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Abstract

Background: The Rasch model allows for a conditional likelihood ratio goodness of fit
test. The speed of approximation of the test statistic to the limiting distribution as a
function of sample size and test length has not been analyzed so far. Three bootstrap
simulation methods are analyzed with respect to their performance in providing a
proper distribution of the test statistic under the null- and the alternative hypothesis.

Results: We found a stable approximation to the limiting χ2-distribution for sample
sizes of at least 500 and 10 items. The three bootstrap algorithms rendered consistent
results for the H0-cases but not for the H1-cases.

Conclusion: A sequential probability sampling scheme proves sufficiently apt for
generating samples under the alternative hypothesis. This superiority can be justified
from a theoretical point of view.

Keywords: Rasch model, Conditional likelihood ratio test, Bootstrap analysis,
Sequential importance sampling, Number of bootstrap samples

AMS Subject Classification: Primary 62F40; 62G09; 62G10; 62H10; 62E17; secondary
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1 Introduction
The dichotomous logistic model according to Rasch (1960, 1966; henceforth denoted as
Rasch Model, RM) allows for assessing its adequacy for describing a given data set by
means of a conditional Likelihood Ratio Test (LRT; Andersen 1973). The test statistic is
approximately χ2-distributed if the sample size n → ∞. Hence, small samples will deteri-
orate inference, i.e. the limiting distribution will not provide sufficiently precise quantiles
for a reasoned decision and we have to switch to the bootstrap (cf. Efron and Tibshirani
1998), which is computationally demanding.
However, no systematic investigation has been undertaken so far to analyze the rate of

approximation of the test statistic to the limiting distribution. It is therefore difficult to
decide when it is safe to use the χ2-distribution or when a bootstrap is required. This
question shall be tackled in a simulation study. Moreover, if we switch to the bootstrap,
precision depends on the number of bootstrap samples. A concrete guideline will be
given, howmany bootstrap replications are required to fulfill a desired precision criterion.
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The following outline shall guide the reader through the details of this study:

Theoretical Background We start with explaining the fundamentals of the Rasch
Model (Section 2.1) and the essential basics of model parameter estimation
(Section 2.2) to an extent required to understand the simulation procedures applied
in the study. Section 2.3 shows the basics of the LRT, the test statistic of which the
study focusses. The task of determining the speed of approximation of the test
statistic to its limiting χ2-distribution breaks down into three separate questions,
which are formulated in Section 2.4.
Methods In order to perform the simulation study, bootstrap samples in line with the
RM have to be generated. For that purpose, several algorithms are at our disposal,
which are introduced in Section 3.2. The study considers the distribution of the test
statistic under both the null and the alternative hypothesis. These two scenarios
require different simulation strategies, which are explained in Section 3.1. The
simulation study covers numerous different scenarios, which may arise in practical
application. Section 3.3 lists the simulation parameters considered for that purpose.
Results The complex details of the study are split into results concerning the H0-case
(Section 4.1) and the H1-case (Section 4.2). Finally, Section 4.3 introduces a flexible
formula to compute an adequate number of bootstrap samples, if this procedure is
required.

2 Theoretical background
2.1 The Rasch model (RM)

The RM is a discrete probability model of a Bernoulli variable, Xvi ∈ {0, 1}, assuming two
real valued parameters θv (v = 1 . . . n) and βi (i = 1 . . . k),

P (Xvi = xvi) = exvi(θv−βi)

1 + e(θv−βi)
. (1)

A typical application of model (1) is psychometrics, with θv describing respondent’s v
ability to solve a task (or item) and βi describing the difficulty of task (or item) i. Both
parameters are unbounded in value, i.e. θv,βi ∈ R. By means of the substitutions ξv =
exp(θv) and εi = exp(−βi) we yield the so-called multiplicative notation of the model
equation,

P (Xvi = xvi) = (ξvεi)xvi

1 + ξvεi
. (2)

Due to the exponentiation, ξv and εi take positive values only, and εi is inter-
preted as an item easiness parameter. Conditional on both parameter vectors θ =
(θ1, θ2, . . . , θv, . . . , θn)T and β = (β1,β2, . . . ,βi, . . . ,βk)

T the binary responses are
assumed to be independent so that the joint distribution of all n responses to all k items
ist given by the product of (1) (or (2), respectively) over v and i. This assumption is usually
termed conditional or local independence.
The RM is a member of the exponential family (cf. Molenaar 1995, p. 41) with the

sums Rv = ∑
i Xvi and Si = ∑

v Xvi being the sufficient statistics for the parame-
ters θv and βi, respectively. The separability theorem (Fisher 1922) applies (Rasch 1966,
p. 95; Rost 2001, p. 28), hence items can be compared independently of the ability
parameters occurring in the sample and abilities can be estimated independently of the
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items used (given the items are in line with the model and the model holds for all
respondents).

