a) c±t ≤ ay ∓ bx (Case (I.a) and possibly Case (I.b))

We have ∂
∂t C13 x; tð Þ ¼ 0≤∂

∂tC23 y; tð Þ (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≥0 (LPC) as desired

(b) ay ∓ bx ≤ c±t ≤ c± ⋅w(x, r13, − 1) (Case (I.c) and possibly Case (I.b))

We show ∂
∂tC23 y; tð Þ ¼ 0 , which is consistent with the desired results ∂

∂t C13 x; tð Þ≥∂
∂tC23

y; tð Þ (UPC) and ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≤0 (LPC). It suffices to show the following

inequalities:

Case 1: x ≥ − (b + c+r13)/a (UPC), x ≤ (b − c−r13)/a (LPC)

(C1.2.1) t ≤w(x, r13, − 1) ≤w(y, r23, − 1), and y + r23 ≤ 0

Case 2: x ≤ − (b + c+r13)/a (UPC), x ≥ (b − c−r13)/a (LPC)

(C1.2.2) c± ⋅w(y, r23, 1) ≤ ay ∓ bx ≤ c±t ≤ c± ⋅ w(x, r13, − 1), and y − r23 ≤ 0
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Indeed, if these conditions hold, then ∂
∂tC23 y; tð Þ ¼ 0 in virtue of (3.11) as follows:

Case 1: (i) using (P6) of Lemma A1.2: t ≤w(y, r23, − 1) < 1 + r23 − y ⇒ (y, t) ∉ L1(r23)
(ii) using y + r23 ≤ 0: t ≥ − 1 ≥ y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

Case 2: (i) using y − r23 ≤ 0: t ≤ 1 ≤ 1 + r23 − y ⇒ (y, t) ∉ L1(r23)
(ii) using (P5) of Lemma A1.2: t ≥w(y, r23, 1) > y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

To show the above inequalities we use the transformation z = z(x) = (c± ⋅w(x, r13, − 1) ±

bx)/a.

Case 1: The function z(x) is increasing in the interval − (b + c±r13)/a ≤ x < − r13 (UPC),

respectively z(x) is decreasing in the interval − r13 ≤ x ≤ (b − c−r13)/a (LPC):

z0 xð Þ ¼ c�r13 � bð Þ=aþ c�⋅x=
ffiffiffiffiffiffiffiffiffiffi
1−x2

p
≥0 ⇔ x=

ffiffiffiffiffiffiffiffiffiffi
1−x2

p
≥α :¼ − �bþ c�r13ð Þ=ac�

⇔ x≥α=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ¼ − �bþ c�r13ð Þ=a

In particular, by the restriction defining case (b), we have necessarily y ≤ z(x) ≤ z(−r13) =

(−c± ∓ br13)/a = − r23 ⇒ y + r23 ≤ 0.
Now, we show that Δ(x, y) = w(y, r23, − 1) −w(x, r13, − 1) ≥ 0 under the constraints, −

1 ≤ y ≤ z(x), − (b + c+r13)/a ≤ x < − r13 (UPC), − r13 ≤ x ≤ (b − c−r13)/a (LPC). Since w(y,

r23, − 1) is decreasing in y by (P3) of Lemma A1.2, we have Δ(x, y) ≥ Δ*(x, z(x)) :=w(z(x),

r23, − 1) −w(x, r13, − 1) =w(z(x), r23, − 1) − (az(x) ∓ bx)/c±.

Since z(x) is increasing and z(−r13) = − r23, z(−(b + c+r13)/a) = − 1 (UPC), respectively

z(x) is decreasing and z(−r13) = − r23, z((b − c−r13)/a) = − 1, its inverse in (A1.3) takes

the “+” sign (UPC) respectively the “-“ sign (LPC), that is x ¼ x zð Þ ¼ � b� c�r13ð Þ=a⋅z�
c�⋅

ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it into the function Δ*(z) =Δ*(x(z), z) =w(z, r23, − 1) − (az ∓ bx(z))/c± to see

that Δ(x, y) ≥Δ*(x, z(x)) =Δ*(z) = 0 as desired.

Case 2: Similarly to Case 1, one shows that z(x) is decreasing in the interval − 1 ≤ x ≤ −
(b + c+r13)/a (UPC), respectively z(x) is increasing in the interval (b − c−r13)/a ≤ x ≤ 1
(LPC), and in particular y ≤ z(x) ≤ z(−1) = − (±c±r13 + b)/a ≤ r23, where the last inequality is
true because ar23 + b + c+r13 = (b + c+) ⋅ (1 + r13) ≥ 0 (UPC), ar23 + b − c−r13 ≥ c

− ⋅ (1 − r13) ≥
0 (LPC).

