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Abstract

We study general mathematical properties of a new generator of continuous
distributions with three extra shape parameters called the beta Marshall-Olkin family.
We present some special models and investigate the asymptotes and shapes. The new
density function can be expressed as a mixture of exponentiated densities based on
the same baseline distribution. We derive a power series for its quantile function.
Explicit expressions for the ordinary and incomplete moments, quantile and generating
functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order
statistics, which hold for any baseline model, are determined. We discuss the
estimation of the model parameters by maximum likelihood and illustrate the flexibility
of the family by means of two applications to real data.
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1 Introduction
Recently, some attempts have been made to define new families to extend well-known
distributions and at the same time provide great flexibility in modelling data in practice.
So, several classes by adding one or more parameters to generate new distributions have
been proposed in the statistical literature. Some well-known generators are: theMarshall-
Olkin generated (MO-G) by (Marshall andOlkin 1997), the beta-G by (Eugene et al. 2002),
the Kumaraswamy-G (Kw-G for short) by (Cordeiro and Castro 2011), the McDonald-G
(Mc-G) by (Alexander et al. 2012), the gamma-G by (Zografos and Balakrishnan 2009),
the transformer (T-X) by (Alzaatreh et al. 2013), the Weibull-G by (Bourguignon et al.
2014) and the exponentiated half-logistic by (Cordeiro et al. 2014).
Let r(t) be the probability density function (pdf) of a random variable T ∈[ d, e]

for −∞ ≤ d < e < ∞ and letW [G(x)] be a function of the cumulative distribution func-
tion (cdf) of a random variable X such that W [G(x)] satisfies the following conditions:

⎧⎪⎨⎪⎩
(i) W [G(x)] ∈[ d, e] ,
(ii) W [G(x)] is differentiable and monotonically non-decreasing, and
(iii) W [G(x)] → d as x → −∞ andW [G(x)] → e as x → ∞.

(1)
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Alzaatreh et al. 2013 defined the T-X family cdf by

F(x) =
∫ W [G(x)]

d
r(t) dt, (2)

whereW [G(x)] satisfies the conditions (1). The pdf corresponding to (2) is given by

f (x) =
{
d
dx

W [G(x)]
}
r {W [G(x)] } .

In this paper, we propose a new wider class of continuous distributions called the
beta Marshall-Olkin (BMO) family by taking W [G(x)]= G(x;ξ)

c+(1−c)G(x;ξ)
and r(t) =

1
B(a,b) t

a−1(1 − t)b−1, 0 < t < 1, a, b, c > 0. Its cdf is given by

F(x; a, b, c, ξ) = I G(x;ξ)
c+(1−c)G(x;ξ)

(a, b), (3)

where Ix(a, b) = B(a, b)−1∫ x
0 t

a−1 (1− t)b−1dt denotes the incomplete beta function ratio,
G(x; ξ) is the baseline cdf depending on a parameter vector ξ and a > 0, b > 0 and c > 0
are three additional shape parameters. For each baseline G, the BMO-G distribution is
defined by the cdf (3). Equation (3) includes as special cases the beta-G, Marshall-Olkin-
G (MOG), exponentiated Marshal-Olkin-G (EMOG) and exponentiated classes as those
listed in Table 1.
This paper is organized as follows. In Section 2, we provide a physical interpretation of

the BMO-G family. Three special cases of this family are defined in Section 3. In Section 4,
the shape of the density and hazard rate functions are described analytically. Some useful
expansions are derived in Section 5. In Section 6, we obtain a power series for the BMO-G
quantile function (qf ). In Section 7, we propose explicit expressions for the ordinary and
incomplete moments using the qf expansion. The generating function and mean devia-
tions are derived in Sections 8 and 9, respectively. General expressions for the Rényi and
Shannon entropies are presented in Section 10. The order statistics are investigated in
Section 11. Estimation of the model parameters by maximum likelihood is performed in
Section 12. Applications to two real data sets illustrate the performance of the new family
in Section 13. The paper is concluded in Section 14.

2 The new density
The density function corresponding to (3) is given by

f (x; a, b, c, ξ) = cbg(x; ξ)G(x; ξ)a−1G(x; ξ)b−1

B(a, b) [c + (1 − c)G(x; ξ)]a+b , (4)

where g(x; ξ) is the baseline pdf. Equation (4) will be most tractable when G(x; ξ) and
g(x; ξ) have simple analytic expressions. Hereafter, a random variable X with density

Table 1 Some special models

a b c G(x) Reduced distributions

- - 1 G(x) Beta-G family (Eugene et al. 2002; Jones 2004)

1 - - G(x) Generalized Marshal-Olkin family (Jayakumar and Mathew 2008)

1 - - G(x) Exponentiated Marshall-Olkin family (New)

1 1 - G(x) Marshall-Olkin family (Marshall and Olkin 1997)

1 - 1 G(x) Proportional hazard rate family (Gupta et al. 1998)

- 1 1 G(x) Proportional reversed hazard rate family (Gupta and Gupta 2007)

1 1 1 G(x) G(x)
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function (4) is denoted by X ∼ BMO-G(a, b, c, ξ). Further, we can omit sometimes the
dependence on the vector ξ of parameters and write simply G(x) = G(x; ξ).
The hazard rate function (hrf ) of X becomes

