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Abstract

The rank-based fit of a linear model is based on minimizing a norm. A score function
needs to be selected for the fit and the proper choice leads to asymptotically efficient
regression estimators, i.e., fits equivalent to the maximum likelihood estimators (mle).
In this paper, we present the family of optimal scores functions for the skew-normal
family of distributions. We show the easy computation of this rank-based fit using
the R package Rfit. We present the results of a small simulation study comparing
the rank-based estimators and the mles in terms of efficiency and validity over
skew-normal and contaminated normal distributions. We also develop and present
empirical results for a Hogg-type adaptive procedure for selecting among a family of
these scores based on a robust initial fit.

Keywords: Linear models; Monte Carlo; Nonparametrics; Regression rank scores;
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1 Introduction
Rank-based fitting of linear models offers an attractive alternative to least squares (LS)
and maximum likelihood (mle) fitting. The geometry of the rank-based fit is similar to
that of LS. Simply replace the Euclidean squared norm used in the LS fit with another
norm which, unlike LS, results in a robust fit. The accompanying robust analysis is the
analogue of the LS’s ANOVA and ANCOVA. The rank-based analysis offers a complete
analysis including robust diagnostics to check quality of fit. This rank based analysis has
recently been extended to mixed and nonlinear models; see Kloke et al. (2009) and Abebe
and McKean (2013), respectively. A full development of the rank-based analysis can be
found in Chapters 3-5 of the monograph by Hettmansperger and McKean (2011). The
rank-based analysis is, generally, highly efficient. It can easily be optimized depending on
the information available concerning the distribution of the random errors. For example,
if the form of the error distribution is known, then an appropriate rank-based procedure
can be selected to attain full efficiency.
In this paper, we discuss rank-based analyses which are appropriate for the skew-normal

(SN) family of distributions. This is a rich family of skewed distributions developed by
Azzalini (1985). The skewness of a distribution in this family is controlled by a shape
parameter α,−∞ < α < ∞. Distributions are left or right skewed, depending on whether
α < 0 or α > 0, respectively. If α = 0 then the distribution is normal. As we discuss in
Section 3, all of these distributions are light-tailed. Such families of distributions occur
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frequently in accelerated failure time (AFT) models. The response of interest in such
models is survival time and its log is frequently modeled in terms of a log linear model.
The random errors for these log linear models are, generally, skewed. For instance, the
family of distributions for log linear models when survival time follows an F-distribution
contains a wide variety of skewed distributions with tail weights that range from moder-
ate to heavy; see McKean and Sievers (1989). Hence, the skew-normal family adds a rich
class of light-tailed skewed distributions which also includes the normal distribution.
In Section 2, we outline the rank-based analysis for a general linear model. The compu-

tation of these analyses is easily handled by the R package Rfit, developed by Kloke and
McKean (2013), which can be freely downloaded at the CRAN http://cran.us.r-project.
org/. We discuss this software for an example in this section and we continue such discus-
sion in the remainder of the article. The data for the example and the R code, supplemental
to Rfit, used in this article are available to the reader at the http://www.stat.wmich.edu/
mckean/SN/.
In Section 3, we develop rank-based analyses for the skew-normal family. These analy-

ses are efficient for this family and the appropriate analysis is fully efficient. As we discuss,
these analyses are technically robust similar to the optimal rank-based analysis for nor-
mally distributed errors. In contrast, in a sensitivity analysis, we show that the maximum
likelihood fit (mle) is not robust. In Section 4, we present the results of a Monte Carlo
study which verify the robustness and validity of the rank-based analysis over a fam-
ily of SN distributions and contaminated SN distributions. These studies confirm the
nonrobustness of the mle analysis.
The rank-based analysis depends on the shape parameter α. One outcome of theMonte

Carlo study is that rank-based analyses based on shape parameters in a neighborhood
of the correct α had very similar behavior to that using the correct α. This suggests
that a simple Hogg-type adaptive procedure would entertain excellent properties in this
situation. In Section 5, we develop such an adaptive scheme for the family of SN distribu-
tions. In a simulation study, we verify the efficiency and validity of this scheme over SN
situations and, further, over two contaminated situations.

2 Notation and rank-based analysis
Let Y be a n × 1 vector of responses which follows the linear model given by

Y = 1nβ0 + Xβ + e. (1)

where 1n is a vector of n ones; X is a n × p design matrix which may contain predictors
(covariates) as well as indicator (dummy) variables; β0 is an intercept parameter; β is a
p × 1 vector of regression parameters; and e is a n × 1 vector of random errors. Because
we have an intercept parameter in the model, we assume without loss of generality that
the design matrix X is centered, (all columns of X have mean 0). For the theory discussed
below, assume that the components of e are iid with pdf f (x) and cdf F(x), where F(x) is
unknown.
The least squares (LS) estimator of β is the vector β̂LS which minimizes the Euclidean

distance between Y and the column space of X; that is, it satisfies

β̂LS = Argmin‖Y − Xβ‖22., (2)

where ‖v‖22 = ∑n
i=1 v2i is the Euclidean norm.

http://cran.us.r-project.org/
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For the rank-based estimates, simply replace the Euclidean norm ‖ · ‖22 by the
pseudo-norm

‖v‖ϕ =
n∑

i=1
a[R(vi)] vi, v ∈ Rn, (3)

where R(vi) is the rank of vi among v1, . . . , vn and the scores a(i) are generated as as a[i]=
ϕ[i/(n + 1)], for a nondecreasing bounded square-integrable function ϕ(u), satisfying,
without loss of generality, the standardizing conditions

∫
ϕ(u) du = 0 and

∫
ϕ2(u) du = 1.