Now, we show that Δ(x, y) = (ay ∓ bx)/c± −w(y, r23, 1) ≥ 0 under the constraints − 1 ≤
y ≤ z(x), − 1 ≤ x ≤ − (b + c+r13)/a (UPC), (b − c−r13)/a ≤ x ≤ 1 (LPC). The function h(y) = ±

(ay/c± −w(y, r23, 1)) is decreasing (UPC), respectively increasing (LPC), in the interval −
1 ≤ y ≤ − (b ± c±r13)/a:

h0 yð Þ ¼ � a−c�r23ð Þ=c� � b⋅y=
ffiffiffiffiffiffiffiffiffiffi
1−y2

p
≤ ≥ð Þ0 ⇔ y=

ffiffiffiffiffiffiffiffiffiffi
1−y2

p
≤β :¼ c�r23−að Þ=bc�

⇔ y≤β=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
¼ c�r23−að Þ=b ¼ ∓ b� c�r13ð Þ=a

It follows that Δ(x, y) ≥Δ*(x, z(x)) = (az(x) ∓ bx)/c± −w(z(x), r23, 1). Since z(x) is decreas-

ing (UPC), respectively increasing (LPC), and z(∓(b ± c±r13)/a) = − 1, z(∓1) = ∓ (b ± c±r13)/

a, its inverse in (A1.3) takes the “-“ sign (UPC) respectively the “+“ sign (LPC), that is we

have x ¼ x zð Þ ¼ � b� c�r13ð Þ=a⋅z∓c�⋅ ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert this expression into the function

Δ*(z) = Δ*(x(z), z) = (az ∓ bx(z))/c± −w(z, r23, 1) to see that Δ(x, y) ≥ Δ*(x, z(x)) =Δ*(z) = 0.

(2) (y, t) ∈ E−(r23) (x, t) arbitrary
(2.1) y + r23 < 0
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We have ∂
∂tC23 y; tð Þ ¼ 0 , which follows from Lemma A1.2 and (3.11) as follows:

(i) using (P6) of Lemma A1.2: t ≤w(y, r23, − 1) < 1 + r23 − y ⇒ (y, t) ∉ L1(r23)
(ii) using y + r23 < 0: t ≥ − 1 > y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

Furthermore, we must have x + r13 < 0 (UPC), respectively x + r13 ≥ 0 (LPC), in Cases

(I.a) and (I.b), which is shown as follows:

(UPC) Case (I.a): ay − bx ≥ c+ ⇒ x ≤ (ay − c+)/b < − (c+ + ar13)/b ≤ − r13, where the last

inequality follows from ar23 − br13 + c+ = 2c+ ≥ 0
(UPC) Case (I.b): ay − bx > − c+ ⇒ x < (c+ + ay)/b < (c+ − ar23)/b = − r13
(LPC) Case (I.a): if x < − r13, then 0 ≤ c− ≤ ay + bx < − ar23− br13 = − c− ≤ 0, a contradiction
(LPC) Case (I.b): if x < − r13, then − c− < ay + bx < − ar23 − br13 = − c−, a contradiction

In these Cases, if t ≤w(x, r13, − 1), then ∂
∂tC13 x; tð Þ ¼ 0 (UPC), ∂

∂t C13 x; tð Þ ¼ 1
2 (LPC):

(UPC): (i) using (P6) of Lemma 3.2: t ≤w(x, r13, − 1) < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using x + r13 < 0: t ≥ − 1 > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(LPC): (P1) of Lemma A1.2 ⇒ x + r13 ≥ 0 ⇒ w(x, r13, − 1) ≤ x + r13 − 1 ⇒ (x, t) ∈ L4(r13)
We have three main cases:

(a) c±t ≥ ay ∓ bx (Case (I.c) and possibly Case (I.b))

We have necessarily ∂
∂t C13 x; tð Þ≥∂

∂tC23 y; tð Þ ¼ 0 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≤0

(LPC)

(b) c±t ≤ ay ∓ bx < c± ⋅ w(x, r13, − 1) (possible in Cases (I.a) and (I.b))

By the above we have ∂
∂t C13 x; tð Þ ¼ ∂

∂tC23 y; tð Þ ¼ 0 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ¼ 0

(LPC), which is consistent with the desired inequalities.

(c) c±t ≤ ay ∓ bx and c± ⋅w(y, r23, − 1) ≤ ay ∓ bx (possible in Cases (I.a) and (I.b))
We derive the inequality (C2.1) t ≤w(y, r23, − 1) ≤w(x, r13, − 1), which again implies ∂
∂t

C13 x; tð Þ ¼ ∂
∂tC23 y; tð Þ ¼ 0 (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2 ¼ 0 (LPC). We use the

transformation of variable z = z(x) = (c± ⋅w(x, r13, − 1) ± bx)/a and its inverse x ¼ x zð Þ ¼ �
a−c�r23ð Þ=b⋅z � c�⋅

ffiffiffiffiffiffiffiffiffiffi
1−z2

p
in (A1.3), where the second “±” signs hold for both (UPC)

and (LPC). We show that Δ(x, y) :=w(x, r13, − 1) −w(y, r23, − 1) ≥ 0 under the constraints z

(x) ≤ y < − r23 , − 1 ≤ x < − r13 (UPC), − r13 ≤ x ≤ 1 (LPC). By (P3) of Lemma A1.2 the func-

tion w(y, r23, − 1) is decreasing in y. It follows that Δ(x, y) ≥Δ*(x, z(x)) =w(x, r13, − 1) −w

(z(x), r23, − 1) = (az(x) ∓ bx)/c± −w(z(x), r23, − 1).