τ(x; a, b, c, ξ) = cbg(x; ξ)G(x; ξ)a−1Ḡ(x; ξ)b−1

B(a, b) [c + (1 − c)G(x; ξ)]a+b
[
1 − I G(x;ξ)

c+(1−c)G(x;ξ)

(a, b)
] . (5)

The BMO family is easily simulated by inverting (3) as follows: if V has a beta
distribution with positive parameters a and b, the solution of the nonlinear equation

xq = G−1
{

c V
1 − (1 − c)V

; ξ
}

has the density function (4).
The basic motivations for using the BMO family in practice are: (i) to make the kurtosis

more flexible compared to the baseline model; (ii) to produce a skewness for symmet-
rical distributions; (iii) to construct heavy-tailed distributions that are not longer-tailed
for modeling real data; (iv) to generate distributions with symmetric, left-skewed, right-
skewed and reversed-J shaped; (v) to define special models with all types of the hrf; (vi)
to generate a large number of special distributions as those presented in Table 1; and (vii)
to provide consistently better fits than other generated models under the same baseline
distribution. A simple example of (ii): the normal distribution is symmetric, but the beta
Marshall-Olkin normal (BMO-N) becomes skewed. The fact (vii) is well-demonstrated
by fitting the BMO-N and beta Marshall-Olkin Weibull (BMO-W) distributions to two
real data sets in Section 13. However, we expect that there are other contexts in which the
BMO special models can produce worse fits than other generated distributions. Clearly,
the results in Section 13 indicate that the new family is a very competitive class to other
known generators with at most three extra shape parameters.

3 Some special BMO distributions
The BMO-G density function (4) allows for greater flexibility of its tails and can be widely
applied in many areas. The new family extends several widely-known distributions in the
literature. Here, we present a few of its many special models.

3.1 The BMO-N distribution

The BMO-N pdf is obtained from (4) by taking the normal N(μ, σ) as the parent
distribution, where ξ = (μ, σ). Then,

f (x; a, b, c,α,β) = cb φ
( x−μ

σ

) [
�

( x−μ
σ

)]a−1 [
1 − �

( x−μ
σ

)]b−1

B(a, b)
[
c + (1 − c)�

( x−μ
σ

)]a+b , (6)

where x ∈ IR, μ ∈ IR is a location parameter, σ > 0 is a scale parameter, φ(·) and �(·) are
the pdf and cdf of the standard normal distribution, respectively. The standard BMO-N
density comes when μ = 0 and σ = 1. For a = b = c = 1, it reduces to the normal
density. Plots of (6) for some parameter values are displayed in Fig. 1.
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Fig. 1 The BMO-N density function for some parameter values

3.2 The BMO-W distribution

Let G(x; ξ) = 1 − exp[−(α x)β ] be the Weibull cdf with scale parameter α > 0 and shape
parameter β > 0, where ξ = (α,β). The BMO-W pdf (for x > 0) reduces to

f (x; a, b, c,α,β) = cbβ αβ xβ−1 exp[−b(α x)β ]
[
1 − exp[−(α x)β ]

]a−1

B(a, b)
[
c + (1 − c)[ 1 − exp[−(α x)β ] ]

]a+b .

The Weibull pdf (with parameters α and β) is a special case for a = b = c = 1. Some
possible shapes of the BMO-W pdf and hrf are displayed in Fig. 2.

3.3 The Beta Marshall-Olkin gamma (BMO-Ga) distribution

The gamma cumulative distribution (for x > 0) with shape parameter α > 0 and scale
parameter β > 0, ξ = (α,β), is given by

G(x; ξ) = γ (α, x/β)

	(α)
= γ1(α, x/β),

where 	(p) = ∫ ∞
0 wp−1 e−wdw is the gamma function and γ (α, z) = ∫ z

0w
α−1 e−wdw is

the incomplete gamma function. The BMO-Ga pdf (for x > 0) becomes

f (x; a, b,α,β) = cb xa−1 e−x/β [γ1(α, x/β)]a−1 [1 − γ1(α, x/β)]b−1

βα 	(α)B(a, b) [c + (1 − c) γ1(α, x/β)]a+b .

For c = 1, we obtain the beta Weibull (BW) distribution. The beta Marshall-Olkin
exponential (BMO-E) distribution corresponds to β = 1. Figure 3 displays some BMO-Ga
pdf ’s and hrf ’s.
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Fig. 2 The BMO-W density and hazard rate functions for some parameter values
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Fig. 3 The BMO-Ga density and hazard rate functions for some parameter values

4 Asymptotics and shapes
Corollary 1. The asymptotics of Eqs. (3), (4) and (5) as G(x) → 0 are given by

F(x) ∼ G(x)a

a ca B(a, b)
as G(x) → 0,

f (x) ∼ g(x)G(x)a−1

ca B(a, b)
as G(x) → 0,

τ(x) ∼ g(x)G(x)a−1

ca B(a, b)
as G(x) → 0.

Corollary 2. The asymptotics of Eqs. (3), (4) and (5) as x → ∞ are given by

1 − F(x) ∼ cb Ḡ(x)b

b B(a, b)
as x → ∞,

f (x) ∼ cb g(x) Ḡ(x)b−1

B(a, b)
as x → ∞,

τ(x) ∼ b g(x)
Ḡ(x)

as x → ∞.