Then the rank-based estimator minimizes the ‖ · ‖ϕ-distance between Y and the column
space of X; i.e.,

β̂ϕ = Argmin‖Y − Xβ‖ϕ . (4)

These estimators were proposed by Jaeckel (1972) and Jurečková (1971). An associated
rank-based analysis, including diagnostics procedures, is discussed in Chapters 3-5 of
the monograph by Hettmansperger and McKean (2011). A score function needs to be
selected. Often theWilcoxon (linear) score function is used, ϕ[u]= √

12[u−(1/2)].When
Wilcoxon scores are used, we refer to the subsequent fit and analysis as the Wilcoxon
analysis. Another frequent choice is the sign scores function, ϕ[u]= sgn [u−(1/2)], which
yields the l1-fit. Score functions are discussed in terms of optimality in Section 2.2.
As with LS, the rank-based estimator of the intercept is a location estimate based on

the residuals. For LS, the arithmetic mean is used while for the rank-based estimates,
generally, the median is used; i.e.,

β̂0 = medi
{
Yi − xT β̂ϕ

}
. (5)

2.1 Theory

As shown in Hettmansperger and McKean (2011), the influence function of the rank-
based estimator β̂ϕ is given by

�
(
x0, y0; β̂ϕ

)
= τϕ(X ′X/n)−1ϕ[F(y0)] x0, (6)

where the point (y0, xT0 ) represents an outlier. The parameter τϕ is the scale parameter
given by

τ−1
ϕ =

∫
ϕ(u)ϕf (u) du , (7)

where

ϕf (u) = − f ′(F−1(u))

f (F−1(u))
. (8)

Based on this influence function it is clear that β̂ϕ is robust in Y -space if the scores
function ϕ(u) is bounded. Note, though, that β̂ϕ is not robust in X-space. A weighted
version of the Wilcoxon estimator called the HBR (high breakdown rank-based) achieves
50% breakdown in both the X-space and the Y -space; see Chang et al. (1999).
As can be seen from the influence function, the asymptotic distribution of the rank-

based estimator is given by

β̂ϕ ∼ Np
(
β , τ 2ϕ (X ′X)−1) . (9)

Note that the only difference between the theory for the LS and rank-based estimators
is that σ 2 is replaced by τ 2ϕ . Hence, the asymptotic relative efficiency (ARE) between the
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LS and rank-based estimator is σ 2/τ 2ϕ . For Wilcoxon scores, assuming that the random
errors have a normal distribution, this ARE is the familiar 0.955; that is, for normal errors
using theWilcoxon analysis instead of the LS analysis results in only a 5% loss of efficiency.
Koul et al. (1987) developed an estimator of τϕ , τ̂ϕ , which is computed by Rfit.
Chapters 3-5 of Hettmansperger andMcKean (2011) discuss rank-based analyses of lin-

ear, mixed, and nonlinearmodels. The examples and simulation studies of this papermake
use of these confidence intervals and a robust R2, which we briefly present. An asymp-
totic (1 − α)100% confidence interval for a linear combination of regression parameters,
say, hTβ is given by

hT β̂ϕ ± tα/2,n−p−1τ̂ϕ

√
hT (X ′X)−1h, (10)

where tα/2,n−p−1 denotes the upper α/2, t-critical value with n−p−1 degrees of freedom.
Next, consider a general linear hypothesis of the form

H0 : Hβ = 0 versus HA : Hβ �= 0 (11)

where H is a specified q × p matrix. Let VFull and VRed denote the respective full model
column space of X and the reduced model subspace of VFull constrained by H0. Denote
the distance between Y and each of these subspaces respectively by ‖Y − Xβ̂ϕ‖ϕ and
‖Y−W θ̂ϕ‖ϕ , whereW denotes a reducedmodel n×(p−q) designmatrix and θ̂ϕ denotes
the corresponding reducedmodel rank-based estimator. Then RD = ‖Y −W θ̂ϕ‖ϕ −‖Y −
Xβ̂ϕ‖ϕ denotes the reduction in distance when passing from the reducedmodel to the full
model. This is analogous to the LS reduction in Euclidean squared-distance (reduction in
sums-of-squares). The corresponding rank-based F-test is given by

Fϕ = RD/q
τ̂ϕ/2

. (12)

An asymptotic level α test is to reject H0 in favor of HA, if Fϕ ≥ Fα(q, n− p− 1), where
Fα(q, n−p−1) denotes the upper α-critical value of an F-distribution with q and n−p−1
degrees of freedom.
As an example of this test, consider the hypothesis that all regression coefficients except

for the intercept parameter are 0; i.e.,

H0 : β = 0 versus HA : β �= 0, (13)

In this case the reduced model dispersion is ‖Y‖ϕ . Thus the reduction in dispersion
is RD = ‖Y‖ϕ − ‖Y − Xβ̂ϕ‖ϕ . Using this reduction, the robust F-test statistic is given
by expression (12). A nominal level α test of the hypotheses (13) is to reject H0 if Fϕ ≥
Fα(p, n − p − 1). This test is a robust analogue of the least squares F test statistic that
all regression coefficients are 0. Recall that the traditional coefficient of determination
R2 can be expressed as a one-to-one function of the LS F-test. In the same way, a robust
coefficient of determination R2 can be formulated as

R2 = RD
RD + (n − p − 1)(τ̂ϕ/2)

; (14)
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see page 243 of Hettmansperger andMcKean (2011).We refer to R2 as a robust coefficient
of determination in subsequent examples.

