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Abstract
While there have been recent advances in distributional theory and parametric inference
for 3-D rotation data, applications still exist where it is difficult to identify an appropriate
distribution for modeling. In these instances, nonparametric inference may be preferred.
In this paper, a measure of spread for 3-D rotation data, called the average
misorientation angle, is introduced and bootstrapping is developed for this measure.
Existing parametric inference methods for estimating spread in 3-D rotations are
compared to the bootstrapping procedure through a simulation study. The
bootstrapping technique is then used in a materials science application where existing
distributions do not appear to provide an adequate fit.
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1 Introduction
Data in the form of three-dimensional rotations are common in the areas of materials sci-
ence (e.g., crystal orientations in metals, Demirel et al. 2000; Wilson and Spanos 2001)
and human kinematics (Rancourt et al. 2000; Rivest et al. 2008; Haddou et al. 2010).
Despite the prevalence of 3-D rotations in such fields, distributional developments for
such data have remained rather stagnant over the years. Most works regarding 3-D rota-
tions rely on the matrix Fisher distribution (Khatri and Mardia 1977; Jupp and Mardia
1979; Prentice 1986; Mardia and Jupp 2000; Rancourt et al. 2000) which was introduced
by Downs (1972). León et al. (2006) introduced the Cayley distribution for 3-D rotations
several years later. Recognizing the limitations of existing distributions for 3-D rotations,
Bingham et al. (2009a) developed the Uniform Axis-Random Spin (UARS) class of dis-
tributions. While the UARS class provides flexibility in modeling 3-D rotations that was
not available before its development, applications may still exist where it is difficult to
identify an appropriate member of the UARS class for modeling (see Section 5 for par-
ticular examples). In such cases, using nonparametric methods for estimation may be
advantageous. This paper focuses specifically on estimation of the spread in 3-D rota-
tions and two distributions for 3-D rotations, the matrix Fisher and von Mises version of
the UARS class, are studied primarily. The next section gives an overview of these two
distributions.

© 2015 Bingham. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-015-0032-x-x&domain=pdf
mailto: mbingham@uwlax.edu
http://creativecommons.org/licenses/by/4.0/


Bingham Journal of Statistical Distributions and Applications  (2015) 2:9 Page 2 of 8

2 Overview of distributions for 3-D rotations
The matrix Fisher distribution is the most commonly used distribution for 3-D rotations
(Khatri and Mardia 1977; Jupp and Mardia 1979) and the symmetric version of it is a
member of the UARS class developed by Bingham et al. (2009a). Therefore, the following
discussion of distributions for 3-D rotations is facilitated through the UARS class.
A random rotation O ∈ SO(3), where SO(3) denotes the set of all 3 × 3 orthogonal

rotation matrices, from a UARS distribution with center at matrix S can be written as
O = SP, where

P = UUT +
(
I3× 3 − UUT

)
cos r +

⎛
⎜⎝

0 −u3 u2
u3 0 −u1

−u2 u1 0

⎞
⎟⎠ sin r ∈ SO(3)

is obtained by rotating the 3 × 3 identity matrix, I3× 3, about an axis U = (u1,u2,u3)T ∈
R
3 by a random angle r ∈ (−π ,π ]. Here U is uniformly distributed on the unit sphere

and r follows some circular distribution that is symmetric about 0 with spread depending
on parameter κ . The parameter κ is called a concentration parameter, with larger values
indicating less spread in the rotations.
Suppose the circular distribution for r ∈ (−π ,π ] has density C(r|κ). Then a matrix

density forO ∼ UARS(S, κ) is given by

f (o|S, κ) = 4π
3 − tr(STo)

C
(
arccos

[
2−1(tr(STo) − 1)

]
|κ

)
, o ∈ SO(3) (1)

with respect to the Haar measure (Bingham et al. 2009a).
A particular distribution for 3-D rotations is obtained by specifying choice of circular

density C(r|κ). For the matrix Fisher distribution,

C(r|κ) = (1 − cos r) exp(2κ cos r)
2π (I0(2κ) − I1(2κ))

, r ∈ (−π ,π ] (2)

where Ii denotes themodified Bessel function of order i. For large κ , this density is approx-
imately the Maxwell-Boltzmann density with scale parameter 1/

√
2κ (Bingham et al.