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the BMO-G density function are the roots of the equation:

d log[ f (x)]
dx

= g′(x)
g(x)

+ (a − 1) g(x)
G(x)

+ (1 − b)g(x)
Ḡ(x)

+ (c − 1)(a + b)g(x)
c + (1 − c)G(x)

. (7)

There may be more than one root to (7). If x = x0 is a root of (7) then it corresponds to
a local maximum, a local minimum or a point of inflexion depending on whether λ(x0) <

0, λ(x0) > 0 or λ(x0) = 0, where λ(x) = d2 log[f (x)]
dx2 is given by

λ(x) = g′′(x)g(x)−[ g′(x)]2

g(x)2
+ (a − 1)

g′(x)G(x) − g(x)2

G(x)2
+ (1 − b)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

+ (c − 1)(a + b)g′(x)
c + (1 − c)G(x)

+ (c − 1)2(a + b)g(x)2

[c + (1 − c)G(x)]2
.
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The critical points of τ(x) are the roots of the equation:
d log[ τ(x)]

dx
= g′(x)

g(x)
+ (a − 1) g(x)

G(x)
+ (1 − b)g(x)

Ḡ(x)
+ (c − 1)(a + b)g(x)

c + (1 − c)G(x)

− cbg(x)G(x)a−1Ḡ(x)b−1

B(a, b) [c + (1 − c)G(x)]a+b
[
1 − I G(x)

c+(1−c)G(x)
(a, b)

] . (8)

There may be more than one root to (8). If x = x0 is a root of (8) then it corresponds to
a local maximum, a local minimum or a point of inflexion depending on whether ς(x0) <

0, ς(x0) > 0 or ς(x0) = 0, where ς(x) = d2 log[τ(x)]
dx2 is given by

ς(x) = g′′(x)g(x)−[ g′(x)]2

g(x)2
+ (a − 1)

g′(x)G(x) − g(x)2

G(x)2
+ (1 − b)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

+ (c − 1)(a + b)g′(x)
c + (1 − c)G(x)

+ (c − 1)2(a + b)g(x)2

[c + (1 − c)G(x)]2

+ cbg′(x)G(x)a−1Ḡ(x)b−1

B(a, b) [c + (1 − c)G(x)]a+b
[
1 − I G(x)

c+(1−c)G(x)
(a, b)

]
+ cb (a − 1)g(x)2G(x)a−2Ḡ(x)b−1

B(a, b) [c + (1 − c)G(x)]a+b
[
1 − I G(x)

c+(1−c)G(x)
(a, b)

]
− cb (b − 1)g(x)2G(x)a−1Ḡ(x)b−2

B(a, b) [c + (1 − c)G(x)]a+b
[
1 − I G(x)

c+(1−c)G(x)
(a, b)

]

+

⎧⎪⎪⎨⎪⎪⎩
cbg(x)G(x)a−1Ḡ(x)b−1

B(a, b) [c + (1 − c)G(x)]a+b
[
1 − I G(x)

c+(1−c)G(x)
(a, b)

]
⎫⎪⎪⎬⎪⎪⎭

2

.

5 Useful representation
By using the generalized binomial expansion, we can prove that the cdf (3) of X admits
the expansion

F(x; a, b, c, ξ) =
∞∑

i,j,l=0

l∑
k=0

(−1)i+l+k(1 − c)i
(
b − 1
i

)( −a − i
j

)(
a + i + j

l

)(
l
k

)
ca+i+j B(a, b)(a + i)

G(x)k .

By exchanging the indices l and k in the sum symbol, we can write

F(x; a, b, c, ξ) =
∞∑

i,j,k=0

∞∑
l=k

(−1)i+l+k(1 − c)i
(
b − 1
i

)( −a − i
j

)(
a + i + j

l

)(
l
k

)
ca+i+j B(a, b)(a + i)

G(x)k ,

and then

F(x; a, b, c, ξ) =
∞∑
k=0

βk G(x)k ,

where (for k ≥ 0)

βk =
∞∑

i,j=0

∞∑
l=k

(−1)i+l+k(1 − c)i
(
b − 1
i

)(
−a − i

j

)(
a + i + j

l

)(
l
k

)
ca+i+j B(a, b)(a + i)

. (9)
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The density function of X can be expressed as a mixture of exp-G densities

f (x; a, b, c, ξ) =
∞∑
k=0

βk+1 hk+1(x), (10)

where hk+1(x) = (k + 1) g(x; ξ)Gk(x; ξ) denotes the exp-G density function with power
parameter k + 1.
Thus, somemathematical properties of the newmodel can be derived from those exp-G

properties. For example, the ordinary and incomplete moments and moment generating
function (mgf) of X can be obtained from those quantities of the exp-G distribution.
The formulae derived throughout the paper can be easily handled in most sym-

bolic computation software platforms such as Maple, Mathematica and Matlab. These
platforms allow to deal with analytic expressions of formidable size and complexity. Es-
tablished explicit expressions to calculate statistical measures can be more efficient than
computing them directly by numerical integration. The infinity limit in these sums can be
substituted by a large positive integer such as 20 or 30 for most practical purposes.

