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of stochastic representation (SR), the multivariate zero-truncated Charlier series (ZTCS)
distribution is not available to date. The first aim of this paper is to propose the
multivariate ZTCS distribution by developing its important distributional properties,
and providing efficient likelihood-based inference methods via a novel data
augmentation in the framework of the expectation-maximization (EM) algorithm. Since
the joint marginal distribution of any r-dimensional sub-vector of the multivariate ZTCS
random vector of dimension m is an r-dimensional zero-deflated Charlier series (ZDCS)
distribution (1 < r < m), itis the second objective of the paper to introduce a new
family of multivariate zero-adjusted Charlier series (ZACS) distributions (including the
multivariate ZDCS distribution as a special member) with a more flexible correlation
structure by accounting for both inflation and deflation at zero. The corresponding
distributional properties are explored and the associated maximum likelihood
estimation method via EM algorithm is provided for analyzing correlated count data.
Some simulation studies are performed and two real data sets are used to illustrate the
proposed methods.
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1 Introduction

The univariate Charlier series (CS) distribution was first introduced by Ong (1988) in
the consideration of the conditional distribution of a bivariate Poisson distribution. The
CS distribution is a convolution of a binomial variate and a Poisson variate. Let Xy ~
Binomial(K, ), X; ~ Poisson(X), and (Xp, X1) be mutually independent (denoted by
XoALX1). Then a discrete non-negative random variable X is said to follow the CS dis-
tribution with parameters K € N = {1,2,...,00}, 7 €[0,1) and A € R, denoted by
X ~ CS(K,m;A), if it can be stochastically represented by X = Xy + X;. Its probability
mass function (pmf) is given by

min(K,x) )\x_ke_)‘
Pr(X = x) = Z ( )nk(l—n)Kk~', x=0,1,...,00. (1.1)
s k (x—Kk)!
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The mean and variance of X are given by

EX)=Km+A and Var(X) =Kna(l—m)+ A (1.2)

iid
Let Xq,...,X, ~ CS(K,m;2) and the observed data be Yops = {x1,...,%,}, where
X1,...,%x, are the realizations of Xi, ..., X,. Let ¥ and s? be the sample mean and vari-

ance, respectively. Assuming K is known, Ong (1988) derived the moment estimates of
the parameters in the univariate CS distribution as follows:

% — 2\ 2
T = and A =Xx-— K. (1.3)
K

Next, Papageorgiou and Loukas (1995) proposed a bivariate CS distribution which
arises as the conditional distribution from a trivariate Poisson distribution studied by
Loukas and Papageorgiou (1991) and Loukas (1993). Let Xy ~ Binomial(K,7) and
X0 ind Poisson(A;), i = 1,2 and define X; = Xy + Xjo, { = 1,2. Then a discrete non-
negative random vector x = (X1, X>2)" is said to follow a bivariate CS distribution with
parameters K € N, 7w €[0,1) and A; € R, i = 1,2. We denote it by x ~ CS(K, 7w; 11, X2).

Its probability generating function, marginal means and the covariance are given by
Gx(2) = E(2'5?) = explra(z — 1) + halza = D} (1 = 1) + 7212, (14)
EX;)) = Kmr+X; and Cov(X1,Xp) =Kn(l—m), i=1,2. (1.5)

Letxi,...,x, ind CS(K, m; A1, A2), where x; = (le,ng)T forj =1,...,nand the observed
databe Yops = {%1,...,%,}, wherexy, .. .,x, are the realizations of Xy, . . ., X,. Let 1, X5 be
the sample mean for X; and X, and m;; be the sample covariance, respectively. Assuming
K is known, Papageorgiou and Loukas (1995) obtained the moment estimates of the three
parameters as follows:

1/2
7%:1:!:(1—4;’[‘?1)/ , M=% —K# and Ay =X — K#. (1.6)
In addition, Papageorgiou and Loukas (1995) also discussed the method of ratio of
frequencies and the maximum likelihood estimate method.

Although the univariate Charlier series distribution (Ong 1988) and bivariate Charlier
series distribution (Karlis 2003, Papageorgiou and Loukas 1995) can be easily general-
ized to the multivariate version via the method of stochastic representation (SR), the
multivariate zero-truncated Charlier series (ZTCS) distribution is not available to date.
The first aim of this paper is to propose the multivariate ZTCS distribution by devel-
oping its important distributional properties, and providing efficient likelihood-based
inference methods via a novel data augmentation in the framework of the expectation—
maximization (EM) algorithm. Since the joint marginal distribution of any r-dimensional
sub-vector of the multivariate ZTCS random vector of dimension m is an r-dimensional
zero-deflated Charlier series (ZDCS) distribution (1 < r < m), it is the second objec-
tive of the paper to introduce a new family of multivariate zero-adjusted Charlier series
(ZACS) distributions (including the multivariate ZDCS distribution as a special member)
with a more flexible correlation structure by accounting for both inflation and deflation at
zero. The corresponding distributional properties are explored and the associated maxi-
mum likelihood estimation method via EM algorithm is provided for analyzing correlated
count data.
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The rest of the paper is organized as follows. In Section 2, the multivariate ZTCS
distribution is proposed and some important distributional properties are explored. In
Section 3, the likelihood-based methods are developed for the multivariate ZTCS distri-
bution. In Sections 4 and 5, we introduce the multivariate ZACS distribution, explore its
distributional properties and provide associated likelihood-based methods for the case of
without covariates. In Section 6, some simulation studies are performed to evaluate the
proposed methods. In Section 7, two real data sets are used to illustrate the proposed
methods. Section 8 provides some concluding remarks.

2 Multivariate zero-truncated Charlier series distribution
ind
Let Xoo ~ Binomial(K, ), {Xio}?, ~ Poisson (i), Xoo L {Xi0, .. ., Xm0} and define

X; = Xoo + X0, i=1,...,m.

A discrete non-negative random vector x = X1,...,Xm)" is said to follow an
m-dimensional CS distribution with parameters K € N = {1,2,...,00}, 7 €0,1) and
A= (M,..., Am)" € RY, denoted by x ~ CS(K,7;A1,...,Am) or X ~ CS(K,7;1),
accordingly. The joint pmf of x is

min(K,x) K m )»xi_ke_)”i
Pr(x = &) = 7K1 — oK Z—— £ Qu(K, 7, 1), 2.1
x=x)= > (k) 1-m) [I o ) (2.1)
k=0 i=1
where x = (x1,...,%m)", {x;}72, are the corresponding realizations of {X;}!",, and
min(K,x) = min(K,x1,...,%,).