2010).
The vonMises circular distribution is one of the most commonly used circular distribu-

tions due to the fact that it approaches the normal distribution as κ → ∞ (Fisher 1996).
The von Mises distribution has density

C(r|κ) = [2π I0(κ)]−1 exp [κ cos(r)] , r ∈ (−π ,π ] (3)

and corresponds to the von Mises version of the UARS class (vM-UARS) studied by
Bingham et al. (2009a) and Bingham et al. (2009b).
In the next section, a possible measure of spread for 3-D rotations is introduced and the

steps for obtaining a bootstrap confidence interval are outlined. The matrix Fisher and
vM-UARS distributions are then used in a simulation study in Section 4 to compare the
bootstrapping technique to existing parametric approaches in the literature.

3 Quantifying spread: the averagemisorientation angle and bootstrapping
In the literature, quantifying spread is typically tied to a specific distribution through esti-
mation of the spread parameter for that distribution. For example, spread in the matrix
Fisher distribution is considered by estimating the spread parameter κ . As such, a broadly
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defined point estimate for spread in 3-D rotations, that can be used regardless of distribu-
tion, is needed. Suppose that O1, . . . ,On ∈ SO(3). The mean rotation, M, is a commonly
used measure of center (Khatri and Mardia 1977; León et al. 2006; Bingham et al. 2009a)
which is defined as the rotation that maximizes trace

(
MT Ō

)
, where Ō = 1

n
∑n

i=1Oi. The
mean rotationM can be found by usingM = VW, where Ō = V�W is the singular value
decomposition of Ō. Distance between each rotation Oi, i = 1, . . . , n, in a data set and
the mean rotation M can be measured by the misorientation angle (in radians) between
the two rotations, calculated as

mis(Oi,M) = arccos
( trace(O′

iM) − 1
2

)
(4)

where O′
i is the transpose of Oi. This misorientation angle is the smallest angle of rota-

tion needed to get from Oi to M via a spin about some axis. Now, the overall spread
in the data set O1, . . . ,On can be taken to be the average misorientation angle (AMA),
1
n

∑n
i=1 mis(Oi,M). For illustration purposes, Fig. 1 shows two different 3-D rotation data

sets of size n = 100 with (a) AMA = 0.2013 and (b) AMA = 0.0595. Here the 3-D rota-
tions are plotted as points on the sphere, with one observation represented by three points
that would correspond to three orthogonal axes.
While (4) is used to calculate the AMA from a sample, the population AMA for a

given UARS distribution can be obtained by considering the circular density,C(r|κ). Since
C(r|κ), r ∈ (−π ,π ] is symmetric about 0, E(r) = 0. However, we can think of all angles, r,
as being positive since a spin of r about a vector V is equivalent to a spin of −r about vec-
tor −V. Therefore, we can find the population AMA for a particular UARS distribution
with given κ and C(r|κ) as

AMA =
∫ π

0
2rC(r|κ)dr. (5)

In the instances of C(r|κ) in (2) and (3), this does not have a closed form.
Now that the AMA has been introduced for quantifying the spread in a 3-D rotation

data set, bootstrapping techniques are discussed. Although bootstrapping has been used
to create confidence regions in a wide variety of settings, including analyzing directional
data such as p-dimensional unit vectors (Fisher and Hall 1989), its application to 3-D
rotation data is limited. Recent works have focused on estimation of the central rotation

Fig. 1 Plot of two simulated 3-D rotation data sets with AMA of (a) 0.2013 and (b) 0.0595
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(Will and Bingham 2015; Stanfil et al. 2015), but no attention has been given to using
bootstrapping for estimating spread. The steps for the bootstrapping technique follow.