6 Quantile power series
The qf of X, say x = Q(u) = F−1(u), can be obtained by inverting (3). Let z = Qa,b(u) be
the beta qf. Then,

x = Q(u) = QG

{
c Qa,b(u)

1 − (1 − c)Qa,b(u)

}
. (11)

It is possible to obtain some expansions for Qa,b(u) in the wolfram website1 such as

z = Qa,b(u) =
∞∑
i=0

ei ui/a,

where ei =[ aB(a, b)]1/a di and d0 = 0, d1 = 1, d2 = (b − 1)/(a + 1),

d3 = (b − 1) (a2 + 3ab − a + 5b − 4)
2(a + 1)2(a + 2)

,

d4 = (b − 1)[ a4 + (6b − 1)a3 + (b + 2)(8b − 5)a2 + (33b2 − 30b + 4)a

+ b(31b − 47) + 18] /[ 3(a + 1)3(a + 2)(a + 3)] , . . .

The effects of the shape parameters a, b and c on the skewness and kurtosis of X can be
based on quantile measures. The shortcomings of the classical kurtosis measure are well-
known. The Bowley skewness (Kenney and Keeping 1962) is one of the earliest skewness
measures defined by the average of the quartiles minus the median, divided by half the
interquartile range, namely

B = Q
( 3
4
) + Q

( 1
4
) − 2Q

( 1
2
)

Q
( 3
4
) − Q

( 1
4
) .

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure. The Moors kurtosis (Moors 1988) is based
on octiles

M = Q
( 3
8
) − Q

( 1
8
) + Q

( 7
8
) − Q

( 5
8
)

Q
( 6
8
) − Q

( 2
8
) .

These measures are less sensitive to outliers and they exist even for distributions without
moments.
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7 Moments
We assume that Y is a random variable having the baseline cdf G(x). The moments of X
can be determined from the (r, k)th probability weightedmoment (PWM) of Y defined by

ωr,k = E[Yr G(Y )k]=
∫ ∞

−∞
xr G(x)k g(x)dx.

The PWMs are used to derive estimators of the parameters and quantiles of generalized
distributions. The moment method of estimation is formulated by equating the popula-
tion and sample PWMs. These moments have low variance and no severe biases, and they
compare favorably with estimators obtained by maximum likelihood. However, the maxi-
mum likelihood method is adopted in Section 12 since it is easier to estimate the BMO-G
parameters because of several computer routines available in widely known softwares.
The maximum likelihood estimators (MLEs) enjoy desirable properties and can be used
for constructing confidence intervals and also for test statistics.
We can write from Eq. 10

μ′
r = E(Xr) =

∞∑
k=0

(k + 1) βk+1 ωr,k , (12)

where ωr,k = ∫ 1
0 QG(u)r ukdu can be computed at least numerically from any baseline qf.

Thus, the moments of any BMO-G distribution can be expressed as an infinite weighted
sum of the baseline PWMs. We now provide the PWMs for three distributions discussed
in Section 3. For the BMO-N and BMO-Ga distributions introduced in Sections 3.1 and
3.3, the quantities ωr,k can be expressed in terms of the Lauricella functions of type A (see
Exton 1978; Trott 2006) defined by

F(n)
A (a; b1, . . . , bn; c1, . . . , cn; x1, . . . , xn) =
∞∑

m1=0
. . .

∞∑
mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn

(c1)m1 . . . (cn)mn

xm1
1 . . . xmn

n
m1! . . .mn!

,

where (a)i = a(a + 1) . . . (a + i − 1) is the ascending factorial (with the convention that
(a)0 = 1).
In fact, (Cordeiro and Nadarajah 2011) determined ωr,k for the standard normal

distribution as

ωr,k = 2r/2 π−(k+1/2)
k∑

l=0
(r+k−l) even

(
k
l

)
2−l π l 	

(
r + k − l + 1

2

)

× F(k−l)
A

(
r + k − l + 1

2
;
1
2
, . . . ,

1
2
;
3
2
, . . . ,

3
2
;−1, . . . ,−1

)
.

This equation holds when r + k − l is even and it vanishes when r + k − l is odd.
So, any BMO-N moment can be expressed as an infinite weighted linear combination of
Lauricella functions of type A.
For the gamma distribution, the quantities ωr,k can be expressed from Eq. (9) of

(Cordeiro and Nadarajah 2011) as

ωr,k = 	(r + (k + 1)α)

αk βr 	(α)k+1 F(k)
A (r + (k + 1)α;α, . . . ,α;α + 1, . . . ,α + 1,−1, . . . ,−1).
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As the last example, for the BMO-W distribution discussed in Section 3.2, the quantities
ωr,k reduce to

ωr,k = 	(r/β + 1)
αr/β

k∑
s=0

(−1)s

(s + 1)r/β+1

(
k
s

)
.

Some important questions in economics are answered by knowing the mean and the
shape of a distribution. Incomplete moments of an income distribution form natural
building blocks for measuring inequality: for example, the Lorenz and Bonferroni curves
depend upon the incomplete moments of the income distribution.
The nth incomplete moment of X is defined by mn(y) = ∫ y

−∞ xr f (x)dx. So, mn(y)
follows as

mn(y) =
∞∑
k=0

βk+1

∫ G(y; ξ)

0
QG(u)n uk du. (13)

The integral in (13) can be computed at least numerically for most baseline distributions.