Now, insert the inverse x = x(z) into Δ*(z) = Δ*(x(z), z) = (az ∓ bx(z))/c± −w(z, r23, − 1)

to see that Δ x; yð Þ≥Δ� x; z xð Þð Þ ¼ Δ� zð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
1� 1ð Þ≥0 as desired.

(2.2) y + r23 ≥ 0

Property (P1) implies t ≤w(y, r23, − 1) ≤ y + r23 − 1 ⇒ (y, t) ∈ L4(r23) ⇒ ∂
∂t C23 y; tð Þ ¼ 1

2

We distinguish between two main cases:

(a)c±t ≤ ay ∓ bx (Case (I.a) and possibly Case (I.b))
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We have necessarily ∂
∂t C13 x; tð Þ≤∂

∂t C23 y; tð Þ ¼ 1
2 (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≥0
(LPC).

(b)ay ∓ bx ≤ c±t ≤ c± ⋅ w(x, r13, − 1) (Case (I.c) and possibly Case (I.b))
We show that ∂
∂t C13 x; tð Þ ¼ 1

2 (UPC),
∂
∂tC13 x; tð Þ ¼ 0 (LPC), which is consistent with ∂

∂t

C13 x; tð Þ≥∂
∂tC23 y; tð Þ (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≤0 (LPC). It suffices to show the

following inequalities:

Case 1: y ≤ (a − c±r23)/b

(C2.2.1) t ≤w(y, r23, − 1) ≤w(x, r13, − 1, and x + r13 ≥ 0 (UPC), x + r13 ≤ 0 (LPC)

Case 2: y ≥ (a − c±r23)/b

(C2.2.2) w(x, r13, 1) ≤ (ay − bx)/c ≤ t ≤w(y, r23, − 1), and x − r13 ≥ 0 (UPC), x − r13 ≤ 0 (LPC)
Indeed, if these conditions hold, then ∂
∂t C13 x; tð Þ ¼ 1

2 (UPC), ∂
∂tC13 x; tð Þ ¼ 0 (LPC) as

follows:

(UPC) Case 1: Property (P1) implies t ≤w(x, r13, − 1) ≤ x + r13 − 1 ⇒ (x, t) ∈ L4(r13)
(LPC) Case 1:
(i) using (P6) of Lemma 3.2: t ≤w(x, r13, − 1) < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii)using x + r13 ≤ 0: t ≥ − 1 ≥ x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(UPC) Case 2: Property (P2) implies t ≥w(x, r13, 1) ≥ 1 + r13 − x ⇒ (x, t) ∈ L1(r13)
(LPC) Case 2:

(i) using x − r13 ≤ 0: t ≤ 1 ≤ 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii)using (P5) of Lemma 3.2: t ≥w(x, r13, 1) > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)
To show the above inequalities we use the transformation z = z(y) = ± (ay − c± ⋅ w(y,
r23, − 1))/b.

Case 1: The function z(y) is increasing (UPC) (respectively decreasing (LPC)) in the

interval − r23 ≤ y ≤ (a − c±r23)/b: z0 yð Þ ¼ � a−c�r23ð Þ=b∓c�⋅y= ffiffiffiffiffiffiffiffiffiffi
1−y2

p
≥ ≤ð Þ0 ⇔ y≤

a−c�r23ð Þ=b , hence x ≥ z(y) ≥ z(−r23) = (c+ − ar23)/b = − r13 (UPC), x ≤ z(y) ≤ z(−r23) =
(ar23 − c−)/b = − r13 (LPC). Now, we show that Δ(x, y) = w(x, r13, − 1) −w(y, r23, − 1) ≥ 0

under the constraints z(y) ≤ x ≤ 1 (UPC), − 1 ≤ x ≤ z(y) (LPC), − r23 ≤ y ≤ (a − c±r23)/b.

Since w(x, r13, − 1) is increasing in x (UPC) (decreasing in x (LPC)) by (P3) of Lemma

A1.2, we have Δ(x, y) ≥Δ*(y, z(y)) =w(z(y), r13, − 1) −w(y, r23, − 1) =w(z(y), r13, − 1) − (ay ∓
bz(y))/c.