1. Resample from the 3-D rotation data setO1, . . . ,On with replacement.
2. Calculate the AMA for the bootstrap sample obtained in step 1.
3. Repeat steps 1 and 2 a large number (say 1000) times.

After the AMA values are obtained for each bootstrap sample, this set can be used to
construct a confidence interval. Under the bootstrap percentile method, a 95 % confi-
dence interval is obtained by using the 2.5 th and 97.5 th percentiles as confidence bounds.
Other methods, such as the central percentile method and bias-corrected method (Efron
1987), exist for obtaining confidence intervals from bootstrap samples, but these tech-
niques showed no improvement over the simpler percentile method for the situations
considered in the simulations that were conducted. In the next section, a simulation
study is used to compare bootstrapping for the AMA to existing parametric methods for
quantifying spread.

4 Comparison of nonparametric and parametric methods via simulation
Simulations were conducted by using both the matrix Fisher and vM-UARS distributions.
The values of κ used were 1, 5, 20, and 500, which give a broad range of spread from
very concentrated (κ = 500) to very spread (κ = 1). Although existing works that use
parametric methods to quantify spread focus on the parameter κ (Bingham et al. 2009b;
Bingham et al., 2010), the bootstrapping considered here uses the AMA. Therefore, we
will convert between κ and the AMA. The AMA corresponding to each distribution and
choice of κ were found using (5) and are displayed in Table 1.
For all simulations the population central matrix S from (1) was set at the identity

matrix, since the center used does not influence the results when estimating spread. Fur-
ther, sample sizes of n = 10, 30, and 100 were used. For each distribution and (κ , n)

pair, 1000 different data sets were simulated. For each data set, 1000 bootstrap replica-
tions were used, resulting in a bootstrap percentile confidence interval for the AMA. The
proportion of intervals out of the 1000 that contained the population AMA are given in
Tables 2 and 3 as the nonparametric coverage rate. The median width of the 1000 inter-
vals is also given in these tables. In addition to the width being reported in terms of the
AMA, the endpoints of each interval were put in terms of κ by solving the function in
(5) for κ given the AMA. The median width in terms of κ was then also found. This con-
version was done to allow for direct comparison to parametric methods discussed in the
literature. Parametric results from other works are also provided in Tables 2 and 3 for
ease of comparison between the nonparametric and parametric methods. The parametric
results provided in Table 2 come from Bingham et al. (2010); Tables 3 and 4, pages 1324–
1325, and the parametric results provided in Table 3 come from Bingham et al. (2009b);

Table 1 Population AMA for the matrix Fisher and vM-UARS distributions with the given κ

Matrix Fisher vM-UARS

κ = 1 1.407704 0.999947

κ = 5 0.521488 0.375360

κ = 20 0.254209 0.180353

κ = 500 0.050463 0.035697
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Table 2 Coverage rates and median interval widths for estimating spread of the matrix Fisher
distribution via nonparametric and parametric methods using various (κ , n) pairs

Nonparametric Parametric

(κ , n) Coverage rate Median width (AMA) Median width (κ) Coverage rate Median width (κ)

(1, 10) 78.3 0.7061 1.3685 92.1 1.1621

(1, 30) 89.5 0.4663 0.6709 95.0 0.6428

(1, 100) 93.7 0.2635 0.3528 94.9 0.3475

(5, 10) 82.2 0.2594 8.3839 91.1 5.6748

(5, 30) 91.5 0.1584 3.3620 94.4 2.9355

(5, 100) 93.2 0.0882 1.6469 94.9 1.5676

(20, 10) 84.2 0.1257 33.4181 90.8 23.4370

(20, 30) 89.7 0.0756 13.8188 95.1 12.0597

(20, 100) 94.2 0.0419 6.7897 94.2 6.4390

(500, 10) 83.7 0.0251 871.3614 92.2 591.3957

(500, 30) 92.6 0.0151 346.8934 95.8 306.2049

(500, 100) 94.2 0.0083 171.3630 95.0 162.3764

Tables 3 and 4, pages 616–617. The parametric results in these works were obtained by
inversion of the likelihood ratio test (LRT).
When considering the results for the matrix Fisher distribution provided in Table 2, we