In particular, as K — 0o and K7 remains finitely large (say, Ag), the distribution of
Binomial (K, ) tends to the distribution of Poisson(1q), so the above m-dimensional CS
distribution approaches to the m-dimensional Poisson distribution MP(Xg, A1, ..., Ay)-
Furthermore, if 7 = 0, then Pr(Xoo = 0) = 1 (i.e., Xoo follows the degenerate distribution
with all mass at zero, denoted by Xoo ~ Degenerate(0)) and Ao = 0, so the m-dimensional
CS distribution becomes the product of m independent Poisson(;) distributions.

Motivated by the Type I multivariate zero-truncated Poisson (ZTP) distribution
developed recently by Tian et al. (2014), we in this paper propose a new multivariate zero-
truncated Charlier series (ZTCS) distribution, whose limiting form reduces to the Type I
multivariate ZTP distribution.

Definition 1. Let x ~ CS(K,m;A1,..., Am). A discrete non-zero random vector
w = (Wi,..., Wy is said to have the multivariate ZTCS distribution with the
parameters (K,mw) and A = (\q,. - )T, denoted byw ~ ZTCS,,(K,m;1) or w ~
ZTCS(K, 75 A1y« s ) if

0, with probability ,
x & = probability ¥ 22)
w, with probability 1 — ,

where U ~ Bernoulli (1 — ) with y = (1 — m)Ke ™+, a4 = "1 hi = Al and U Lw.
Letw ~ ZTCS,,,(K, 7; L), then we have Pr(w = 0) = 0 and

w 4 x|(x # 0), (2.3)
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where x is specified in Definition 1. The SR (2.3) can be used to generate the
ZTCS random vector w via the generation of the random vector x from the mul-
tivariate CS distribution, while the SR (2.2) is useful in deriving important distribu-
tional properties in the following subsections and in developing an EM algorithm in
Section 3.1. Moreover, besides coming from the missing zero vector, the correlation
between any two components of w may come from the common random variable

Xoo ~ Binomial(K, ).

2.1 Joint probability mass function and mixed moments
From the SR (2.2), the joint pmf of w ~ ZTCS,,,(K, ;L) is

P =
Priw = w) 22 DXx=w)

fw; K, 7, ) Prl = 1)

m

where || w||, # 0. From (2.2), it is easy to show that

E(w) = Mzl
diag(A) AL+ K7 AT +IAD) + K (1—7+K7)- 117
E(ww') = lag(M)+AA +K( Jllzp)Jr r(-r+Km) 11
Var(w) = @{diag(x) +Kr(1—m)-117
¥ T T 22917
— 1% [T+ K (M7 + 107) + K711 ]},

where1 =1, = (1,...,1)". Thus we have

Corr(W;, W) =

Kr(1—7) = 1% (i + K7) (4 + K7)

1 mET R\ pyikeh
1 _ K—k L ,
1— (1 —m)Ke+ I; (k)n (== g (w; — k)!

\/[xi +Kn(l—m) — 145 G +1<n)2] [/\j +Kn(l—7) — 1250y +1<n)2]

for i # j. In particular, when & = 0, (2.6) becomes

Aikj
Corr(W;, W)) = — , | # .
orr(W;, Wj) \/(eM T @ —1-%) i #]
In (2.6), let A; = A; = A, we obtain
Kn(1—7) = 1% 0+ K)?
Corr(W;, W)) = ; . i)
At Kn(l—m) - =5 + Km)?
Foranyry,...,r, > 0, the mixed moments of w are given by
m m m
E (1_[ Wf) =1-y)'E (HXZ”> =1-v)'E |:H(Xoo + Xjo)"
i=1 i=1 i=1

} ) (2.7)

Page 4 of 21



Ding et al. Journal of Statistical Distributions and Applications (2015) 2:5

2.2 Moment generating function

Using the identity of E(§) = E[E(&|U)], the moment generating functi

My (t) = Elexp(t'x)] = Elexp(U - t'w)] = E

= E[Mw(UD)] = yMw(0) + (1 — )My ()

Thus the mgf of w ~ ZTCS(K, ; A1, . . ., Ayy) is given by

My (t) = M"l(%);w
_ My (24) 1_[7;1 M, () —
= -

on (mgf) of x is

{E[exp(qu)m] }

=¥ + (1 — ¥)Mw(®).

(et +1— n)K exp (37 heli — Ay) — (1 — m)Ke ™+

1—(1—m)Ke 2+
where £y =Y t;.

2.3 Marginal distributions
2.3.1
Let w =

Marginal distribution for each random component
Wh,..., Wu)T ~ ZTCS(K, 7501, .., Am
distribution of W; with realization w; fori = 1,...,m. If w; > 0, then

). We first derive the marginal

o0 o0 o0 o0
Pr(Wi=w) = Y -+ > > =) Pr(w=w)
w1=0 wi—1=0 w;11=0 Wy,=0
T D >
w1=0 wi—1=0 w;+1=0 Win=0
min{K,w;} wi—k ;.
K A e
x Z ( ) ka1 — mk= knji)~l(wj—k>0)
k=0
1 mn%“’l I< k(l )1( k)\'Ll kei)\i
= s —_—
1— (1 —m)Ke 2+ = k (w; — k)!
00 00 00 00 m WJ —k e~ M
Yooy T3 (1m0
w1=0 wi—1=0w;;1=0 Wi=0j=1
1 min{K, w, K k(l )K k)\-:vl ke,)”. (2 8)
= T e E—— .
1— (1 —m)Ke 2+ k (w; — k)!
1 - §0i mln I< Wl I< k(l )1( k)"l ' kei}\i (2 9)
= — b b N .
1—(1—m)KeH k (w; — k)!
where
1—(1—mKe ™
PP Sl Gk Vil (2.10)

— T()Ke_)H- !

1-Q

Page 5 of 21
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Hence,

Pr(W;=0) = 1— Y Pr(W;=w)

W,':l

oo min{K,w;} wi—k
(2.8) 1 K\ & K e
. k@ — K kE =
1—(1—m)Ke 4+ WX:l g (k) ( ) (w; — k)!

=1 k=

o 1-Qa- mXe™ .10
1—(1—mKer+

@i (2.11)

(1 _ JT)K(ei)L" _ ef)u+)
1— (1 —n)Ke 2+

e (0, -mfe ™) c(0,1).
(0.0 =m e™) c 1)

By combining (2.11) with (2.9) and noting that a ZDCS distribution is a special case of a
ZACS distribution (4.2), we obtain

W; ~ ZDCS(¢p;; K, 1, A;). (2.12)

2.3.2 Marginal distribution for an arbitrary random sub-vector

Second, the marginal distribution for an arbitrary random sub-vector will be considered.
Before that, a so-called multivariate zero-adjusted Charlier series distribution is needed to
be introduced. We will give the definition of this distribution in Definition 2 in Section 4.