Since z(y) is increasing and z(−r23) = − r13, z((a − c+r23)/b) = 1 (UPC), respectively z(y)

is decreasing and z(−r23) = − r13, z((a − c−r23)/b) = − 1 (LPC), its inverse takes the “-“

sign for both (UPC) and (LPC), that is y ¼ y zð Þ ¼ � a−c�r23ð Þ=b⋅z−c�⋅ ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it

into the function Δ*(z) = Δ*(y(z), z) =w(z, r23, − 1) − (ay(z) ∓ bz)/c± to see that Δ(x, y) ≥ Δ*

(y, z(y)) = Δ*(z) = 0 as desired.

Case 2: Similarly to Case 1, one shows that z(y) is decreasing (UPC) (respectively in-

creasing (LPC)) in the interval (a − c±r23)/b ≤ y ≤ 1, and in particular x ≥ z(y) ≤ z(1) = (a −
c+r23)/b ≥ r13 (UPC), x ≤ z(y) ≤ z(1) = (c−r23 − a)/b ≤ r13 (LPC), where the last inequalities

are true because a − br13 − c+r23 ≥ c
+ ⋅ (1 − r23) ≥ 0 (UPC), br13 + a − c−r23 ≥ c

− ⋅ (1 − r23) ≥ 0
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(LPC). Now, we show that Δ(x, y) = (ay ∓ bx)/c± − w(x, r13, 1) ≥ 0 under the constraints

z(y) ≤ x ≤ 1 (UPC), − 1 ≤ x ≤ z(y) (LPC), (a − c±r23)/b ≤ y ≤ 1. The function h(x) =w(x, r13, 1) ±

bx/c is decreasing in the interval (a − c+r23)/b ≤ x ≤ 1 (UPC), respectively increasing in the

interval − 1 ≤ x ≤ (c−r23 − a)/b (LPC):

h0 xð Þ ¼ � b� cr13ð Þ=c�−a⋅x=
ffiffiffiffiffiffiffiffiffiffi
1−x2

p
≤ ≥ð Þ0 ⇔ x≥ a−cþr23ð Þ=b; x≤ c−r23−að Þ=b

It follows that Δ(x, y) ≥ Δ*(y, z(y)) = (ay ∓ bz(y))/c± − w(z(y), r13, 1). Since z(y) is de-

creasing and z((a − c+r23)/b) = 1, z(1) = (a − c+r23)/b (UPC), respectively z(y) is increas-

ing and z((a − c−r23)/b) = − 1, z(1) = (c−r23 − a)/b (LPC), its inverse takes the “+” sign for

both (UPC) and (LPC), that is y ¼ y zð Þ ¼ � a−c�r23ð Þ=b⋅z þ c�⋅
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it into Δ*

(z) = Δ*(y(z), z) = (ay(z) ∓ bz)/c± − w(z, r13, 1) to see that Δ(x, y) ≥ Δ*(y, z(y)) = Δ*(z) = 0.

(3) (x, t) ∈ E(r13) and (y, t) ∈ E(r23)
The validity of the inequality ∂

∂t C13 x; tð Þ≤∂
∂tC23 y; tð Þ in the Cases (I.a) and (I.b) follows

from (A2.1). In Case (I.c) we have (ay − bx)/c+ ≤ − 1 ≤ t, hence ∂
∂t C13 x; tð Þ≥∂

∂tC23 y; tð Þ .
Similarly, the validity of the inequality ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≥0 in the Cases (I.a)

and (I.b) follows from (A2.2). In Case (I.c) we have (ay + bx)/c− ≤ − 1 ≤ t, hence ∂
∂t C13

x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≤0.

(4) (x, t) ∈ E+(r13), (y, t) arbitrary
(4.1) x − r13 < 0 (UPC), x − r13 ≥ 0 (LPC)

We first note that ∂
∂tC13 x; tð Þ ¼ 0 (UPC), ∂

∂t C13 x; tð Þ ¼ 1
2 (LPC):

(UPC): (i) using x − r13 < 0: t ≤ 1 < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using (P5) of Lemma A1.2: t ≥w(x, r13, 1) > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(LPC): (P2) of Lemma A1.2: t ≥w(x, r13, 1) ≥ 1 + r13 − x ⇒ (x, t) ∈ L1(r13) ⇒

We must have y − r23 < 0 in Cases (I.b) and (I.c). We argue as follows:

(UPC) Case (I.b): x < r13 ⇒ y < (c + bx)/a ≤ (c + br13)/a = r23
(UPC) Case (I.c): if y ≥ r23, − x > − r13 then ay − bx ≥ ar23 − br13 = c in contradiction

to the assumption ay − bx ≤ − c defining Case (I.c).

(LPC) Case (I.b): − x ≤ − r13 ⇒ y < (c− − bx)/a ≤ (c− − br13)/a = r23
(LPC) Case (I.c): if y ≥ r23, x ≥ r13 then ay + bx ≥ ar23 + br13 = c− in contradiction to

the assumption ay + bx ≤ − c− defining Case (I.c).