8 Generating function
We provide two formulae for the mgf M(s) = E(es X) of X. The first formula for M(s)
comes from Eq. (10) as

M(s) =
∞∑
k=0

βk+1Mk+1(s), (14)

whereMk+1(s) is the exp-G generating function with power parameter k + 1.
The second formula forM(s) follows in terms of the baseline qf as

M(s) =
∞∑
k=0

(k + 1) βk+1 ρk(s), (15)

where the quantity ρk(s) = ∫ 1
0 exp [s QG(u)]ukdu can be computed numerically.

Equations (14) and (15) are the main results of this section.

9 Mean deviations
The mean deviations about the mean (δ1 = E(|X − μ′

1|)) and about the median (δ2 =
E(|X − M|)) of X can be expressed as

δ1 = 2μ′
1 F

(
μ′
1
) − 2m1

(
μ′
1
)

and δ2 = μ′
1 − 2m1(M), (16)

respectively, where M = Q(0.5) is the median of X, μ′
1 = E(X) comes from Eq. (12),

F(μ′
1) is easily calculated from Eq. (3) and m1(z) = ∫ z

−∞ x f (x)dx is the first incomplete
moment.
Now, we provide two alternative ways to compute δ1 and δ2. A general equation for

m1(z) can be derived from Eq. (10) as

m1(z) =
∞∑
k=0

βk+1 Jk+1(z), (17)

where Jk+1(z) = ∫ z
−∞ x hk+1(x)dx.

Equation (17) is the basic quantity to compute the mean deviations in Eq. 16. A simple
application of it refers to the BMO-W model (Section 3.2). The exponentiated Weibull
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density function (for x > 0) with power parameter k + 1, shape parameter α and scale
parameter β , is given by

hk+1(x) = (k + 1) α βα xα−1 exp
{−(βx)α

} [
1 − exp

{−(βx)α
}]k ,

and then

Jk+1(z) = α (k + 1) βα
∞∑
r=0

(−1)r
(
k
r

)∫ z

0
xα exp

{−(r + 1)(βx)α
}
dx.

Using the incomplete gamma function, the last integral reduces to

Jk+1(z) = β−1
∞∑
r=0

(−1)r (k + 1)
(k
r
)

(r + 1)1+α−1 γ
(
1 + α−1, (r + 1)(βz)α

)
.

A second general formula form1(z) can be derived by setting u = G(x) in Eq. 17

m1(z) =
∞∑
k=0

(k + 1) βk+1 Tk(z),

where Tk(z) = ∫ G(z)
0 QG(u)ukdu.

The main application of the first incomplete moment refers to the Bonferroni and Lorenz
curves that are very useful in economics, reliability, demography, insurance andmedicine.
For a given probability π , applications of these equations can be addressed to obtain these
curves defined by B(π) = m1(q)/(π μ′

1) and L(π) = m1(q)/μ′
1, respectively, where q =

Q(π) is calculated from the parent qf in (11). In Fig. 4, we plot the measures B and L of the
BMO-N and BMO-W distributions. The plots indicate the variability of these measures
on the shape parameters.
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Fig. 4 Lorenz and Bonferroni curves for selected parameter values of the BMON and BMOW distributions



Alizadeh et al. Journal of Statistical Distributions and Applications  (2015) 2:4 Page 11 of 18

10 Entropies
An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Rényi 1961; Shannon 1951). The
Rényi entropy of a random variable with pdf f (x) is defined by

IR(c) = 1
1 − γ

log
(∫ ∞

0
f γ (x)dx

)
,

for γ > 0 and γ 	= 1. The Shannon entropy of a random variable X is defined by
E
{− log

[
f (X)

]}
. It is the special case of the Rényi entropy when γ ↑ 1. Direct calculation

yields

E
{− log

[
f (X)

]} = − log
[

cb

B(a, b)

]
− E

{
log

[
g(X; ξ)

]} + (1 − a)E
{
log [G(x; ξ)]

}
+ (1 − b)E

{
log

[
Ḡ(x; ξ)

]} + (a + b)E
{
log [c + (1 − c)G(x; ξ)]

}
.

First, let

A(a1, a2, a3; c) =
∫ 1

0

ua1 (1 − u)a2

[ c + (1 − c)u]a3
du.

Using the generalized binomial expansion, we obtain

A(a1, a2, a3; c) =
∞∑
i=0

(1 − c)i c−a3−i
(−a3

i

)
B(a1 + i + 1, a2 + 1).

After some algebraic manipulations, we have the following proposition.

Proposition 1. Let X be a random variable with pdf (4). Then,

E
{
log [G(X; ξ)]

} = cb

B(a, b)
∂

∂t
A(a + t − 1, b − 1, a + b; c)

∣∣∣∣
t=0

E
{
log

[
G(X; ξ)

]} = cb

B(a, b)
∂

∂t
A(a − 1, b + t − 1, a + b; c)

∣∣∣∣
t=0

E
{
log [c + (1 − c)G(X; ξ)]

} = cb

B(a, b)
∂

∂t
A(a − 1, b − 1, a + b − t; c)

∣∣∣∣
t=0

.