We now consider the marginal distributions of w(!) and w'®, where
Wi W1
wl) = . w? = and w=

W, Wi

w®

w®

Furthermore in Section 4, we will introduce multivariate zero-adjusted Charlier series

distribution and it can be shown that

w) ~ ZDCS(eV; K, 7,01, ..., A and W ~ ZDCS(@P; K, 7, hrtts - o Am)s

(2.13)
where
(@) 1 -m- (e_k(ﬁ B e_M) K 29
b — e(O, 1—n e—+)c 0,1), i=12 (214
(p 1 _ (1 _ ﬂ)l(ei)“" ( ) ( ) l ( )
2
)‘Srl) =) i—1 »iand )"Ei-) =2t b
In fact, for any positive integers iy, . . ., i, satisfying 1 < i; < --- < i, < m, we have
Wi,
: ~ ZDCS(¢*; K, 7T, Aiy» - - - Ai), (2.15)
Wi,
where

(1-mX [e_(kiﬁ'”“ir) - efﬂ]

* c (0, -7 Ke*(*fl*'““fr)) C (0,1).
¢ 1— (1 —n)Ker+ ( ) 0,1

(2.16)

Page 6 of 21
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2.4 Conditional distributions

2.4.1 Conditional distribution of w" |w®

From (2.4), (2.13) and (4.4), the conditional distribution of w’|w® is given by
fw; K, 7, )

D — D@ — 4,2y — SN R
Priw" =w'/ W =w') = Prw® — w®)

(2.17)

L Qu(K, 7, M)

1-(1—m)Ke *+

—0®@
eDI(w? =0) + [” - Q@ (K,JT,X(Z))] I(w® £ 0)

1-(1-m)Ke "+

’

where w® = (w,y1,...,w), A® = (Apy1, .., Am)T and

min{K,w} K —k _)\41'
— k K—k
QK= Y <) 1—-n) ]"[(W_k),
k=0
min{K,w(z)} K wp—I —A
i) E (oo 15
=0 p=r+1 [9)

We first consider Case I: w® # 0. Under Case I, it is possible that w») = 0 or w1 # 0.
From (2.17), it is easy to obtain

in{K,w} m ik
71(1) min{ K\ _k K—k A
e *+ kgo ()@ —m) ;l_lli(wzljfk)!
Pr (w(l) =wD|w? = w(z)) = —_ = . (2.18)
min{K,w?)} X m NG -1
> ()rla-o ] (wi,—l)!
=0 p=r+1

Case I: w® = 0. Under Case I, it is obviously that w1 # 0 and the sharing binomial
variable equals to zero. Thus we have

r Wi \—A;
Pr (w<1> =whw® = 0) - I1 hie
1— e—)\(l) i1 Wi!
This implies
wh)| (w<2> - o) ~ ZTPD (g, .. 4. (2.19)

2.4.2 Conditional distribution of X;|(w, U)
The stochastic representation (2.2) can be rewritten as

Kby o X)) = X+ X0 X0+ X572 Uw,

where X ~ Binomial(K, ) and {X]}" ind Poisson(};). To obtain the conditional dis-
tribution of X{j|(w, U), we consider two cases: I/ = 1and U = 0. When U = 1, the
conditional distribution of X§|(w, U) is given by
Pr(Xg =4LXy =w1—14... X}, =wy— 1)

PI‘(X] = Wi,... ,Xm = Wm)

Pr(Xg =lw=wU=1)

m wi—l

K\_1 K=1 77 2
(1)” (I —m) 1:[ Wi
min(K,w) K w, —k
( )T[k(l 7.[)1( k l—l (WL Y

k=0

= q(w,K,m,1), (2.20)

Page 7 of 21
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for[=0,1,...,min(K, w), which implyingl

X5|(w=w,U = 1) ~ Finite(, g;(w, K, 7,X); [ =0,1,..., min(w)). (2.21)
When U = 0, we obtain Pr(Xg = Olw =w, U =0) = 1, ie,

X5|(w = w, U = 0) ~ Degenerate(0). (2.22)
Hence, for any /, we have

Pr(X: = llw = w, U = 0) = I(l = 0). (2.23)
Thus, we have the conditional distribution of X|(w, UJ), which is given by the following:

Finite(/, gy(w, K, ,1); [ =0,1,...,min(w)), if U =1,
X510, 1) ~ (2.24)
Degenerate(0), if =0,

where g;(w, K, 7, &) is defined by (2.20).

2.4.3 Conditional distribution of X§|w
By using (2.24), the conditional distribution of X{j|w is

1
Pr(Xg=lw=w) = > Pr(Xg=LU=ulw=w)

u=0

1
= Y Pr(U=ulw=w) Pr(Xg =llw=wU =u)

u=0
= Pr(U=0) -Pr(X; =llw=w,1U=0)
+ Pr(U=1) Pr(X; =Illw=w,U =1)

C2Y e (1 — 1)K 11 = 0) 41 — e (1 — 1)K] - qu(w, K, 70, 1)

= pw,K,7,1), (2.25)
for/ =0,1,...,min(K,w), where q;(w, K, 7, 1) is defined by (2.20). Thus,
X5|(w = w) ~ Finite(/, py(w, K, 7t,1); [ =0,1,...,min(K, w)). (2.26)

Especially, when min(K,w) = 0, we have X;j|(w = w) ~ Degenerate(0). Thus, the
conditional expectation of X{j|w is given by

EXGlw=w) = [1 e (1— n_)K:I

min(K,w) Kk . m wi—k
kZ k() (=)= 1_[1 w1
=1 i ‘
min(K,w) o minw) = 1).  (2.27)
W) - "
kZO (k)nk(l - n)K k 1_[1 W
— i

3 Likelihood-based methods for the multivariate ZTCS distribution

ind
Suppose that w; S ZTCS(K, w5 X1, - - » Am), where w; = (W), ..., ij)T forj=1,...,n.
Let w; = (wyj,..., wmj)T denote the realization of the random vector wj, and Yops =

Page 8 of 21
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{wj};’:1 be the observed data. We consider K as a known positive integer. Then, the
observed-data likelihood function for (7, 1) is

" s minKw) o Ak
Here = e & (e)rta-mr kn L Gy
so that the log-likelihood function is
L(m, A|Yobs) = —nlog [e)“r —-(1- n)K]
" min(K,w;) wij—k
N Zlog Z <K> k(1 — K- kl‘[ (vi:, o |- (3.1)
j=1 k=0