In this situation, if one assumes t ≥w(y, r23, 1), then ∂
∂tC23 y; tð Þ ¼ 0 in virtue of (3.11):

(UPC): (i) using y − r23 < 0: t ≤ 1 < 1 + r23 − y ⇒ (y, t) ∉ L1(r23)
(ii) using (P5) of Lemma 3.2: t ≥w(y, r23, 1) > y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

(LPC): (i) using y − r23 < 0: t ≤ 1 < 1 + r23 − y ⇒ (y, t) ∉ L1(r23)
(ii) using (P5) of Lemma 3.2: t ≥w(y, r23, 1) > y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

We have three main cases:

(a) c±t ≤ ay ∓ bx (Case (I.a) and possibly Case (I.b))
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We have necessarily ∂
∂t C13 x; tð Þ ¼ 0≤∂

∂tC23 y; tð Þ (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≥0

(LPC).

(b) c±t ≥ ay ∓ bx > c± ⋅ w(y, r23, 1) (possible in Cases (I.b) and (I.c))

By the above we have ∂
∂t C13 x; tð Þ ¼ ∂

∂tC23 y; tð Þ ¼ 0 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ¼ 0

(LPC), which is consistent with the desired inequalities

(c) c±t ≥ ay ∓ bx and ay ∓ bx ≤ c± ⋅w(y, r23, 1) (possible in Cases (I.b) and (I.c))

We derive the inequality (C4.1) t ≥w(x, r13, 1) ≥w(y, r23, 1), which again implies that ∂
∂t

C13 x; tð Þ ¼ ∂
∂tC23 y; tð Þ ¼ 0 (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2 ¼ 0 (LPC). We use the

transformation z = z(y) = ± (ay − c± ⋅w(y, r23, 1))/b and its inverse y ¼ y zð Þ ¼ � a−c�r23ð Þ=
b⋅z � c�⋅

ffiffiffiffiffiffiffiffiffiffi
1−z2

p
, where the second “±” signs hold for both (UPC) and (LPC). We show

that Δ(x, y) =w(x, r13, 1) −w(y, r23, 1) ≥ 0 under the constraints z(y) ≤ x < r13 (UPC), r13 ≤
x ≤ z(y) (LPC), − 1 ≤ y < r23. By (P4) of Lemma A1.2 the function w(x, r13, 1) is increasing

in x (UPC), respectively decreasing in x (LPC). It follows that Δ(x, y) ≥ Δ*(y, z(y)) =w(z(y),

r13, 1) −w(y, r23, 1) =w(z(y), r13, 1) − (ay ∓ bz(y))/c±.

Insert the inverse y = y(z) into Δ*(z) = Δ*(y(z), z) =w(z, r13, 1) − (ay(z) ∓ bz)/c± to see

that Δ x; yð Þ≥Δ� y; z yð Þð Þ ¼ Δ� zð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
1∓1ð Þ≥0 as desired.

(4.2) x − r13 ≥ 0 (UPC), x − r13 < 0 (LPC)

We first note that ∂
∂t C13 x; tð Þ ¼ 1

2 (UPC),
∂
∂tC13 x; tð Þ ¼ 0 (LPC):

(UPC): Property (P2) implies t ≥w(x, r13, 1) ≥ 1 + r13 − x ⇒ (x, t) ∈ L1(r13)
(LPC): (i) using x − r13 < 0: t ≤ 1 < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)

(ii) using (P5) of Lemma 3.2: t ≥w(x, r13, 1) > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)
We distinguish between two main cases:

(a) c±t ≥ ay ∓ bx (Case (I.c) and possibly Case (I.b))

We have necessarily ∂
∂t C13 x; tð Þ ¼ 1

2 ≥∂
∂tC23 y; tð Þ (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≤0 (LPC)

(b) ay ∓ bx ≥ c±t ≥ c± ⋅w(x, r13, 1) (Case (I.a) and possibly Case (I.b))

We show that , ∂
∂t C23 y; tð Þ ¼ 1

2 which is consistent with the desired inequalities.

We show Case 1: x ≤ (b+ c+r13)/a (UPC), x ≥ (c−r13− b)/a (LPC) (C4.2.1) t ≥w(x, r13, 1) ≥w
(y, r23, 1), and y− r23 ≥ 0 (UPC), y− r23 > 0 (LPC)

Case 2: x ≥ (b + c+r13)/a (UPC), x ≤ (c−r13 − b)/a (LPC) (C4.2.2) c± ⋅ w(x, r13, 1) ≤ c
±t ≤

ay ∓ bx < c± ⋅ w(y, r23, − 1), and y + r23 ≥ 0

Indeed, if these conditions hold, then we have ∂
∂t C23 y; tð Þ ¼ 1

2 in virtue of (3.11) as follows:

Case 1: (P2) ⇒ t ≥w(y, r23, 1) ≥ 1 + r23 − y ⇒ (y, t) ∈ L1(r23)
Case 2: (P1) ⇒ t <w(y, r23, − 1) ≤ y + r23 − 1 ⇒ (y, t) ∈ L4(r23)

To show the above inequalities we use the transformation z= z(x) = (c± ⋅w(x, r13, 1) ± bx)/a.