The simplest formula for the entropy of X is given by

E
{− log[ f (X)]

} = − log[αλ(1 − p)]−E
{
log[ g(X; ξ)]

}
+ (1 − a) cb

B(a, b)
∂

∂t
A(a + t − 1, b − 1, a + b; c)

∣∣∣∣
t=0

+ (1 − b) cb

B(a, b)
∂

∂t
A(a − 1, b + t − 1, a + b; c)

∣∣∣∣
t=0

+ (a + b) cb

B(a, b)
∂

∂t
A(a − 1, b − 1, a + b − t; c)

∣∣∣∣
t=0

.

After some algebra, we obtain an alternative expression for IR(γ )

IR(γ ) = γ

1 − γ
log

[
cb

B(a, b)

]
+ 1

1 − γ
log

⎧⎨⎩
∞∑

i,j=0
w�
i,j I(γ , a, j)

⎫⎬⎭,
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where

w�
i,j = (−1)j (1 − c)i c−γ (a+b)−i

(−γ (a + b)
i

)(
γ (b − 1)

j

)
and I(γ , a, j) = ∫ ∞

0 g(x)γ G(x)γ (a−1)+j

11 Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, . . . ,Xn is a random sample from any BMO-G distribution. Let Xi:n denote
the ith order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K f (x) Fi−1(x) {1 − F(x)}n−i = K
n−i∑
j=0

(−1)j
(
n − i
j

)
f (x) F(x)j+i−1,

where K = n! /[ (i − 1)! (n − i)! ].
We can demonstrate that the density function of the ith order statistic of any BMO-G

distribution can be expressed as

fi:n(x) =
∞∑

r,k=0
mr,k hr+k+1(x), (18)

where hr+k+1(x) denotes the exp-G density function with parameter r + k + 1,

mr,k = n! (r + 1) (i − 1)! βr+1
(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n − i − j)! j!
,

βr is given by (9) and the quantities fj+i−1,k can be determined by fj+i−1,0 = β
j+i−1
0 and

recursively (for k ≥ 1)

fj+i−1,k = (k β0)
−1

k∑
m=1

[m (j + i) − k] βm fj+i−1,k−m.

We can obtain the ordinary and incomplete moments, generating function and mean
deviations of the BMO-G order statistics from Eq. (18) and some properties of the exp-G
model.

12 Estimation
Here, we determine the MLEs of the model parameters of the new family from com-
plete samples only. Let x1, . . . , xn be observed values from the BMO-G distribution with
parameters a, b, c and ξ . Let � = (a, b, c, ξ)� be the r × 1 parameter vector. The total
log-likelihood function for � is given by

� = �(�) = n b log(c) − n log[B(a, b)]+
n∑

i=1
log[ g(xi, ξ)]

+ (a − 1)
n∑

i=1
log {G(xi, ξ)} + (b − 1)

n∑
i=1

log[ Ḡ(xi, ξ)]

− (a + b)
n∑

i=1
log [c + (1 − c)G(xi, ξ)] . (19)
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Numerical maximization of (19) can be performed by using the RS method (Rigby and
Stasinopoulos 2005) which is available in the gamlss package (R Development Core Team
2013), SAS (Proc NLMixed) or the Ox program (sub-routine MaxBFGS) (see Doornik
2007) or by solving the nonlinear likelihood equations obtained by differentiating (19). Let
Un(�) = (∂�n/∂a, ∂�n/∂b, ∂�n/∂c, ∂�n/∂ξ)� be the score function, whose components
are

Ua = ∂�

∂a
= −nψ(a) + nψ(a + b) +

n∑
i=1

log {G(xi, ξ)} −
n∑

i=1
log [c + (1 − c)G(xi, ξ)] ,

Ub = ∂�

∂b
= n log(c) − nψ(b) + nψ(a + b) +

n∑
i=1

log
{
Ḡ(xi, ξ)

}
−

n∑
i=1

log [c + (1 − c)G(xi, ξ)] ,

Uc = ∂�

∂c
= n b

c
− (a + b)

n∑
i=1

Ḡ(xi, ξ)

c + (1 − c)G(xi, ξ)

and

Uξ = ∂�

∂ξ
=

n∑
i=1

g(ξ)(x; ξ)

g(x; ξ)
+ (a − 1)

n∑
i=1

G(ξ)(x; ξ)

G(x; ξ)
+ (1 − b)

n∑
i=1

G(ξ)(x; ξ)

Ḡ(x; ξ)

+ (c − 1)(a + b)
n∑

i=1

G(ξ)(x; ξ)

c + (1 − c)G(x; ξ)
,

where h(ξ)(·) means the derivative of the function h with respect to ξ . Setting these
equations to zero, Ua = Ub = Uc = Uξ = 0, and solving them simultaneously yields the
MLE �̂ of �.
For interval estimation on the model parameters, it is required the observed infor-

mation matrix, whose elements Urs = ∂2�/∂r∂s (for r, s = a, b, c, ξ ) can be computed
numerically. Under standard regularity conditions (Cox and Hinkley 1979), we can
approximate the distribution of (�̂ − �) by the multivariate normal Nr+3(0, J(�)−1)

distribution, where r is the number of parameters of the baseline distribution.
We can compute the maximum values of the unrestricted and restricted log-likelihoods

to construct likelihood ratio (LR) statistics for testing some sub-models of the BMO-G
distribution. For example, we may use LR statistics to check if the fit using the BMO-W
distribution is statistically “superior” to the fits using the BW, MOW, EW, EE andWeibull
distributions for a given data set.
Often with lifetime data and reliability studies, one encounters censoring. Suppose that

the lifetimes are independently distributed, and also independent from the censoring
mechanism and censoring is random and noninformative. Considering right-censored
lifetime data, we observe xi = min(Xi,Ci) and δi = I(Xi ≤ Ci) such that δi = 1 if Xi is a
time to event and δi = 0 if it is right censored for i = 1, . . . , n where Xi is the lifetime for
the ith individual and Ci is the censoring for the ith individual, i = 1, . . . , n. The censored
likelihood L(�) for the model parameters is