2.2 Optimal scores

The rank-based analysis outlined above requires the selection of a score function ϕ(u). If
the form of the underlying error distribution is known, we can obtain an optimal score
function which minimizes the variance of the estimator. Using expressions (7) and (8), we
can rewrite 1/τϕ as

(τϕ)−1 =
∫ 1

0
ϕ(u)ϕf (u) du

=
∫ 1
0 ϕ(u)ϕf (u) du(∫ 1
0 ϕ2

f (u) du
)1/2

(∫ 1

0
ϕ2
f (u) du

)1/2

= ρ

(∫ 1

0
ϕ2
f (u) du

)1/2
= ρ

√
I( f ),

(15)

where ρ is a correlation coefficient and
√
I( f ) is Fisher Information. Therefore, min-

imizing τϕ is equivalent to maximizing the above identity. By the last equality, this is
accomplished by making ρ = 1; i.e., by taking ϕ(u) to be ϕf (u). So expression (8) is
the score function which optimizes the rank-based analysis. Since β̂ϕ is location and
scale equivariant, only the form of f (x) is needed. Furthermore, since in this case τϕ =
1/

√
I( f ), the rank-based estimator β̂ϕ is asymptotically fully efficient, i.e., β̂ϕ has the

same asymptotic distribution as the maximum likelihood estimator (mle).
For example, if the error distribution is normal, then the optimal score function sim-

plifies to ϕ(u) = 	−1(u), the normal scores. If the error distribution is logistic, then
the linear Wilcoxon scores are obtained, while double exponential (Laplace) distributed
errors produces the sign scores.

2.3 Computation of the rank-based analysis

The computation of a rank-based analysis can be obtained by using the R package Rfit
developed by Kloke and McKean (2012), which can be downloaded at CRAN. Like R,
Rfit is freeware and can run on all platforms (windows, linux, and mac). As we discuss
in Section 3, it is easy to install new scores in Rfit based on a general scores function.
For now, we illustrate the computation of Rfit for a Wilcoxon analysis in the following
example.

Example 2.1 (Linear Model with Skew-Normal Errors). We use a simulated data set
based on the model y = β0 + β1x1 + β2x2 + β3x3 + e, where x1 = 1, · · · , 50; x2 and x3
are variates from a standard normal distribution; and the random errors are generated
from a standard skew-normal distribution with shape parameter α = −8, as discussed in
Section 3. We set β1 = 0.01, β2 = 0.15, and β3 = 0.0. The sample size is n = 50. The data
set can be downloaded at the url cited in Section 1. The code segments below assume
that the R vectors y, x1, x2, x3, contain respectively the responses and values for x1,
x2 and x3. For this example, the following R code using the package Rfit computes the
Wilcoxon fit of the model, prints out the table of coefficients, and saves the Studentized
residuals in the vector studw.
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Based on the summary table, the 95% confidence intervals for βj, j = 1, 2, 3, (10),
trap the true parameters. The overall Fϕ test that all the regression coefficients are 0
except for the intercept is significant, p = 0.0257. The value of the robust coefficient of
determination R2, expression (14), is 18%.
The last command stores the Studentized Wilcoxon residuals in the vector studw.

These residuals are adjusted for both variance of the errors and location in the X-space;
see McKean and Sheather (2009) for a review of robust diagnostic procedures. Figure 1
displays Studentized residual and normal q−q plots based on the Wilcoxon fit.
As noted in Section 3, the skew-normal distribution chosen to generate the random

variates in this example is left skewed. Hence, as expected, the residuals show longer left
than right tails. These plots show that scores for left-skewed error distributions are more
appropriate for this data than the Wilcoxon scores. There appears to be one large outlier
in the left tail, also. �

3 Skew-normal error distributions
The family of skew-normal distributions consists of left and right skewed distributions
along with the normal distribution. The pdfs in this family are of the form

f (x;α) = 2φ(x)	(αx), (16)

where the parameter α satisfies −∞ < α < ∞ and φ(x) and 	(x) are the pdf and cdf of a
standard normal distribution, respectively. For this paper, if a random variable X has this
pdf, we say that X has a standard skew-normal distribution with parameter α and write
X ∼ SN(α). If α = 0, then X has a standard normal distribution. Further X is distributed
left skewed if α < 0 and right skewed if α > 0. This family of distributions was introduced
by Azzalini (1985), who discussed many of its properties.
In this paper, we are interested in linear models, (1), where the random errors may

have skew-normal errors. In this case, the random error can be written as ei = bεi, where
εi has a standard skew-normal distribution and b is a scale parameter. The rank-based
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Figure 1 Studentized residual and normal q−q plots based on theWilcoxon fit of the data in
Example 2.1.

estimator β̂ϕ and corresponding analysis are regression and scale equivariant, so there is
no need to estimate the scale parameter b. The only scale parameter requiring estimation
for standard errors is τϕ . Likewise, for inference on the vector of parameters β there is no
need to estimate the shape parameter α.
What rank scores would be best for such error distributions? To get an idea, we next

discuss the optimal scores for a specified α. To obtain the optimal rank-based scores,
because of equivariance, we need only the form (down to scale and location) of the pdf.
So for the derivation of the scores, assume that the random variable X ∼ SN(α) with pdf
(16). It easily follows that