3.1 MLEs via the EM algorithm
The SR (2.2) can motivate a novel EM algorithm, where some latent variables are inde-
pendent of the observed variables. For each w; = (wy,... ,wmj)T, we introduce latent

id id

variables UJ; < Bernoulli(1 — ) with v = (1 — m)Ke ™+, ng < Binomial (K, i),
iid

X;; < Poisson(A;) fori =1,...,m, and XS}JLX;, such that

T
*k * *k *
(xoj +x1j, e ,xoj +xm/) = ”le’
where u; and x:; denote the realizations of U; and X;, respectively. We denote the

n
latent/missing data by Ynis = {u,', x?‘)i, x’fj, xm} ]] , so that the complete data are
k * * n
Yeom = Yobs U Yimis = {Wj; Uj» Xojr Xjs - - - ’xmj]j=l

* k n * n
= {xoj,xll', .. ,xm1} = {x()], I/l]', WI] i )
j= j=1

where &}, = wjw;j — g, for j = 1,...,nand i = 1,...,m. Thus, the complete-data

likelihood function is given by

"R e
L, M| Ycom) = 1_[ (x* )nxol(l - n)K—xo,' 1_[ Lx*'
o .,

j=1 =1 7y

UWii—X5
K\ _x Kt T M VemH
L ]TYA =) 0/1_[7
Xoj

i 0 i=1 (ujwij — xa) !

N

S~
I
—

Zx . > | ujwii—nxy
_ i=1 i )
oc w1 — ) KT a7 e, (3.2)
i=1

where xj = (1/n) Z;’:l xéj. The complete-data log-likelihood function is

L1, A Yeom) = nxlog 71+(n1( — nxo) log(1— n)—{-z Z ujwij — nxy | log i — na;
i=1 | \j=1

The M-step is to calculate the complete-data maximum likelihood estimates (MLEs):

—% n s
. X A > i1 wWi
# =2 and A= == 7

—K#, i=1,...,m, (3.3)
K

and the E-step is to replace { u,} * ; and { xo;} in (3.3) by their conditional expectations:

Page 9 of 21
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E(Uj|Yobs, 7, k) = EU)=1—(1-n) e, and (3.4)
min(K,w)) m wij—k;
_ , ki A
1-1-mFe™] ¥ kj(g)”k’(l_”)K K 1_[ W
« 2.27) ki=1 i=1
E(X()]| Yobs’ T, A-) == . A U
min(K,w)) Kk Kk m )anv,/—k/
)3 (ki)n A —m) Il Wi
k=0 i=1
x I(min(wj) > 1), (3.5)

respectively. An important feature of this EM algorithm is that the latent variables {1,1,-}]’7=1
are independent of the observed variables {wj};’zl.

Also note that here we assume that K is a known positive integer. In practice, since
K €{1,2,...,N},say N = 100. For a given K, we first use the EM iteration (3.3)—(3.5) to
find the MLEs of 7 and A, denoted by 7 and X. Then, we can calculate (T, ):| Yobs) and
choose the K that maximizes (7, i| Yobs)-

3.2 Bootstrap confidence intervals

When other approaches are not available, the bootstrap method is a useful tool to find
confidence intervals (Cls) for an arbitrary function of (7, 1), say, ¥ = h(w, ). Let (7, X)
be the MLEs of (7, A) calculated by the EM algorithm (3.3)—(3.5), then D = h(#,1) is the
MLE of . Based on (71, i), we can generate wjf id ZTCS(K, 7, )A»l, . )A»m) via the SR (2.2)
forj = 1,...,n Having obtained Y}, . = {w’f, - ,wj,}, we can calculate the bootstrap
replication (7%, 1% and get 0% = h(7*, . Independently repeating this process G times,

~ G A
we obtain G bootstrap replications {19;} K Consequently, the standard error, se(?), of
g=

¥ can be estimated by the sample standard deviation of the G replications, i.e.,
G 1/2

se(d) = LZ é*—(&*+-~-+w§*)/G2 (3.6)

T lG6-1 & M @ ' '
g=1
~ G

If {ﬁg*} is approximately normally distributed, the first (1 — «)100 % bootstrap CI for

g=1
7 is
[l§ — Zg/2 " 523(19), 0 + Za/2 s’é(ﬁ‘)] . (3.7)
. . 2 * G
Alternatively, if {19g }g=1
CI of ¥ can be obtained as

is non-normally distributed, the second (1 — «)100 % bootstrap

(D, Dyl (3.8)

where 1§‘L and 1§‘U are the 100(«e/2) and 100(1 — «¢/2) percentiles of {ﬁg’f }ngl, respectively.
4 Multivariate zero-adjusted Charlier series distribution

To introduce the multivariate zero-adjusted Charlier series (ZACS) distribution, we first
define the univariate ZACS distribution. A non-negative discrete random variable Y is
said to have a ZACS distribution with parameters ¢ €[0,1) and A > 0, denoted by ¥ ~
ZACS(p, K, m, M), if

y < 72w, (4.1)
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where Z' ~ Bernoulli(1 — ¢), W ~ ZTCS(K, 7, 1), and Z’' L W. It is clear that the pmf of

Y is given by
— —_— — 7_ w .
Pr(Y =) = ¢l(y=0) + [1 e Qy<1<,n,x>} I(y #0), (4.2)
where
min(K;, y) k. —x
_ K\ ko k—kM e
Qy(K, 7, 1) = Z:O (k)n (1—m) T

Motivated by (4.1), naturally, we have the following multivariate generalization.

Definition 2. A discrete random vector y = Y1,..., Y is said to have the
multivariate ZACS distribution with parameters ¢ €1[0,1), K > 0, = €][0,1)
and A = (L..., ) € RY, denoted by y ~ ZACSu(¢;K,m,L) or
Yy~ ZACS(¢; K, 7, A1, s dm), if

0, with probability ¢,

w, with probability 1 — ¢,

where Z' ~ Bernoulli(1— @), w ~ ZTCS(K,7T; A, ..., Am), and Z' L'w. The random vector
w is called the base vector of they.