Case 1: The function z(x) is increasing in the interval r13 ≤ x ≤ (b + c+r13)/a (UPC),

respectively decreasing in the interval (c−r13 − b)/a ≤ x < r13 (UPC): z0 xð Þ ¼ � b� c�r13ð Þ=
a−c�⋅x=

ffiffiffiffiffiffiffiffiffiffi
1−x2

p
≥ ≤ð Þ0 ⇔ x≤ bþ cþr13ð Þ=a; x≥ c−r13−bð Þ=a.

In particular y ≥ z(x) > z(r13) = (c+ + br13)/a = r23 (UPC), y ≥ z(x) > z(r13) = (c− − br13)/a =

r23 (LPC). Now, we show that Δ(x, y) = w(x, r13, 1) − w(y, r23, 1) ≥ 0 under the constraints

z(x) ≤ y ≤ 1, r13 ≤ x ≤ (b + c+r13)/a (UPC), (c−r13 − b)/a ≤ x < r13 (LPC). Since w(y, r23, 1) is
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decreasing in y by (P4) of Lemma 3.2, we have Δ(x, y) ≥ Δ*(x, z(x)) =w(x, r13, 1) −w(z(x),

r23, 1) = (az(x) ∓ bx)/c± −w(z(x), r23, 1).

Since z(x) is increasing and z(r13) = r23, z((b + c+r13)/a) = 1 (UPC), respectively z(x) is

decreasing, z(r13) = r23, z((c
−r13 − b)/a) = 1 its inverse in (A1.3) takes the “-“ sign (UPC),

respectively the “+” sign (LPC), that is x ¼ x zð Þ ¼ � b� c�r13ð Þ=a⋅z∓c⋅ ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it

into Δ*(z) = Δ*(x(z), z) = (az ∓ bx(z))/c± −w(z, r23, 1) to see that Δ(x, y) ≥ Δ*(x, z(x)) = Δ*

(z) = 0 as desired.

Case 2: Similarly to Case 1, one shows that z(x) is decreasing in the interval (b + c+r13)/

a ≤ x ≤ 1 (UPC), respectively z(x) is increasing in the interval − 1 ≤ x ≤ (c−r13 − b)/a (LPC).

In particular y ≥ z(x) ≥ z(1) = (b + c+r13)/a ≥ − r23 (UPC), y ≥ z(x) ≥ z(−1) = (b − c−r13)/a ≥ −
r23 (LPC), where the last inequalities are true because ar23 + b + c+r13 = (b + c+) ⋅ (1 +
r13) ≥ 0 (UPC), ar23 + b − c−r13 ≥ c

− ⋅ (1 − r13) ≥ 0 (LPC).

Now, we show that Δ(x, y) =w(y, r23, − 1) − (ay ∓ bx)/c± ≥ 0 under the constraints z

(x) ≤ y ≤ 1, (b + c+r13)/a ≤ x ≤ 1 (UPC), − 1 ≤ x ≤ (c−r13 − a)/b (LPC). The function h(y) =

w(y, r23, − 1) − ay/c± is increasing in the interval (b ± c±r13)/a ≤ y ≤ 1:

h0 yð Þ ¼ c�r23−a
� �

=c� þ b⋅y=
ffiffiffiffiffiffiffiffiffiffi
1−y2

p
≥0 ⇔ y≥ a−c�r23

� �
=b ¼ b� c�r13

� �
=a

It follows that Δ(x, y) ≥Δ*(x, z(x)) =w(z(x), r23, − 1) − (az(x) ∓ bx)/c±. Since z(x) is decreas-
ing and z((b + c+r13)/a) = 1, z(1) = (b + c+r13)/a (UPC), respectively z(x) is increasing and z

((c−r13 − b)/a) = 1, z(−1) = (a − c−r23)/b (LPC), its inverse takes the “+” sign (UPC), respect-

ively the “-“ sign (LPC), that is x ¼ x zð Þ ¼ � b� c�r13ð Þ=a⋅z � c�⋅
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it into Δ*

(z) =Δ*(x(z), z) =w(z, r23, 1) − (az ∓ bx(z))/c± to see that Δ(x, y) ≥Δ*(x, z(x)) =Δ*(z) = 0.