− f ′(x;α)

f (x;α)
= x − αφ(αx)

	(αx)
. (17)

Denote the inverse of the cdf of X by F−1(u;α). Then it follows from expression (15)
that the optimal score function for X is

ϕα(u) = F−1(u;α) − αφ(αF−1(u;α))

	(αF−1(u;α))
. (18)

For all values of α, this score function is strictly increasing over the interval (0, 1); see
Azzalini (1985). As expected, for α = 0, expression (17) simplifies to the normal scores.
Due to the first term on the right-side of expression (18), all the score functions in this
family are unbounded, indicating that the skew-normal family of distributions is light-
tailed. Thus the influence functions of the rank-based estimators based on scores in this
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family are unbounded in the Y -space and, hence, are not robust. This includes the normal
scores, but Huber (1981) pointed out that normal scores are technically robust and, as our
simulation studies show, the family of skew-normal scores seems also to be technically
robust.
Figure 2 displays the pdf ’s and corresponding optimal scores for three values of α: −7,

1, 5. Note that the pdf for α = −7 is left skewed while those for positive α values are right
skewed. Unsurprisingly, the pdf for α = 1 is closer to being symmetric than the other
pdfs. The score function for the left-skewed pdf emphasizes relatively the right tails over
the left tails, while the reverse is true for the right-skewed pdfs.

3.1 Computation of the rank-based analysis using skew-normal scores

The computation of the rank-based analysis can be obtained by using the R package Rfit.
It is easy to install the family of skew-normal scores. Briefly, rank-based scores form a
class in Rfit consisting of three parts: the score function, its derivative, and a vector of
parameters used in the definition of the function. For the skew-normal scores, details are
given in the appendix, but for the readers convenience the necessary R code is contained
in the R function skewns, which we have placed at the web site cited in the introduction.

Example 3.1 (Example 2.1, Continued). We now return to Example 2.1 and show the
computation of the rank-based analysis of it based on the skew-normal scores with shape
parameter α = −8. The first two lines of code define the skew-normal scores as salp
and the third line sets the shape parameter. Details of this definition can be found in the
appendix.

Note that the skew-normal analysis is much more precise than the Wilcoxon analysis
of the last section. The empirical ARE is (τW/τα=−8)2 = 2.78; i.e., for this data set, the
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Figure 2 These plots display the pdfs of the three skew-normal distributions with shape parameter
α = −7, 1, and 5, along with the corresponding optimal scores.

skew-normal analysis is 2.8 times more efficient than the Wilcoxon analysis. Note, also,
that the robust coefficient of determination, R2, has increased from 18% to 28%.

3.2 Sensitivity analysis

For a verification of the technical robustness of the rank-based skew-normal analysis, we
conducted a small sensitivity analysis. We generated n = 50 observations from a linear
model of the form yi = xi + ei, where xi has a N(0, 1) distribution and ei has a N(0, 102)
distribution. The xi’s and ei’s are all independent. We added outliers of the form

y50 ← y50 + �, (19)

where � is in the set {0, 20, 40, 60, 80, 100, 1000, 2000}. The sensitivity curve for an
estimator β̂ is given by the function

S(�; β̂) = β̂ − β̂(�), (20)

where β̂ and β̂(�) denote the estimates of β on the original and modified data (19),
respectively. We obtained sensitivity curves for the estimators: Wilcoxon, normal scores,
skew-normal (α = 3), skew-normal (α = 5), skew-normal (α = 7), and maximum like-
lihood estimates (mle). The mles were computed by the package sn. For all values of �,
the changes in all of the the rank-based estimates were less than 0.004. Thus the rank-
based skew-normal estimators, including the normal scores estimator, exhibited technical
robustness for this study. On the other hand, the mle was sensitive to the values of �. We
show these changes in Table 1; hence, for this study, the mle was not robust.
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Table 1 Values of the sensitivity function for themle at the given values of�

� 0 20 40 60 80 100 1000 2000

mle 0.00 −0.07 −0.07 −0.00 0.12 0.30 −5.80 −6.32

3.3 Range of practical α parameters

In Sections 4 and 5, the results of simulation studies are presented. The error distribu-
tions involve families of skew-normal distributions. So a practical range of α values is
needed. Pourahmadi (2007) derived properties of the skew-normal distribution including
its moment generating function. In particular, he showed that if X has the SN(α) distri-
bution, then X converges in distribution to |Z| as α → ∞ where Z is N(0, 1); i.e., the
distribution of X converges to a half-normal distribution. Likewise, X converges in distri-
bution to −|Z| as α → −∞. In terms of α, the convergence is fairly fast. Table 2 serves
as an illustration of this as it displays the mean (μ), median (μ̃), variance (σ 2), and coeffi-
cient of skewness (ξ ) for various values of α. The last column of the table shows the value
of these parameters for the half-normal distribution. Positive values of α suffice because
if X ∼ SN(α) then −X ∼ SN(−α). There is little difference between the standard skew-
normal distribution and the half-normal distribution for values of α near ±8. Based on
these facts, we use skew-normal distributions with values of α between −12 and 12 for
our Monte Carlo investigations.
Because we are interested in linear models, there is another practical reason for this

range of α values. Note that the support of a skew-normal distribution is (−∞,∞) mak-
ing it ideal for error distributions for regression models. On the other hand, the support
of a half-normal distribution is (0,∞), which is generally the support of a survival distri-
bution. Often, the log’s of such variables are modeled as accelerated failure time (AFT)
models, as briefly discussed in Section 1.