It is easy to show that the joint pmf of y ~ ZACS(¢; K, 7, A1,. .., Ap) is

—¢
Pr(y = y) = pI(y = 0) + [1 g e Qy(K,n,x)] I(y # 0), (4.4)
where
min(K,y) m yi—k A\
_ K\ o _k—kypqhi e
Qy(K, 7, \) = kg <k>n (1—m) ET—@!‘

We consider several special cases of (4.3) or (4.4):

(i) Ifo =0,theny 4w~ ZTCS(K, ;M5 .. .5 Am), i.e., the multivariate ZTCS distribu-
tion is a special member of the family of the multivariate ZACS distributions. Thus,
we can see that studying the multivariate ZTCS distribution is a basis for studying the
multivariate ZACS distribution;

(i) Ifg € (0, (1 —m)Ke *+), then y follows the multivariate zero-deflated Charlier series
(ZDCS) distribution with parameters (¢, K, 7, 1), denoted by y ~ ZDCS,,(¢; K, 7w, 1)
ory ~ ZDCS(¢; K, 7w, A1, s Am)s

(iii) Ifo = (1 — m)Ke ™+, theny ~ CS,, (K, ;1);

(iv) Ifg € (1 — m)Xe ™+, 1), then y follows the multivariate zero-inflated Charlier series
(ZICS) distribution with parameters (¢, K, 7, 1), denoted by y ~ ZICS,,,(¢; K, 7w, 1)
ory ~ ZICS(¢; K, w, A1, ... Am).
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4.1 Mixed moments and moment generating function
From (4.1) and (2.2), we immediately have

Ey) = {5Q+Kr-1),

._.

E(yy") = =% [diag®) + AT+ Kx A1+ 1) + Kn(1 — 7 + Km) - 117],

Var(y) = 11—“} diag\) + K7r(1 — ) - 117

— V2 T+ Kn (61T + 14T + K27%117 }
(4.5)

Thus, we have

Corr(Y;, Yj) = Kr(1—7) — (i + Km)(j + Kn)(¥ — ¢)/(1 — ) ,

\/[/\i +Kr(l—m) = Y220, + 1<n)2] [A,- + K1 =) = Y220, + 1(71)2]

for i # j. In particular, if ¥ = 0, we obtain
Aikjle —¥)/(A — )
\/ [ =22 =)/ =] |3 = 22w =)/ = )]
Furthermore, if A; = A; = A, then
Mo =)/ =)
1 -2 —9)/A— )]
Clearly, Corr(Y;, ¥;) could be either positive or negative, which depend on the values of ¢,

K, 7 and A.

Foranyry,..., 7, > 0, the mixed moments of y are given by

i=1 i=1

i=1

Corr(Y;, ¥)) =

Cort(Y;, ¥)) =

By using the formula of E(¢§) = E[ E(£|Z")], the mgf of y is
My(t) = E[exp(t'y)] = E[exp(Z' - t'w)] = E{E[ exp(Z't'w)|Z'] }

E[Mw(Z'D)] = pMw(0) + (1 — 9)My(2) = ¢ + (1 — ©)Mw(®)

o+ 17‘:; |:(7'ret+ +1- jT)K exp <Z )\zet’ — )\.+) (1 — 7T)K )L+:| ) (4'7)
i=1

where ty = >, t.

4.2 Marginal distributions
Now we consider the marginal distributions of y») and y®, where

4| Yrp1
yo=]:] y®=
Y, Y
Based on (4.1) and (2.13), we have

y 0O L 2w & 7z 0e® - p—q 9,
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where Z' ~ Bernoulli(1 — ¢), Z® ~ Bernoulli(1 — ¢®), o is given by (2.14), gD ~
ZTCS(K, 7521, .., Ay) and §? ~ ZTCS(K, 73 Art1, - - - » Am). Note that Z/Z® 1 £® and
7' 7Z® ~ Bernoulli((1 — ¢)(1 — ¢%))). According to the SR (4.3), we can obtain

vy ~ ZACSOWWY; K, 7,01, ...,4,) and ¥y ~ ZACSOW P K, 71, Ari 1, s ),
(4.8)

where

®)
1—(1—m)Ke ™+
1— (1 —m)Ke 2+

v = 1-1-p)1-9®) = 1-(1—9) €(0,1), k=12, (4.9)

1 2
)‘Sr) = i1 hiand A:-) = i1 b

In fact, for any positive integers iy, . . ., i, satisfying 1 <i; < --- < i, < m, we have
Yi
~ ZACS(V ; K, 70, Aiyy - - -5 Aiy)s (4.10)
Y;

where ¢* is given by (2.16) and
1— (1 —m)Ke Gatthir)

1—(1—m)Ke*+

V'=1-(1-9)1-¢)=1-(1-9) €(0,1). (4.11)
4.3 Conditional distributions
4.3.1 Conditional distribution of y(" |y®
From (4.4) and (4.8), the conditional distribution of y™!'|y® is given by
Pr(y =y)
Pr(y(z) = y(z))

B ¢I(y = 0) + R(y, K, 7, X, 9)I(y # 0)
@I =0) + SHD,K, 7, A v)I(y? #0)

Pr(y® = yD[y® — 4@ —

(4.12)

where

1— 0 min(K,y) m )\'yi_ke_)ti
Ry, K, 7, A, @) = K1 — )X kTT=—— and
0K he) = 1= mfKe s ; <k)7r (1—-m) ll:! o —or

min(K,y?)

— @ m ik
SO Kma?) = 1Ty <K)nk(1_n)’<—k [
1-A-mKe ™ (5 \K iz O R

We first consider Case I: y» # 0. Under Case I, it is clear that y # 0. From (4.12), it is

easy to obtain

e min{K,y} K _ m A‘%}ji
et (k)ﬂk(l _ 7T)K k 1—[ 0/1/,,]()1
Pr (yu) — yDy®@ = y(2)> _ k=0 j=1
min{K,y®} X mo o pl
5 -yt [
=0 p=r+1

Case I: y» = 0. Under Case I, it is possible that y) = 0 or y # 0. When yV = 0,
from (4.12), we obtain

4
Pr(y = 0ly? = 0) = —.
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When y(l) # 0, from (4.12), we have

(1— )1 = myKe L ie

1) — D v@ — o) =

4.3.2 Conditional distribution of Z'|y

Since Z' ~ Bernoulli(1 — ¢), Z’ only takes the value 0 or 1. Note that y = 0 is equivalent
to Z' = 0. Thus, Pr(Z' = 0]y = 0) = Pr(Z’ = 0)/Pr(y = 0) = 1. And when y # 0, we
have Pr(Z' = 1ly = y) = Pr(Z' = 1,w = y)/ Pr(y = y) = 1. Therefore,

Degenerate(0), ify = 0,
Zy=9~ (4.13)
Degenerate(1), ify # 0,

i.e.,, Z'|(y = y) ~ Degenerate(I(y # 0)).