see that the coverage rates obtained through bootstrapping fail to reach nominal levels
for the smaller sample sizes of n = 10 and 30, but do well when n = 100. The parametric
approach produces coverage rates that are slightly too low (around 91–92 %) when
n = 10, with coverage rates around 95 % for larger samples. When considering the results
for the vM-UARS distribution provided in Table 3, we see that the nonparametric rates
are only too small when n = 10, while the coverage rates for the parametric approach
fluctuate around 95 % regardless of sample size. For both the matrix Fisher and vM-UARS
distribution, the bootstrap intervals are slightly wider than the LRT intervals for small n,
but comparable for larger sample sizes. Overall, the parametric methods outperform the
nonparametric bootstrap for small sample sizes when the distributional assumptions are
met (i.e. the correct distribution is fit to the data it was simulated from), but both perform
as desired for larger samples.

Table 3 Coverage rates and median interval widths for estimating spread of the vM-UARS
distribution via nonparametric and parametric methods using various (κ , n) pairs

Nonparametric Parametric

(κ , n) Coverage rate Median width (AMA) Median width (κ) Coverage rate Median width (κ)

(1, 10) 87.6 0.7838 2.421 94.8 2.274

(1, 30) 93.9 0.5299 1.259 94.8 1.231

(1, 100) 94.4 0.2993 0.669 95.5 0.665

(5, 10) 85.3 0.2885 12.686 94.4 9.940

(5, 30) 94.5 0.1987 5.452 94.9 4.979

(5, 100) 95.7 0.1139 2.7565 95.3 2.599

(20, 10) 87.4 0.1379 54.665 94.0 42.09

(20, 30) 93.7 0.0939 22.913 95.5 21.36

(20, 100) 94.1 0.0532 11.543 94.6 11.22

(500, 10) 88.7 0.0278 1365.507 92.6 1075.0

(500, 30) 94.0 0.0183 598.926 95.2 536.4

(500, 100) 94.9 0.0104 299.603 94.2 283.3
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Table 4 Coverage rates and median interval widths for the AMA when fitting the matrix Fisher
distribution to vM-UARS data

(κ , n) Coverage rate Median width (AMA)

(1, 10) 83.8 0.6305

(1, 30) 82.8 0.3730

(1, 100) 71.9 0.2072

(5, 10) 67.3 0.2178

(5, 30) 55.6 0.1285

(5, 100) 25.5 0.0706

(20, 10) 69.1 0.0992

(20, 30) 54.7 0.0602

(20, 100) 24.3 0.0333

(500, 10) 66.2 0.0203

(500, 30) 53.1 0.0118

(500, 100) 21.4 0.0066

Although the parametric methods perform well when the correct distribution is
applied, this is not the case when data are modeled incorrectly. In addition to obtaining
the bootstrap results, the LRT method of Bingham et al. (2010) was used to fit the matrix
Fisher distribution to each of the vM-UARS samples. Coverage rates and median widths
of the intervals for the AMA are given in Table 4. It can be seen that coverage rates are
not near the desired 95 % for any of the cases, with rates as low as 25 % for large n. Only
when the data is extremely spread (κ = 1) are the rates moderately large. Therefore, boot-
strapping far outperforms the parametric methods when distributional assumptions are
not met.
In summary, for situations with small sample sizes, parametric methods are preferred

to the bootstrap, provided that goodness-of-fit is investigated ahead of time to ensure the
correct model is being used. See Bingham et al. (2009a) for a way to investigate goodness-
of-fit for 3-D rotations through Q-Q plots. For larger sample sizes, the nonparametric
methods perform just as well as the parametric methods when the correct distribution is
used for modeling, with far better performance when an incorrect distribution is applied.
Although the extensive simulations reported here do only focus on two distributions for
3-D rotations, initial analysis was done using the Cayley distribution of León et al. (2006)
and theWrapped Trivariate Normal distribution of Qiu et al. (2014), with similar findings.