4 Monte Carlo study
This section contains the results of a small simulation study concerning rank-based
procedures based on skew-normal scores. The model simulated is

yi = β0 + β1xi + θci + ei, (21)

where xi is distributed N(0, 1); ei is distributed from a selected error distribution; i =
1, . . . , 100; the xis and eis are all independent; and the variable ci is a treatment indicator
with values of either 0 or 1. We selected two error distributions for the study. One is a
skew-normal distribution with shape parameter α = 5 while the other is a contaminated
version of a skew-normal. The contaminated errors are of the form

ei = (1 − Iε,i)Wi + Iε,iVi, (22)

Table 2 Parameters (meanμ, median μ̃, variance σ 2, and coefficient of skewness ξ ) for
SN(α) distributions for the given values of α

α 0.00 1.00 2.00 4.00 6.00 7.00 8.00 10.00 15.00 20.00 ∞
μ 0.00 0.56 0.71 0.77 0.79 0.79 0.79 0.79 0.80 0.80 0.80

μ̃ 0.00 0.55 0.66 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67

σ 2 1.00 0.68 0.49 0.40 0.38 0.38 0.37 0.37 0.37 0.36 0.36

ξ 0.00 0.14 0.45 0.78 0.89 0.92 0.93 0.96 0.98 0.98 0.99

The values in the last column (∞) are those for a half-normal distribution.
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where Wi has a skew-normal distribution with shape parameter α = 5, Vi has a N(μc =
10, σ 2

c = 36) distribution, Iε,i has a binomial (1, ε = 0.15) distribution, and Wi,Vi, and
Iε,i are all independent. Hence, this contaminated distribution is skewed with heavy right
tails. The design is slightly unbalanced with n1 = 45 and n2 = 55. Without loss of
generality β , θ , and β0 were set to 0.
For the rank based procedures, we selected the rank-based procedure based on the

score function ϕ5(u), (18), which is optimal for a skew normal distribution with α = 5 and
then three on each side of the optimal, i.e., procedures based on the score functions ϕα(u)

with α = 2, 3, 4, 6, 7, and 8. With the discussion in Section 3.3 in mind, we also selected
the rank-based procedure with α = 10. The rank-based Wilcoxon, least squares (LS)
procedure, and mle procedures complete the methods investigated. The empirical results
presented are the empirical AREs, which for each estimator is the ratio of the empirical
mean-square error (MSE) of the mle to the empirical MSE of the estimator; hence, values
of this ratio less than 1 are favorable to the mle while values greater than 1 are favorable
to the estimator. Secondly, we present the empirical confidence intervals with nominal
confidence 0.95. For all the procedures, we chose asymptotic confidence intervals of the
form β̂ ± 1.96SE(β̂). We used a simulation size of 10,000.
The results are presented in Table 3. For the skew-normal errors, for both parameters

β and θ , all the rank-based estimators except the Wilcoxon estimator are more efficient
than the mle estimator. Note that the most efficient estimator for both β and θ is the
rank-based estimator with α = 5; although, empirical efficiencies are not significantly
different from the empirical efficiencies for a few of the nearby (α close to 5) rank-based
estimators. In terms of validity, the empirical confidences of all the procedures are close
to the nominal confidence of 0.95. Not surprisingly, LS performed the worst overall.
For the contaminated error distribution, the rank-based estimators are much more effi-

cient than the mle procedure. Further, the estimator with scores based on α = 5 is still
the most empirically powerful in the study. It has empirical efficiency of 785% relative to
the mle for β and 1310% for θ . Even the Wilcoxon procedure is over 756% more efficient

Table 3 Summary of results of simulation study of rank-based procedures and themle
procedure for the skew-normal with shape α = 5 distribution and a skew-normal
contaminated distribution

Skew normal errors Contaminated errors

β θ β θ

Proced. ARE Conf. ARE Conf. ARE Conf. ARE Conf.

rb α = 2 1.02 0.96 1.04 0.96 6.61 0.98 10.84 0.98

rb α = 3 1.09 0.96 1.11 0.96 7.43 0.97 12.24 0.98

rb α = 4 1.13 0.96 1.15 0.96 7.79 0.97 12.91 0.98

rb α = 5 1.14 0.96 1.16 0.96 7.85 0.96 13.10 0.97

rb α = 6 1.13 0.95 1.16 0.96 7.73 0.96 13.02 0.97

rb α = 7 1.11 0.95 1.14 0.95 7.49 0.95 12.72 0.97

rb α = 8 1.09 0.95 1.12 0.95 7.17 0.95 12.30 0.96

rb α = 10 1.04 0.94 1.07 0.94 6.46 0.94 11.22 0.95

rb Wil. 0.78 0.95 0.79 0.95 4.70 0.96 7.56 0.97

LS 0.70 0.95 0.71 0.95 0.20 0.95 0.31 0.95

mle 1.00 0.93 1.00 0.93 1.00 0.96 1.00 0.99
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than the mle for θ . On the basis of the empirical confidences, for both parameters, all pro-
cedures appear to be from slightly to moderately conservative. Least squares performed
extremely poor in the contaminated part of the study. All the rank-based procedures
based on skew-normal scores display technical robustness in this study.