2.2 Parameter estimation

Several parameter estimation methods have been developed. Most straightforward from
maximum likelihood theory is the Unconditional Maximum Likelihood approach (UML;
or Joint Maximum Likelihood, JML; cf. Baker and Kim 2004, ch. 5.6). Here we deter-
mine estimates for both parameter vectors simultaneously by finding the maximum of
the unconditional likelihood function as a function of θ and β . This is achieved by setting
the partial derivatives equal to zero and applying the pertinent numeric methods to solve
a system of nonlinear equations (cf. ibid., p. 136). However, this approach suffers from
the so-called incidental parameter problem as expressed in Neyman and Scott (1948).
While the item parameters appear as structural (or fixed) parameters, the person param-
eters constitute a random draw from the population and are therefore incidental (or
nuisance) parameters. The simultaneous appearance of both kinds of parameters may
cause inconsistent item parameter estimates. Corrective procedures have been proposed
(cf. Molenaar 1995, p. 43), but there was dispute concerning their effect (cf. Baker and
Kim 2004, ch. 5.6.2).
Generally, this incidental parameter problem may be overcome by marginalization or

conditional inference (cf. Pawitan 2001, p. 274). In the first case (Marginal Maximum
Likelihood estimation, MML, cf. Baker and Kim 2004, ch. 6), the incidental parameters θv
are replaced by assuming a proper distribution G(θ) in the population (e.g. the normal),
requiring only the hyperparameters τ of G(θ) to be determined (i.e. the mean and the
variance of G(θ) in our example). Although this solves the incidental parameter problem,
the correct choice of G(·) is decisive for obtaining correct estimates (cf. Molenaar 1995,
p. 47).
The second approach is the Conditional Maximum Likelihood estimation method

(CML; Andersen 1970), directly involving the parameter separability feature. At its
heart, this method overcomes the incidental parameter problem by conditioning on
each respondent’s observed value of the nuisance parameter’s sufficient statistic, i.e. the
score rv, when estimating the item parameters. The conditional likelihood function LC
of the item parameter vector ε = (ε1, ε2, . . . , εi, . . . , εk)T given the vector of scores
r = (r1, r2, . . . , rv, . . . , rn)T can be written as

LC(ε|r) =
∏
v

(∏
i

ε
xvi
i
γrv

)
. (3)

The term γr denotes the elementary symmetric function of order r, covering a com-
plex combinatorical task (cf. Andersen 1972; Formann 1986; Gustafsson 1980). Expres-
sion (3) plays a crucial role in the conditional Likelihood Ratio Test (LRT; see next
Section).
In the CML context, the person parameters are determined in a separate step,

where the β̂i are assumed to be the true item parameters and the θ̂v are obtained
using maximum likelihood estimation (cf. Hoijtink and Boomsma 1995). Because the
score rv is a sufficient statistic for the person parameter, all respondents yielding
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the same score will obtain the same ability estimate, which will be termed θ̂r or ξ̂r ,
respectively.
In terms of the Rasch Model, items being never or always solved (i.e. si = 0 and si = n)

are infinitely difficult or easy, respectively. The same applies to respondents solving either
no item or all items (i.e. rv = 0 and rv = k). While this is seldom a problem for the items
(it is unlikely that in a sample of reasonable size an item is never or always solved), it may
constitute a problem for person parameter estimation, especially, when the instrument
is short (i.e. k is small). However, practicioners demand estimates for all respondents, so
we have to make further assumptions in order to obtain parameter estimates for such
cases as well. These may be obtained with theWeightedMaximum Likelihood Estimation
Method (WLE; Warm 1989). Based on a Bayesian argument, person parameter estimates
are decreased in their absolute value, thus attenuating their unbounded growth.

2.3 Assessing model fit

Numerous methods for assessing the adequacy of the RM have been proposed, an
overview of which can be found in Glas and Verhelst (1995). The present study focusses
on the conditional Likelihood Ratio Test (LRT, Andersen 1973; Kreiner and Christensen
2013), which relies on the CML estimation method.
If the model holds, item parameter estimates do not differ across subsamples but for

random variation (invariability assumption, cf. Engelhard Jr. 2013). The LRT allows for
an assessment of this assumption by comparing the conditional likelihood of the entire
dataset according to Eq. (3), henceforth denoted L0, with the product of the conditional
likelihoods obtained from subsets j = 1 . . . g of the data set,

L1 =
g∏

j=1
L(j)
C

(
ε(j)|r(j)

)
. (4)

Andersen (1973) has shown that the quantity

Z = −2 log
L0
L1

(5)

follows asymptotically a central χ2-distribution with

df = (k − 1)(g − 1), (6)

given that the Rasch Model is the true model and the subsample sizes n(j) −→ ∞
(ibid., p. 128). Andersen referred to a split according to the score rv, however, one
may apply a criterion of substantive interest, like sex, treatment group, or a random
split. In many applications, two groups are formed at the median of the score distri-
bution. Without loss of generality, we will consider this median split in the present
study.