4.3.3 Conditional distribution of w|(y = y # 0)
Ify # 0, we have

Priw=w,y=y) Priw=y2=1)

Priw=wly=y) = =I(w=y).
v=y Pry = ) Pry =) g
Thus, given y = y # 0, we have
w|(y =y # 0) ~ Degenerate(y). (4.14)

5 Likelihood-based methods for multivariate ZACS distribution without

covariates )
Suppose that Y i ZACS(¢; K, mw,A1,. .., ), where Y, = (Yl,‘,...,Y,,,j)—r for
j = L...,n Lety = (ylj,...,ymj)T denote the realization of the ran-
dom vector M and Yoy = {yj};’=1 be the observed data. Furthermore, let
I = {lyy = 0j = 1...n and my = ;1) = 0) denote

the number of elements in J. We assume that K is a known positive integer. Therefore,
the observed-data likelihood function is proportional to

L(p, 7w, A Yobs)

I et mig(:’y/) K\ o ﬁ ik
o @01 — )"0 — % ( )ﬂ A=) [ | ——= |-
i¢l 1—(1—m)fe M+ k=0 k/ i1 (yij - kl)‘

Thus, we can write the log-likelihood function into two parts:
€(@, 70, A Yobs) = €1(@|Yobs) + €2(7r, A Yobs), (5.1)
where
€1(@[Yobs) = mologe + (n — mo) log(1 —¢) and
€T, A Yops) = —(n = mo) {3s +log[1 = (1 — m)¥e™] |
min(K.y,) m k?lij_k/

+ ) log| > (f)nk/(l—n)K_k/HM
g =)

jJ k=0 / i=1
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In other words, the parameter ¢ and the parameter vector (7,A) can be estimated
separately. Obviously, the MLE of ¢ has an explicit solution
A mo
p=—, (5.2)
n

but the closed-form MLEs of (7, L) are not yet available.

5.1 MLEs via the EM algorithm and bootstrap Cls

The objective of this section is to find the MLEs of (;r,1) based on (5.1). For the log-
likelihood function (3.1), the corresponding EM iteration for finding the MLEs of (7, 1)
is defined by (3.3)—(3.5). By comparing (3.1) with (5.1), if we replace (}_7_; w;;) in (3.1)
with (Zjﬂ ¥ij), we promptly obtain the MLEs of (7, 1) by using the EM algorithm. The
M-step is to calculate the complete-data MLEs:
g1 %y and A — D i

12

Y - K#, i=1,...,m, (5.3)
(n — mo)K (n — my)

T =

and the E-step is to replace {u;};¢7 and {x(’jj},-¢ 7 in (5.3) by their conditional expectations:

E(Uj|Yops, m,0) = E(Up) =1— (1 —m)Xe™*, and (5.4)
min(K,y/v) m ik
[1--mfe™] ¥ ()ra-m*HT] &;_kj).
ki=1 i=1"" '
* _ V)
E(XgjYobs, 7,4) = minKy) ] L
i(1 — +\K—ki i
k,go (k/)n A=) ]il;ll Oii—k)!
x I(min(y)) > 1), (5.5)

respectively.
The procedure of constructing bootstrap Cls for an arbitrary function of (¢, 7, ), say
¥ = h(p, 7, L), is very similar to that presented in Section 3.2.

6 Simulation studies

To evaluate the performance of the proposed methods in Section 3, we investigate the
accuracy of MLEs and confidence interval estimators of the parameters in the multivariate
ZTCS distribution. We consider two cases for the dimension with m = 2 and m = 3.

6.1 Experiment1:m =2

When m = 2, the parameters (K,m; A1, y) are set to be (5, 0.5; 3, 5). We generate
{wj};’:1 id ZTCS(K,m;A1,. .., y) with = 200. Based on this simulated data set, for
different K values we first calculate the MLEs of = and (11, A2) by using the EM algo-
rithm (3.3)—(3.5) and then calculate the estimated log-likelihood. We choose K = 5 that
maximizes the log-likelihood among all K values. These results are reported in Table 1.

Table 1 Finding the value of K by maximizing the log-likelihood function for m = 2

K 7 A A Log-likelihood
3 066742 34739056 54464959 —884.6629
4 058617 31314781 5.1040629 —8834288
5 051145 29188539 48914319 —883.0151
6 044308 28176227 47901937 —883.1228
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For this fixed value of K = 5, we first calculate the MLEs of (7, A1, X2) by using the
EM algorithm (3.3)—(3.5), the bootstrap standard deviations (stds) of these MLEs, the
corresponding mean square errors (MSEs) and two 95 % bootstrap confidence intervals
(ClIs) of these parameters with G = 1000 by the bootstrap method presented in Section
3.2. Then, we independently repeat the above process 1000 times. The resulting average
MLE, std, MSE and two coverage probabilities (CPs) based on the normal-based and non-
normal-based bootstrap samples, respectively, are displayed in Table 2.

From Table 2, we can see that the average MSE of 7 is very small while the average
MSESs of (A1, A2) are reasonably small. The two bootstrap coverage probabilities are close
to but less than 0.95.

6.2 Experiment2:m =3
When m = 3, the parameters (K, 7; A1, A2, A3) are set to be (4, 0.3; 2, 4, 6). We generate
{w,'}]’.“:1 id ZTCS(K,m;A1,. .., ) with # = 200. Based on this simulated data set, for
different K values we first calculate the MLEs of & and (11, A2, A3) by using the EM algo-
rithm (3.3)—(3.5) and then calculate the estimated log-likelihood. We choose K = 4 that
maximizes the log-likelihood among all K values. These results are reported in Table 3.

For this fixed value of K = 4, we first calculate the MLEs of (r, A1, A3, A3) by using
the EM algorithm (3.3)—(3.5), the bootstrap stds of these MLEs, the corresponding MSEs
and two 95 % bootstrap Cls of these parameters with G = 1000 by the bootstrap method
presented in Section 3.2. Then, we independently repeat the above process 1000 times.
The resulting average MLE, std, MSE and two CPs based on the normal-based and non-
normal-based bootstrap samples, respectively, are displayed in Table 4.

From Table 4, we can see that the average MSEs of 7 and ():1, )22, 5»3) are very small. The
two bootstrap coverage probabilities are close to 0.95.

7 Two real examples
7.1 Students’ absenteeism data
In this section, we use the data set on the number of absences of 113 students from
a lecture course in two successive semesters reported by Karlis (2003) to illustrate the
proposed statistical methods for the multivariate ZTCS distribution. Let W; denote the
number of absences in the first semester and W5 denote the number of absences in the
second semester. The data are displayed in Table 5 below.

For the purpose of illustration, we artificially remove the (0, 0) cell counts from Table 5
and the updated data are shown in Table 6.