5 Hogg-Type adaptive procedure
In Section 3, we discussed the rank-based method based on the optimal score function
for a specified shape parameter α. Asymptotically, it is as efficient as the mle and, at least
for the situations covered in the simulation study, the rank-based estimator appears to be
more efficient than the mle for finite samples. In practice, though, the true shape param-
eter is not known. One could obtain the mle of α and use that score function. The mle,
however, is not robust. Reconsidering the empirical study, note from Table 3 that the
rank-based estimates close to the optimal rank-based estimator were more efficient than
the mle and most had efficiencies that were quite close to that of the optimal. That is,
in selecting a score function, perhaps close would suffice. In this section, we consider a
Hogg-type adaptive scheme which has this as its goal.
Hogg et al. (1975) proposed an adaptive procedure for tests of the difference in locations

for the two sample problem. The null hypothesis is that the two population distributions
are the same. The selection of the test is based on a pair of selector statistics that mea-
sure respectively skewness and tail weight of the underlying error distribution. These
selector statistics are functions of the order statistics of the combined samples. Sev-
eral distribution-free rank tests of significance level δ comprise the tests. Under the null
hypothesis, it follows from the sufficiency and completeness of the combined order statis-
tics and the distribution-freeness of the rank test statistics that the selected test maintains
the level δ. See, also, the discussion in Chapter 10 of Hogg et al. (2013).
This is fine for simple location tests where we have distribution-free rank tests, but in

our case we are fitting a linear model and, hence, the adaptionmust be based on the resid-
uals from an initial fit. Thus the above mentioned sufficiency result is not true for our
fitting case. Shomrani (2003) developed a Hogg-type adaptive scheme for fitting a linear
model based on an initial fit. In Shomrani’s scheme, the selector statistics are functions
of the residuals from the initial fit. While the significance level is no longer maintained,
based on the results of a large simulation study, the scheme’s empirical levels were gener-
ally close to the nominal value. In Chapter 6 of Kloke and McKean (2014), R software is
developed for this scheme.
The adaptive scheme of Shomrani (2003) was formed for a wide range of error distribu-

tions: from left to right skewed and from light to heavy tailed distributions. We refine this
scheme for the skew-normal family of distributions. As discussed above, there are two
selector statistics involved. One,Q1, selects based on skewness while the other,Q2 selects
based on tail thickness. In a preliminary study over the skew-normal family, tail thickness
did not seem to be a paramount issue, so we focus on Q1 alone.
Let V = (V1,V2, . . . ,Vn)T be a random vector and define

Q1(V ) = U .05 − M.5

M.5 − L.05
, (23)

where U .05, M.5, and L.05 are the averages of the largest 5% of the Vi’s, the middle 50%
of the Vi’s, and the smallest 5% of the Vi’s, respectively. Large values of Q1 indicate that
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the right tails of the sample are longer than the left tails; i.e., indicating an underlying
right skewed distribution. Likewise, small values of Q1 indicate left-skewness. Note that
as left (right) skew increases, Q1 is likely to decrease (increase). The statistic Q1 is not
robust. One scheme under current investigation is to replace the means by medians. Keep
in mind, though, that a robust diagnostic analysis is available for the initial robust fit.
Hence in practice, outliers are easily flagged andmodifications to the adaptive scheme can
be made.

5.1 Adaptive scheme for skew normals

Our adaptive scheme consists of the 7 optimal score functions for skew-normal distribu-
tions with α = −12,−8,−4, 0, 4, 8, and 12. So there are three scores each for left and right
skewed distributions along with the normal scores. The scheme utilizes residuals from an
initial Wilcoxon fit. We chose the Wilcoxon because it is robust. Also, it is optimal for a
symmetric distribution (logistic) and, hence, less likely to bias selection for left or right
skewness.
We decided to set the benchmarks for the selector statistic Q1 based on the

medians of the distribution of Q1 for the family of skew-normal distributions with
α = −10,−6,−2, 2, 6, and 10. Then the selection part of the adaptive scheme is given by:

Q1 < med(Q1|α = −10) ⇒ Select score using α = −12

med(Q1|α = −10) < Q1 < med(Q1|α = −6) ⇒ Select score using α = −8

med(Q1|α = −6) < Q1 < med(Q1|α = −2) ⇒ Select score using α = −4

med(Q1|α = −2) < Q1 < med(Q1|α = 2) ⇒ Select score using α = 0

med(Q1|α = 2) < Q1 < med(Q1|α = 6) ⇒ Select score using α = 4

med(Q1|α = 6) < Q1 < med(Q1|α = 10) ⇒ Select score using α = 8

med(Q1|α = 10) < Q1 ⇒ Select score using α = 12

(24)

We estimated themedians of the sampling distributions of the statisticQ1 based on sim-
ulations of size 10,000 drawn from the appropriate skew-normal distributions. Because
Q1 is location and scale equivariant, simulation using standard skew-normal distributions
suffices. The estimated (simulated) medians used for the scheme are given in Table 4.
In summary, the algorithm for our adaptive scheme is:

1. Fit using Wilcoxon scores ⇒ Obtain residuals êW .
2. Compute Q1(̂eW ) and then select ϕα using expression (24), using the estimated

medians of Q1.
3. Fit with selected score ϕα .
4. Inference is based on the fit of Step (3).