5 Application to electron backscatter diffraction data
Three-dimensional rotation data commonly arise in materials science when exploring the
texture of a specimen of some polycrystalline material, such as metal. Through electron
backscatter diffraction (EBSD), a fixed beam of electrons is diffracted off of the (crystallo-
graphic) lattice planes of the polycrystalline specimen. These images reveal information
about texture or crystallographic preferred orientation (Randle 2003). An area of inter-
est in regards to EBSDmeasurements is precision, as methods used for quantifying EBSD
precision in the materials science literature are not standard. Bingham et al. (2009a) study
precision in nickel and aluminum specimens by using parametric LRT methods, after
showing that the vM-UARS distribution provides an adequate fit to the data sets in hand.
However, since more of the focus of the paper by Bingham et al. (2009a) was on develop-
ment of the UARS class than on the EBSD application, the data sets considered only make
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up a small subset of all EBSD data actually collected. When considering the larger data set
of over 4,000 observations from a single scan on the nickel specimen, there are instances
in which it is hard to find an adequate distributional fit to some subsets of the data.
When using EBSD, orientations close in proximity are classified as composing a grain

when the misorientation angle between them is small, so that a grain is thought of as a
homogeneous piece of material that produces observations which generally share a com-
mon orientation. Five different grains were isolated from the nickel specimen, giving
samples of various sizes. Though crystallographic orientations are not generally a rota-
tion but a coset of SO(3) (i.e., a set of crystal-symmetrically equivalent rotations), the data
sets considered here have been preprocessed to eliminate the 24-fold ambiguity. It is also
worth noting that the rotations will be considered as independent, when in fact there may
be spatially induced dependence.
For each of the five samples, attempts were made to find an adequate distributional fit

by examining Q-Q plots. The misorientation angles were extracted from each data set
and various circular distributions were fit to the data (i.e. various forms of C(r|κ) from
(1) were tried). The theoretical quantiles were plotted against the sample misorientation
angles and through these Q-Q plots it did not appear that there were good distributional
matches. Figure 2 gives two of the Q-Q plots for a grain of size n = 38. It can be seen that
neither the matrix Fisher nor vM-UARS distribution seem to fit well to this data. Note
that these were just two of several distributions that were explored.
Given that appropriate distributional forms for the five grains in consideration could

not be found, it is best to quantify spread in these data sets through nonparametric meth-
ods. The bootstrap procedure of Section 3 was used on each of these data sets, resulting
in a confidence interval for the AMA. These intervals are reported in both radians and
degrees in Table 5. The within-grain precision estimates found here are comparable to the
0.5◦ − 1◦ range reported in the literature (Demirel et al. 2000; Wilson and Spanos 2001;
Bingham et al. 2009a).

6 Conclusion
While there have been recent advances in distributional theory and parametric inference
for 3-D rotation data, instances still exist where it may be difficult to find an appropriate

Fig. 2 Q-Q plots of two fitted distributions against misorientation angles from a grain with n = 38



Bingham Journal of Statistical Distributions and Applications  (2015) 2:9 Page 8 of 8

Table 5 Confidence intervals for the AMA in both radians and degrees for five nickel grains of
various sizes

Grain Sample size CI for AMA (radians) CI for AMA (degrees)

1 38 (0.00638, 0.00796) (0.36555, 0.45607)

2 47 (0.00640, 0.00845) (0.36669, 0.48415)

3 42 (0.00741, 0.01328) (0.42456, 0.76089)

4 34 (0.00547, 0.01298) (0.31341, 0.74369)

5 27 (0.00886, 0.01595) (0.50764, 0.91387)

model to fit to a data set. As shown in Section 4, coverage rates for confidence intervals for
estimating spread can fall below nominal levels when incorrect distributions are used. In
such cases, nonparametric methods such as bootstrapping can provide a good alternative.
However, for small samples (around n = 10), applying the correct parametric procedure
is better than using bootstrapping, provided that a good distributional fit can be found.
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