Let wi = (le, sz)T l’l\c*l ZTCS(K, ;) 1, A2) fOI‘j = 1,...,n with n = 98. Let
w; = (wy, sz)‘r denote the realization of the random vector wj, and Yops = {w,-}]’7=1 be
the observed data. The parameter K of the binomial distribution is considered unknown

Table 2 The average MLE, std, MSE and two CPs of (;r, A1, Ap) form =2and K =5

Parameter True value Average MLE Average std® Average MSE cpt CP¥

b4 0.5 0.511457 0.06417 0.004209 0.930 0932
A 3 2918853 0.33051 0.114730 0.927 0932
A2 5 4891431 0.35926 0.139568 0.921 0928

std®: The sample standard deviation for the bootstrap samples
CP¥: Normal-based bootstrap CP
CP*¥: Non-normal-based bootstrap CP
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Table 3 Finding the value of K by maximizing the log-likelihood function form = 3

K b4 A e A3 Log-likelihood
3 04037377 1.9887834 4.2987810 5.9287793 —650.5100604
4 0.3203847 1.9184570 4.2284540 5.8584519 —649.8799727
5 0.2583191 1.9084000 4.2183967 5.8483944 —650.1021029
6 0.2137641 19174109 42274075 5.8574051 —650.1044541
Table 4 The average MLE, std, MSE and two CPs of (;r, A1, Ay) form = 3and K = 4

Parameter True value Average MLE Average std® Average MSE Cpf Cp¥

F/4 03 0.320384 0.0541052 0.00295 0.937 0.939
A 2 1.918457 0.222460 0.05689 0.925 0.932
Iy 4 4.228454 0.242082 0.06476 0.921 0.925
A3 6 5.858451 0.255456 0.09402 0.954 0.948
stdAB: The sample standard deviation for the bootstrap samples

CP": Normal-based bootstrap CP

CP*: Non-normal-based bootstrap CP

Table 5 Cross-tabulation of the students’ absenteeism data (Karlis 2003)

Wi \W> 0 1 2 3 4 5 6 7 8 Total

0 15 10 4 4 2 0 0 0 0 35
1 6 11 9 4 2 0 0 0 0 32
2 5 7 6 5 0 0 0 0 0 23
3 1 3 2 4 3 1 0 0 0 14
4 1 0 2 0 1 0 0 0 0 4
5 0 0 0 0 0 1 1 0 0 2
6 0 0 0 0 0 0 2 0 0 2
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 1 1
Total 29 31 23 17 8 2 3 0 0 113

Table 6 The number of absences of 113 students from a course in two successive semesters without
the (0, 0) cell counts (Karlis 2003)

Wi\W, 0 1 2 3 4 5 6 7 8 Total

0 - 10 4 4 2 0 0 0 0 20
1 6 11 9 4 2 0 0 0 0 32
2 5 7 6 5 0 0 0 0 0 23
3 1 3 2 4 3 1 0 0 0 14
4 1 0 2 0 1 0 0 0 0 4
5 0 0 0 0 0 1 1 0 0 2
6 0 0 0 0 0 0 2 0 0 2
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 1
9 1 0 0 0 0 0 0 0 1 1
Total 14 31 23 17 8 2 3 0 0 98

Page 17 of 21
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and it is attempted to estimate this. Based on the data in Table 6, for different K values we
first calculate the MLEs of r and (A1, A2) by using the EM algorithm (3.3)—(3.5) and then
calculate the estimated values of the log-likelihood function. These results are reported
in Table 7.

We should choose the K that maximizes the log-likelihood among all K values. From
Table 7, we observed that the values of log-likelihood monotonically increase as K — oo.
On the other hand, K must be larger than or equal to max(W7, W5). From Table 6, we have
max (W71, W) = 9. To illustrate how to obtain the confidence intervals of the parameters,
it seems reasonable to choose K = 10. With G = 6000 bootstrap replications, we calcu-
late the bootstrap average MLEs, the bootstrap stds of (7, A1, 42) and two 95 % bootstrap
CIs of (7, A1, A2). These results are listed in Table 8.

7.2 Road accident data of Athens
The number of accidents in 24 roads of Athens for the period 1987-1991 were reported
and analyzed by Karlis (2003) with a multivariate Poisson distribution. Since only acci-
dents that caused injuries are included as shown in Table 9, we want to fit the data set by
the multivariate ZTCS model.

Let w;j = (Wy,..., ng)—r id ZTCS(K, 75 1, ..., As5), where Wy, ..., W5; denote the
average numbers of accidents reported in the j-th road per kilometer from 1987 to 1991,
respectively, forj = 1,...,n (n = 24). For example, whenj = 1, we have t; = £; = 1.2 and

(Wi1,..., Ws)" = (11,33,25,23,6) /1.2.

The unknown parameter K is assumed to be an positive integer. Based on the data in
Table 9, for different K values we first calculate the MLEs of 7 and A = (Aq,..., A5)T by
using the EM algorithm (3.3)—(3.5) and then calculate the estimated values of the log-
likelihood function. These results are reported in Table 10.

Table 7 Finding the value of K by maximizing the log-likelihood function for fitting the data of
Table 6 by the multivariate ZTCS distribution

K bq A e Log-likelihood
2 0.1220034 1.394314 1.600330 —328.8195
3 0.1024329 1.326026 1531414 —328.1680
4 0.0869704 1.281892 1486834 —327.7241
5 0.0748624 1.252965 1457593 —327.4137
8 0.0517887 1.208834 1412942 —326.8897
9 0.0468272 1.200906 1404915 —326.7862
10 0.0427041 1.194675 1.398604 —326.7022
14 0.0314939 1.179167 1.382890 —326.4824
15 0.0295422 1.176680 1.380369 —326.4453
20 0.0225358 1.168154 1371725 —326.3146
30 0.0152633 1.160049 1.363504 —326.1831
50 0.0092682 1.153806 1.357169 —326.0775
75 0.0062141 1.150805 1354123 —326.0247
100 0.0046735 1.149330 1.352626 —325.9982
150 0.0031242 1.147871 1.351145 —3259718
250 0.0018786 1.146717 1.349972 —325.9507

350 0.0013431 1.146225 1.349473 —325.9416
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Table 8 MLEs and confidence intervals of parameters for the students’ absenteeism data

Parameter MLEB std® 95 9% bootstrap CIt 95 % bootstrap CI¥

T 0.043961 0.017672 [0.009325, 0.078598] [0.007857, 0.078343]
A 1.175550 0.210425 [0.763118, 1.587982] [0.785992, 1.606149]
Ao 1377584 0.218819 [0.948699, 1.806468] [0.965662, 1.824147]

MLEB: The average MLE for the bootstrap samples

std®: The sample standard deviation for the bootstrap samples
CI": Normal-based bootstrap Cl

CI*: Non-normal-based bootstrap Cl

We should choose the K that maximizes the log-likelihood among all K values. From
Table 10, we observed that the values of log-likelihood monotonically increase as K — oo.
On the other hand, K must be larger than or equal to max{Wj;: 1 <i <5, 1 <j < 24}.
From Table 9, we have max{W;;: 1 <i <5, 1 < < 24} = 52.7. To illustrate how to obtain
the confidence intervals of the parameters, it seems reasonable to choose K = 53. With
G = 6000 bootstrap replications, we calculate the bootstrap average MLEs, the bootstrap
stds of (7%,):1, . ..,)15) and two 95 % bootstrap Cls of (i, A1,...,A5). These results are
reported in Table 11.