We next try the scheme on the data of Example 2.1.

Table 4 Simulated samplemedian of the distribution ofQ1 drawn from the skew-normal
distribution with shape parameter α

α -10 -6 -2 2 6 10

Median Q1 0.44 0.49 0.73 1.37 2.05 2.26

The simulation size is 10,000. These estimated medians are used in the adaptive scheme (24).
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Example 5.1 (Example 2.1, continued). For the data in Example 2.1, the selector Q1
has the value 0.344; hence the adaptive scheme (24) selects the score function with
α = −12. Table 5 summarizes the results of the fits based on skew-normal scores with α’s
in a neighborhood of −8.
The values of the regression coefficients are given along with the robust coefficient of

determinations R2 and estimates of τϕ . The fits are quite similar. Notice that in terms of
precision, τ̂ϕ ’s, that the fit with α = −8 is the most precise.

5.2 Simulation study

We investigated the validity and efficiency of the adaptive scheme in a Monte Carlo study
using situations similar to those in Section 4. In particular, the sample size is set at n = 100
and the linear model contains one predictor coefficient, β , and one indicator coefficient
for the treatment, θ . We considered three sampling situations. In the first situation (I),
for each simulation, α is randomly selected from the set {−12,−11, . . . , 11, 12} where the
selections are made equilikely. Then the random errors for the model are generated from
this SN(α) distribution. For Situation II, again α is randomly selected from the same set
of values but now the random errors are random variables of the form

ei = (1 − I.15)Si + I.15Ci,

where Si ∼ SN(α), Ci ∼ N(10, 62), I.15 is Bernoulli with proportion of success 0.15,
and Si,Ci, I.15 are independent. Thus, Situation II is the same as the second situation of
Section 3, i.e., right-skewed contamination. Situation III is the same as situation II except
that Ci ∼ N(0, 62), i.e., symmetric contamination. 10,000 simulations were used for each
situation.
The methods considered are: our adaptive scheme (AdSch), least squares (LS),

Wilcoxon (Wil), and maximum likelihood (mle). We also considered the procedure based
on the correct α; i.e., the α which is selected for the distribution of the random errors.
Note that this is not a statistical method and we label it as Optrv, “rv” for random variable.
Even for Situation I, the distribution of its rank-based estimate depends on the multi-
nomial random variable involved in the selection of the simulated distribution. We only
include it to serve as an yardstick for the four statistical methods.
As in the simulation study of Section 3, we considered empirical efficiency (relative to

the mle) and validity of 95% confidence intervals for the parameters β and θ . The results
for Situation I are summarized in Table 6. The adaptive scheme was more efficient than

Table 5 For the data of Example 2.1, the adaptive scheme chose the score function with
α = −12

α β1 β2 β3 τ̂ϕ RobustR2

α = −12 (Adaptive Choice) 0.0035 0.2190 0.0368 0.3675 0.2743

α = −10 0.0030 0.2095 0.0480 0.3699 0.2732

α = −9 0.0037 0.1923 0.0514 0.3531 0.2828

α = −8 0.0042 0.1831 0.0544 0.3484 0.2865

α = −7 0.0043 0.1822 0.0537 0.3533 0.2849

α = −6 0.0044 0.1808 0.0540 0.3490 0.2884

α = −5 0.0044 0.1805 0.0531 0.3580 0.2838

α = −4 0.0043 0.1854 0.0449 0.3886 0.2668

This table shows the variation in the rank-based fits for score functions in a neighborhood of α = −8.
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Table 6 Empirical efficiencies and confidence coefficients for Situation I (error
distributions are skew-normals)

AdSch Optrv LS Wil mle

β , ARE 1.06 1.12 0.75 0.80 1.00

β , Conf 0.95 0.95 0.95 0.95 0.93

θ , ARE 1.05 1.11 0.73 0.79 1.00

θ , Conf 0.95 0.95 0.95 0.95 0.94

Empirical efficiencies are MSE’s relative to the MSE of the mles.

all other statistical methods for both parameters. In particular, it was more efficient than
the mle by 6 and 5% respectively. In terms of validity all of the methods are valid. The
adaptive scheme was less efficient (by 6%) than the optimal non-statistical procedure.
For Situation I, the random errors have a skew-normal distribution with shape parame-

ter α drawn from the set {−12,−11, . . . , 12}, while the scheme selects scores from the set
{−12,−8,−4, 0, 4, 8, 12}. These sets are different; hence, it does not make sense to con-
sider when the scheme made the “correct” selection. We did keep track of how often the
selection was within two units of the distribution simulated. For the 10,000 simulations
of Situation I, the estimate of this proportion is 0.584. Note that for Situations II and III,
the random errors have a contaminated skew-normal distribution. In particular, it is not
a skew-normal distribution. So for Situations II and III, this proportion is irrelevant.
The results for Situation II are summarized in Table 7. For this right-skewed contami-

nated situation, the adaptive scheme is much more efficient than the mle, 358% and 356%
respectively for β and θ . The adaptive scheme is adapting to this heavy tailed situation
and the mle is not robust. As expected, the Wilcoxon performs best. All the methods
are valid. We included the optimal random variable procedure since it was in Situation I.
Note, though, that in Situations II and III the distribution of the random errors is not a
skew-normal distribution. Besides not being a statistical method it is no longer optimal
in any sense.
The results for the situation, III, with symmetric contamination can be found in Table 8.