(5) y; tð Þ∈Eþ r23ð Þ; x; tð Þarbitrary
(5.1) y−r23≥0
Property (P2) implies t ≥w(y, r23, 1) ≥ 1 + r23 − y ⇒ (y, t) ∈ L1(r23) ⇒ ∂

∂t C23 y; tð Þ ¼ 1
2

We must have x − r13 ≥ 0 (UPC), x − r13 ≥ 0 (LPC), in Cases (I.b) and (I.c):

(UPC) Case (I.b): x > (ay − c+)/b ≤ (ar23 − c+)/b = r13
(UPC) Case (I.c): if − x > − r13, y ≥ r23 then ay − bx > ar23 − br13 = c+ in contradiction

to the assumption ay − bx ≤ − c+ defining Case (I.c).

(LPC) Case (I.b): − y ≤ − r23 ⇒ x < (c− − ay)/b ≤ (c− − ar23)/b = r13
(LPC) Case (I.c): if x ≥ r13, y ≥ r23 then ay + bx ≥ ar23 + br13 = c− in contradiction to

the assumption ay + bx ≤ − c− defining Case (I.c).

In this situation, if t ≥w(x, r13, 1), then ∂
∂t C13 x; tð Þ ¼ 1

2 (UPC),
∂
∂tC13 x; tð Þ ¼ 0 (LPC):

(UPC): using (P2) of Lemma A1.2: t ≥w(x, r13, 1) ≥ 1 + r13 − x ⇒ (x, t) ∈ L1(r13)
(LPC):

(i) using x − r13 < 0: t ≤ 1 < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using (P5) of Lemma A1.2: t ≥w(x, r13, 1) > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

We distinguish between three main cases:

(a)c±t ≤ ay ∓ bx (Case (I.a) and possibly Case (I.b))
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We have necessarily ∂
∂t C13 x; tð Þ≤∂

∂t C23 y; tð Þ ¼ 1
2 (UPC), ∂

∂t C13 x; tð Þ þ ∂
∂t C23 y; tð Þ−1

2≥0
(LPC)

(b)c±t ≥ ay ∓ bx > c± ⋅w(x, r13, 1) (possible in Cases (I.b) and (I.c))

By the above we have ∂
∂t C13 x; tð Þ ¼ ∂

∂t C23 y; tð Þ ¼ 1
2 (UPC),

∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ¼ 0

(LPC), which is consistent with the desired inequalities

(c)c±t ≥ ay ∓ bx and ay ∓ bx ≤ c± ⋅w(x, r13, 1) (possible in Cases (I.b) and (I.c))

We derive the inequality (C5.1) t ≥w(y, r23, 1) ≥w(x, r13, 1), which again implies ∂
∂t C13

x; tð Þ ¼ ∂
∂t C23 y; tð Þ ¼ 1

2 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2 ¼ 0 (LPC). We use the trans-

formation z = z(x) = (c ⋅w(x, r13, 1) ± bx)/a and its inverse in (A1.3) to show that Δ(x, y) =

w(y, r23, 1) −w(x, r13, 1) ≥ 0 under the constraints r23 ≤ y ≤ z(x), r13 ≤ x ≤ 1 (UPC), − 1 ≤ x <
r13 (LPC). By (P4) of Lemma A1.2 the function w(y, r23, 1) is decreasing in y, hence

Δ(x, y) ≥ Δ*(x, z(x)) = w(z(x), r23, 1) − w(x, r13, 1) = w(z(x), r23, 1) − (az(x) ÷ bx)/c±.

Insert the inverse x = x(z) into Δ*(z) = Δ*(x(z), z) =w(z, r23, 1) − (az ∓ bx(z))/c± to see

that Δ x; yð Þ≥Δ� x; z xð Þð Þ ¼ Δ� zð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
1� 1ð Þ≥0 as desired.

(5.2) y−r23 < 0

We first note that ∂
∂t C23 y; tð Þ ¼ 0:

(i) using y − r23 < 0: t ≤ 1 < 1 + r23 − y ⇒ (y, t) ∉ L1(r23)

(ii) using (P5) of Lemma 3.2: t ≥w(y, r23, 1) > y + r23 − 1 ⇒ (y, t) ∉ L4(r23)

We distinguish between two main cases:

(a)c±t ≥ ay ∓ bx (Case (I.c) and possibly Case (I.b))

We have necessarily ∂
∂t C13 x; tð Þ≥∂

∂tC23 y; tð Þ ¼ 0 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≤0

(LPC)

(b)c± ⋅ w(y, r23, 1) ≤ c±t ≤ ay ∓ bx (Case (I.a) and possibly Case (I.b))

We show that ∂
∂tC13 x; tð Þ ¼ 0 (UPC), ∂

∂t C13 x; tð Þ ¼ 1
2 (LPC), which is consistent with the

desired inequalities ∂
∂t C13 x; tð Þ≤∂

∂tC23 y; tð Þ ¼ 0 (UPC), ∂
∂t C13 x; tð Þ þ ∂

∂t C23 y; tð Þ−1
2≥0 (LPC)
Case 1 y ≥ (c±r23 − a)/b
(C5.2.1) t ≥w(y, r23, 1) ≥w(x, r13, 1), and x − r13 < 0 (UPC), x − r13 > 0 (LPC)