Based on the data in Table 9, we calculate the sample correlation coefficient matrix,
which is given by

1.0000 0.8038 0.7643 0.8089 0.5746
0.8038 1.0000 0.8326 0.8297 0.4084

R =] 0.7643 0.8326 1.0000 0.9058 0.5768 |,
0.8089 0.8297 0.9058 1.0000 0.6557
0.5746 0.4084 0.5768 0.6557 1.0000

Table 9 Accident data of 24 roads in Athens for the period 1987-1991 (Karlis 2003)

Road Year Length(km)
1987 1988 1989 1990 1991 ]
Akadimias 1 Il 33 25 23 6 1.2
Alexandras 2 41 63 91 77 29 26
Amfitheas 3 5 35 44 21 13 24
Aharnon 4 44 79 91 88 33 55
Vas. Olgas 5 5 3 4 4 0 0.5
Vas. Konstantinou 6 15 26 13 7 13
Vas. Sofias 7 34 63 81 67 23 26
Vouliagmenis 8 17 16 24 24 4 2.1
G’ Septemvriou 9 16 24 30 30 13 17
Galatsioy 10 13 13 15 17 9 1.1
lera Odos 11 7 15 20 19 8 2.7
Kalirois 12 15 24 39 32 7 26
Katehaki 13 2 3 27 24 7 14
Kifisias 14 22 23 38 22 1M 14
Kifisou 15 38 48 60 53 24 7.9
Leof. Kavalas 16 4 6 12 9 3 20
Lenorman 17 19 30 37 48 22 20
Leof. Athinon 18 15 11 16 21 28 6.1
Mesogeion 19 20 30 33 28 9 15
P. Ralli 20 13 14 13 17 9 26
Panepistimiou 21 24 58 40 36 5 1.1
Patision 22 80 108 114 113 86 4.1
Peiraios 23 86 89 109 90 49 8.0
Sigrou 24 60 61 87 86 29 4.8
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Table 10 Finding the value of K by maximizing the log-likelihood function for fitting the data of

Table 9 by the multivariate ZTCS distribution

7 A A A3 A s Log-likelihood
2 039 8405 13.520 16.667 14513 5262 —498.992
3 0.383 8.046 13.161 16.308 14.154 4903 —492.749
4 0372 7.707 12.822 15.969 13815 4564 —487.185
5 0349 7452 12.567 15.714 13.559 4309 —482.820
8 0.292 6.858 11.973 15.120 12,966 3715 —473.529
9 0276 6710 11.825 14.972 12,818 3567 —471336
10 0261 6.585 11.700 14,847 12,693 3442 —469.490
14 0.209 6271 11.387 14533 12.379 3.128 —464.604
15 0.198 6.226 11.341 14488 12333 3083 —463.810
20 0.155 6.092 11.207 14.354 12.200 2949 —461.170
30 0.106 5997 11.112 14.259 12.105 2854 —458.806
50 0.065 5944 11.059 14.206 12.051 2.800 —457.125
51 0.064 5942 11.057 14.204 12.050 2799 —457.078
52 0.062 5941 11.056 14.203 12,049 2798 —457.033
53 0.061 5.940 11.055 14.202 12,047 2797 —456.990
54 0.060 5939 11.054 14.201 12,046 2795 —456.949
75 0.043 5923 11.038 14.185 12,030 2779 —456350
100 0.032 5913 11.028 14175 12.021 2770 —455978
150 0.021 5905 11.020 14.167 12,012 2762 —455617
250 0013 5.898 11.014 14.160 12,006 2755 —455334
350 0.009 5.896 11.011 14158 12.003 2753 —455215

while the population correlation coefficient matrix p, based on (2.6) is estimated to be

>
Il

1.0000 0.2703 0.2444 0.2612 0.4199
0.2703 1.0000 0.1951 0.2085 0.3352
0.2444 0.1951 1.0000 0.1886 0.3031

0.2612 0.2085 0.1886 1.0000 0.3240

0.4199 0.3352 0.3031 0.324 1.0000

it can be easily seen that g is very close to R.

Table 11 MLEs and confidence intervals of parameters for the road accident data of Athens

Parameter MLEB std® 95 % bootstrap CIf 95 % bootstrap CI*
T 0.0663 0.017 [0.0327, 0.1000] [0.0356, 0.1027]
A 5.8610 1.217 [3.4750, 8.2470] [3.8330, 8.4930]
A 10.926 2.347 [6.3260, 15.526] [7.1450, 16.313]
A3 14.118 1.824 [10.543, 17.694] [10.844, 18.022]
Ag 11.954 1624 [8.7700, 15.138] [9.2400, 15.478]
As 2.7533 0.604 [1.5676, 3.9390] [1.7988, 4.0889]

MLEB: The average MLE for the bootstrap samples

std®: The sample standard deviation for the bootstrap samples

CI™: Normal-based bootstrap Cl

CI¥: Non-normal-based bootstrap Cl
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8 Concluding remarks

In this paper, we first proposed the multivariate ZTCS distribution and studied its distri-
butional properties. Since the joint marginal distribution of any r-dimensional sub-vector
of the multivariate ZTCS random vector of m-dimensional has certain probability mass
function, we then proposed the multivariate ZACS distribution. It is noted that the mul-
tivariate ZTCS distribution is a special case of the multivariate ZACS distribution. The
EM algorithm is used to obtain the MLEs of the parameters in the multivariate ZACS
distribution. The multivariate ZTCS distribution can be used when other distributions,
like multivariate zero-truncated Poisson distribution is not a good fit to some real data
sets. Meanwhile, the multivariate ZACS distribution, as a more general form, can be used
in a much wider range. It can be a good substitute for the Type I multivariate ZTP
distribution (Tian et al. 2014).

Endnote
! A discrete random variable X is said to have the general finite distribution, denoted
by X ~ Finite(x, p;; [ =1,...,n),ifPr(X =x) =p; €[0,1]and Y} |, p; = 1.
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