L(�) ∝
n∏

i=1
[ f (xi; a, b, c, ξ)]δi [ S(xi; a, b, c, ξ)]1−δi , (20)
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where S(x; a, b, c, ξ) = 1 − F(x; a, b, c, ξ) is the survival function obtained from (3) and
f (x; a, b, c, ξ) is given by (4).Wemaximize the likelihood (20) in the same way as described
before.

13 Empirical illustration
We illustrate the flexibility of the BMO-W and BMO-N distributions by means of two
real data sets. Similar investigations could be performed for other BMO distributions. We
have chosen these distributions because of the popularity of their baseline distributions.
The computations are performed using the software R version 3.0.0 (package bbmle). The
maximization follows the BFGS method with analytical derivatives. The algorithm used
to estimate the model parameters converged for all current models.

13.1 Illustration 1: Failure time data

We next consider the data studied by (Murthy et al. 2004), which represent failure times
for a particular windshield device. The windshield on a large aircraft is a complex piece
of equipment, comprised basically of several layers of material, including a very strong
outer skin with a heated layer just beneath it, all laminated under high temperature
and pressure. Failures of these items are not structural failures. Instead, they typically
involve damage or delamination of the nonstructural outer ply or failure of the heating
system. These failures do not result in damage to the aircraft but do result in replace-
ment of the windshield. We compare the results of the fits of the BMO-W distribution,
its special models (W, EW, BW, MOW and EMOW) and the following distributions: the
KumaraswamyWeibull (Kw-W) model with pdf given by

fKw-W(x) = a bβ αβ xβ−1 e−(α x)β [ 1 − e−(α x)β ]a−1
{
1 −

[
1 − e−(α x)β

]a}b−1
,

the McDonald Weibull (McW) model with pdf given by

fMcW(x) = cβ αβ

B(a, b)
xβ−1 exp{−(α x)β} [

1 − exp{−(α x)β}]a c−1

×
{
1 − [

1 − exp{−(α x)β}]c}b−1

and the Libby-Novic beta Weibull (LNB-W) model with pdf given by

fLNB-W(x) = K β αβ xβ−1 exp{−(α x)β} [
1 − exp

{−(α x)β
}]a−1 exp

{−(b − 1) (α x)β
}{

1 − (1 − c)
[
1 − exp

{−(α x)β
}]}a+b ,

where K = ca/B(a, b), a > 0, b > 0, c > 0, α > 0, β > 0 and x > 0.
In Table 2, the MLEs and their standard errors (SEs) (in parentheses) of the parameters

from nine fitted models and the Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (CAIC) and Bayesian Information Criterion (BIC) values are pre-
sented. According to the lowest values of the AIC and CAIC statistics, the BMO-Wmodel
could be chosen as the best model among the nine fitted models. Formal tests for the
extra shape parameters in the BMO-W distribution can be performed based on LR statis-
tics. The results for comparing the models to the current data are given in Table 3. The
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Table 2MLEs (SEs in parentheses) for some fitted models to the failure time data and the AIC, CAIC
and BIC values

Model a b c α β AIC CAIC BIC

W
- - - 0.349 2.374

264.107 264.255 268.968
- - - (0.017) (0.210)

EW
0.284 - - 0.253 5.747

261.211 261.511 268.504
(0.054) - - (0.011) (0.693)

BW
0.274 0.785 - 0.266 5.864

263.167 263.673 272.890
(0.042) (0.779) - (0.056) (0.359)

MOW
- - 27.588 1.247 1.058

262.491 262.791 269.783
- - (57.410) (1.405) (0.514)

EMOW
- 0.280 0.838 0.249 5.920

263.160 263.667 272.883
- (0.046) (0.664) (0.017) (0.274)

BMO-W
0.262 0.259 0.086 0.293 7.450

260.389 261.159 272.543
(0.046) (0.085) (0.080) (0.019) (0.014)

McW
3.551 0.108 0.091 0.715 2.875

264.212 264.981 276.366
(1.140) (0.013) (0.008) (0.015) (0.017)

Kw-W
0.266 1.336 - 0.231 6.515

262.948 263.454 272.671
(0.048) (0.711) - (0.032) (0.054)

LNB-W
0.281 0.287 7.281 0.298 6.807

261.158 261.928 273.313
(0.048) (0.095) (6.055) (0.020) (0.066)

rejection of the null models is significant for the five LR tests. So, we have evidence of
the potential need for the three parameters of the BMO-W distribution for the current
data.
The plots of the fitted BMO-W pdf and of the four fitted pdfs discussed before are

displayed in Fig. 5. They indicate that the BMO-W distribution provides a better fit to
these data compared to the other models. So, this distribution can be considered a very
competitive model to the LNB-W distribution.