Case 2 y ≤ (c±r23 − a)/b

(C5.2.2) c± ⋅w(y, r23, 1) ≤ c±t ≤ ay ∓ bx < c± ⋅w(x, r13, − 1), x + r13 < 0 (UPC), x + r13 ≥
0 (LPC)

Indeed, if these conditions hold, then ∂
∂tC13 x; tð Þ ¼ 0 in virtue of (3.11) as follows:

UPC) Case 1 (i) using x − r13 < 0: t ≤ 1 < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using (P5) of Lemma 3.2: t ≥w(x, r13, 1) > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(LPC) Case 1: (P2)⇒ t ≥w(x, r13, 1) ≥ 1 + r13 − x ⇒ (x, t) ∈ L1(r13)

(UPC) Case 2: (i) using (P6) of Lemma 3.2: t ≤w(x, r13, − 1) < 1 + r13 − x ⇒ (x, t) ∉ L1(r13)
(ii) using x + r13 < 0 t ≥ − 1 > x + r13 − 1 ⇒ (x, t) ∉ L4(r13)

(LPC) Case 2: (P1) ⇒ t <w(x, r13, − 1) ≤ x + r13 − 1 ⇒ (x, t) ∈ L4(r13)
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To show the above inequalities we use the transformation z = z(y) = ± (ay − c± ⋅ w(y,
r23, 1))/b.

Case 1: Since the function z(y) is increasing (UPC) (respectively decreasing (LPC)) in

the interval (c±r23 − a)/b ≤ y < r23, we have in particular x ≤ z(y) < z(r23) = (ar23 − c+)/b =

r13 (UPC), x ≥ z(y) > z(r23) = (c− − ar23)/b = r13 (LPC). We show that Δ(x, y) =w(y, r23, 1) −
w(x, r13, 1) ≥ 0 under the constraints − 1 ≤ x ≤ z(y) (UPC), z(y) ≤ x ≤ 1 (LPC), (c±r23 − a)/b ≤
y < r23. With (P4) of Lemma A1.2, w(x, r13, 1) is increasing in x (UPC), decreasing in x

(LPC), hence Δ(x, y) ≥Δ*(y, z(y)) =w(y, r23, 1) −w(z(y), r13, 1) = (ay ∓ bz(y))/c± −w(z(y), r13, 1).

Since z(y) is increasing and z(r23) = r13, z((c+r23 − a)/b) = − 1 (UPC), respectively z(y)

is decreasing and z(r23) = r13, z((c−r23 − a)/b) = 1 (LPC), its inverse in (A1.3) takes the

“+” sign: y zð Þ ¼ � a−cr23ð Þ=b⋅z þ c
ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert into Δ*(z) = Δ*(y(z), z) = (ay(z) ∓ bz)/c± −

w(z, r23, 1) to see that Δ(x, y) ≥ Δ*(y, z(y)) =Δ*(z) = 0 as desired.

Case 2: One shows that z(y) is decreasing (UPC) (respectively increasing (LPC)) in

the interval − 1 ≤ y ≤ (c±r23 − a)/b. In particular x ≤ z(y) ≤ z(−1) = (c+r23 − a)/b ≤ − r13
(UPC), x ≥ z(y) ≥ z(−1) = (a − c−r23)/b ≥ − r13 (LPC), where the last inequalities are true

because a − br13 − c+r23 ≥ c+ ⋅ (1 − r23) ≥ 0 (UPC), a + br13 − c−r23 ≥ c− ⋅ (1 − r23) ≥ 0 (LPC).

Now, we show that Δ(x, y) =w(x, r13, − 1) − (ay ∓ bx)/c± ≥ 0 under the constraints −
1 ≤ x ≤ z(y) (UPC), z(y) ≤ x ≤ 1 (LPC), − 1 ≤ y ≤ (c±r23 − a)/b. Since the function h(x) =w

(x, r13, − 1) ± bx/c is decreasing (UPC), respectively increasing (LPC), we have Δ(x,

y) ≥ Δ*(y, z(y)) =w(z(y), r13, − 1) − (ay ∓ bz(y))/c±. Since z(y) is decreasing and z((c+r23 −
a)/b) = − 1, z(−1) = (c+r23 − a)/b (UPC), respectively z(y) is increasing and z((c−r23 − a)/

b) = 1, z(−1) = (a − c−r23)/b (LPC), its inverse in (A1.3) takes the “-“ sign, that is

y zð Þ ¼ � a−c�r23ð Þ=b⋅z−c�⋅ ffiffiffiffiffiffiffiffiffiffi
1−z2

p
. Insert it into Δ*(z) = Δ*(y(z), z) =w(z, r13, − 1) − (ay

(z) − bz)/c to see that Δ(x, y) ≥ Δ*(y, z(y)) = Δ*(z) = 0 as desired.
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