The adaptive scheme is much more efficient than the mle, 367% and 477% respectively
for β and θ . As expected, the Wilcoxon performs best. All the rank-based methods are
valid. The mle is slightly conservative for θ . The same comments hold for Optrv as in
Situation II.

6 Conclusion
Rank-based analyses of linear models depend on the selection of a score function. In prac-
tice, often the Wilcoxon (linear) score function is chosen. These scores require no tuning
constants and, further, the Wilcoxon rank-based analysis attains 95.5% efficiency relative

Table 7 Empirical efficiencies and confidence coefficients for Situation II (error
distributions are skewed contaminated skew-normals)

AdSch Optrv LS Wil mle

β , ARE 3.58 1.86 0.92 7.27 1.00

β , Conf 0.97 0.97 0.95 0.95 0.94

θ , ARE 3.56 1.56 0.94 7.36 1.00

θ , Conf 0.97 0.96 0.95 0.95 0.95

Empirical efficiencies are MSE’s relative to the MSE of the mles.
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Table 8 Empirical efficiencies and confidence coefficients for Situation III (error
distributions are symmetrically contaminated skew-normals)

AdSch Optrv LS Wil mle

β , ARE 3.67 1.01 0.26 6.16 1.00

β , Conf 0.94 0.97 0.95 0.97 0.95

θ , ARE 4.77 0.85 0.35 8.18 1.00

θ , Conf 0.94 0.97 0.95 0.97 0.98

Empirical efficiencies are MSE’s relative to the MSE of the mles.

to the traditional least squares (LS) analysis when the random error distribution is normal.
However, rank-based analyses are easily optimized if there is knowledge of the distri-
bution of the random errors of the linear model. For example, if the random errors are
normally distributed then selecting the normal scores for the rank-based analysis results
in the efficiency of 100% (fully efficient) relative to the LS analysis.
In this paper, we have presented the rank-based analyses based on appropriate score

functions for random errors having a distribution from the family of skew-normal distri-
butions. In this case, the score function depends on the shape parameter α, −∞ < α <

∞. Of course, the rank-based analysis is fully efficient if the correct α is known. The rank-
based analysis is a complete analysis, including fitting, inference (rank-based ANOVA),
and robust diagnostic procedures. Based on the results of our Monte Carlo, these rank-
based analyses appear to bemore efficient than themaximum likelihood (mle) analysis for
the skew-normal distributions considered. Themost efficient rank-based analysis is based
on the optimal score function, but even those rank-based analyses with shape parameters
within three units of the correct α were more efficient than the mle in these situations.
They were muchmore efficient than the mle’s over situations where the error distribution
had a contaminated skew-normal distribution. Based on empirical confidence levels, all
the methods in the study were valid.
The good efficiency results for the rank-based analyses in a neighborhood of the true

α suggest that a Hogg-type adaptive scheme would have high efficiency. In Section 5, we
developed such a scheme for the skew-normal family of distributions based on an initial
robust Wilcoxon fit. In the Monte Carlo studies we performed, this scheme was more
efficient than the mle over the family of skew-normal distributions and was much more
efficient than the mle over the contaminated skew-normal situations. Furthermore, for
the situations covered, this adaptive scheme appears to be valid.
Kloke and McKean (2012) developed an R package Rfit for these rank-based analyses,

which can be freely downloaded at CRAN. The default scores are the Wilcoxon scores,
but, as we discuss in Section 3 it is easy to add classes of scores including the optimal
scores for skew-normal distributions. The adaptive scheme of Section 5 is also easily
coded using Rfit. The necessary code for the scores and the adaptive scheme can be
found at the web site cited in Section 1. Hence, computation of these rank-based analyses
is not a problem.
The rank-based analyses using skew-normal scores are robust in Y (response) space, but

not in X (factor) space. The weighted Wilcoxon fit proposed by Chang et al. (1999) yield
a robust rank-based analysis which possesses 50% breakdown in X (factor) space. We are
now developing such an analysis for the skew-normal scores; see Abebe et al. (2014) for
discussion. This analysis could also be part of an adaptive scheme.
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A Appendix: R code for the class of skew normal scores
Rank-based scores form a class in Rfit which consists of three principal parts. The first
part is the scores function itself and the third part consists of any parameters in the func-
tion expression. Thus parts (1) and (3) for the skew-normal scores are respectively given
by expression (18) and the shape parameter α. The second part is the derivative of the
score function which is used in the Rfit function which estimates τϕ . Let l(x) denote the
function defined in expression (18). The derivative of the optimal score function is given
by

ϕ′
α(u) = l′[F−1(u;α)]

1
2φ[ F−1(u;α)]	[αF−1(u;α)]

, (25)

where

l′(x) = 1 + α2φ(αx)[αx	[αF−1(u;α)]+φ(αx)]
	2(αx)

.

To complete the class statement for the skew-normal scores we need only compute
the quantiles F−1(u;α). Azzalini (2013) developed the R package sn (available at CRAN)
which computes the quantile function F−1(u;α) and, also, the corresponding pdf and cdf.
The command qsn(u,shape=alpha) returns F−1(u;α), for 0 < u < 1. The package
sn requires the package mnormt.
The following R code defines the class of skew-normal scores:
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The next code segment obtains the data for a plot of the scores with shape parameter
α = −7.
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