13.2 Illustration 2: Plasma ferritin data

Here, consider the data discussed by Weisberg (2014, Section 6.4) which represent 202
athletes collected at the Australian Institute of Sport. The variable evaluated in this study
is the plasma ferritin concentration. These data were analyzed recently by (Cordeiro et
al. 2014) using the Libby-Novic beta normal (LNB-N) distribution with density function
given by

f (x) = K φ
( x−μ

σ

) [
�

( x−μ
σ

)]a−1 [
1 − �

( x−μ
σ

)]b−1

σ
[
1 − (1 − c)�

( x−μ
σ

)]a+b , (21)

Table 3 LR tests

Failures Hypotheses Statistic LR p-value

BMO-W vs W H0 : a = b = c = 1 vs H1 : H0 is false 9.717 0.010

BMO-W vs EW H0 : b = c = 1 vs H1 : H0 is false 4.822 0.045

BMO-W vs BW H0 : c = 1 vs H1 : H0 is false 4.777 0.017

BMO-W vs MOW H0 : a = b = 1 vs H1 : H0 is false 6.101 0.024

BMO-W vs EMOW H0 : a = 1 vs H1 : H0 is false 4.771 0.017
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Fig. 5 Fitted densities for the failure data

where x ∈ IR, μ ∈ IR is a location parameter, σ > 0 is scale parameter, a, b and c are
positive shape parameters and φ(·) and �(·) are the pdf and cdf of the standard normal
distribution, respectively.
In Table 4, the MLEs and their SEs (in parentheses) of the parameters from fitted nine

models and the AIC, CAIC and BIC values are presented. According to the lowest values
of these statistics, the BMO-N model could be chosen as the best model among the nine
fitted models. Formal tests for the extra shape parameters in the BMO-N distribution can
be performed based on LR statistics. The results for comparing the models to the current
data are given in Table 5. The rejection of the null models is significant for the five LR

Table 4MLEs (SEs in parentheses) for some fitted models to the failure time data and the AIC, CAIC
and BIC values

Model a b c μ σ AIC CAIC BIC

N
- - - 76.887 47.399

2135.994 2136.054 2142.611
- - - (3.335) (2.359)

EN
329.601 - - -242.079 109.357

2088.197 2088.318 2098.122
(257.441) - - (50.515) (9.321)

BN
7.349 0.185 - -12.984 30.265

2083.599 2083.803 2096.833
(1.252) (0.014) - (0.003) (0.003)

MON
- - 0.040 158.760 51.373

2090.927 2091.048 2100.851
- - (0.023) (18.248) (3.962)

EMON
- 18.598 0.007 124.403 58.756

2068.369 2068.572 2081.602
- (10.644) (0.003) (17.340) (3.442)

BMO-N
6.373 0.542 0.007 111.698 41.750

2065.363 2065.669 2081.904
(6.622) (0.161) (0.003) (15.687) (7.625)

McN
0.156 0.182 25.619 17.890 28.867

2074.582 2074.888 2091.123
(0.013) (0.016) (0.165) (0.357) (0.254)

Kw-N
2.980 0.229 - 12.806 29.581

2099.027 2099.230 2112.260
(0.073) (0.016) - (0.197) (0.042)

LNB-N
2.661 0.520 58.246 108.256 38.987

2067.884 2068.190 2084.425
(1.659) (0.139) (26.941) (13.437) (6.660)
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Table 5 LR tests

Plasma Hypotheses Statistic LR p-value

BMO-N vs N H0 : a = b = c = 1 vs H1 : H0 is false 76.631 <0.001

BMO-N vs EN H0 : b = c = 1 vs H1 : H0 is false 26.834 <0.001

BMO-N vs BN H0 : c = 1 vs H1 : H0 is false 20.236 <0.001

BMO-N vs MON H0 : a = b = 1 vs H1 : H0 is false 29.564 <0.001

BMO-N vs EMON H0 : a = 1 vs H1 : H0 is false 5.005 0.015

tests. So, we have a clear evidence for the three parameters of the BMO-N distribution
when modeling data of this type. The plot of the fitted BMO-N pdf and the four fitted
pdfs discussed before are displayed in Fig. 6. They indicate that the BMO-N distribution
provides the best fit to these data compared to the other models. Finally, the proposed
distribution can be considered a very competitive model to the LNB-N distribution.

14 Concluding remarks
We define a new class of models, named the beta Marshall-Olkin-G (BMO-G) family of
distributions by adding three shape parameters, which generalizes some well-known dis-
tributions in the statistical literature such as the normal, Weibull and beta distributions.
We provide amathematical treatment of the proposed family including expansions for the
density function, ordinary and incomplete moments and generating function. The BMO-
G density function can be expressed as a mixture of exponentiated density functions. This
property is important to obtain several other results. We derive a power series for the
quantile function. Our formulas related to the BMO-G model are manageable, and with
the use of modern computer resources with analytic and numerical capabilities, they may
turn into adequate tools for applied statisticians. Some special models are explored. The
estimation of the model parameters is carried out by the method of maximum likelihood.
Finally, we fit some special models in the new family to two real data sets to demonstrate
their potentiality.
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