2.4 Study purpose

The present study targets the following three questions:

Q1 How close fits the sampling distribution of (5) the central χ2-distribution for small
values of n and k, and in which cases a bootstrap simulation might be preferable due



Alexandrowicz and Draxler Journal of Statistical Distributions and Applications  (2016) 3:2 Page 5 of 25

to lack of approximation? This question is analyzed for both the H0-case of model fit
(Results, Section 4.1) and for model violations under a given H1 (Results, Section 4.2).

Q2 Second, do three pertinent bootstrap methods differ with respect to their preciseness
in providing appropriate approximations of the type-I-error probability? These
results are part of the tables of Sections 4.1 and 4.2.

Q3 And third, if a bootstrap is applied, which number of bootstrap replicates is required
to obtain a sufficiently stable estimate of the desired quantile for the H0 case (Results,
Section 4.3)?

3 Methods
The three questions shall be tackled by means of a simulation study, determining the
sampling distribution of the test statistic (5) for various combinations of n and k. Usually,
a simulation study starts with fixing the population parameters of interest and drawing
samples from this population. In our case, this would comprise fixing a set of k item
parameters and n person parameters (or k − 1 person parameters associated with each
score r, respectively). However, the CML approach relies on the sufficient statistics of the
person parameters. We would, therefore, have to find those rv, which are associated with
a given set of person parameters and item parameters. This task is difficult to achieve,
hence we developed the following procedure:

• First, a set of k item parameters β∗ and n person parameters θ∗ is fixed, representing
the population of interest. The item parameters β∗ were chosen equidistantly from
the interval [−1, 1] and person parameters θ∗ were randomly sampled from the
N(0, 1).

• Then, an initial sample X0 of size n × k in line with the assumptions of the Rasch
Model is drawn from this population, yielding the realized values of the initially
chosen parameters and the according sufficient statistics. The parameter estimates
β̂
0
and θ̂

0
of this initial sample X0 supersede the initially chosen β∗ and θ∗. We now

dispose of both the parameter values and the accompanying sufficient statistics,
which are required for the bootstrap algorithm introduced in Section 3.2.3.

The sample X0 serves as the basis for the generation of bootstrap samples providing the
distribution of the test statistic (5).

3.1 Sampling under the null and the alternative hypothesis

In order to obtain an inital data set X0 providing for the distribution of the test statistic
under the null hypothesis of model fit, we take the overall parameter vector β0. This
choice assumes no subgroup characteristics to be present.
In contrast, a data set X0 providing for the distribution of the test statistic under

the alternative hypothesis is attained by separately bootstrapping j = 1 . . . g subsam-
ples of size n(j) using the original subsamples’ item parameter estimates β̂

(j)
i . These

subsample parameter vectors will necessarily differ, at least by chance, i.e. β̂
(1) �=

β̂
(2) �= . . . �= β̂

(j) �= . . . �= β̂
(g)
. Merging these subsamples to one bootstrap sam-

ple of size n = ∑
j n(j) will therefore result in a sample violating the item invariance

assumption. Hence, such a dataset constitutes a random draw from a population real-
izing the alternative hypothesis fixed at a model deviation, which is constituted by the
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item parameter differences of the β̂
(j)
. If we now apply the LRT in the usual man-

ner, the bootstrap distribution of the test statistic represents its distribution under the
alternative.

3.2 Generating bootstrap samples

Several methods for generating bootstrap samples in the context of the RM have been
proposed, two of which have gained some popularity. A third method, which to the
authors’ knowledge has not been described in the context of the Rasch Model before, is
introduced in Section 3.2.3. These methods may cause differing distributions of the LR
test statistic for reasons outlined below, what might affect the conclusions in an unpre-
dictable manner (cf. Q2 in Section 2.4). Therefore, all three methods will be applied
parallel in order to evaluate their impact upon the resulting distribution of the LR test
statistic.
Note that the Nonparametric (or “Naïve”) Bootstrap (cf. Davison and Hinkley 1997)

is not suited for generating bootstrap samples in the CML context. This has theoretical
reasons, which are elucidated in the light of the present findings in Section 5.3.

3.2.1 A “Normal” Approach

In the conditional estimation approach, unbiased item parameter estimates will be
attained irrespective of the actual ability distribution. Therefore, the first simulation
method uses only the item parameter estimates β̂

0
, while the person parameters are sam-

pled from a freely chosen distribution. In our case, this was the N(0, σ 2), with randomly
chosen but not too extreme values of σ 2. For notational ease, the hat will be omitted in
the following.
The normal distribution has been chosen for it is arguably a proper candidate for

numerous characteristics frequently assessed in those areas of social science, where
the Rasch-Model is typically applied. This approach will be termed normal marginals,
although, of course, the row marginal sums r1 . . . rn are discrete by nature; it is the under-
lying parameters that are sampled from the normal. The method has been described in
van denWollenberg (1982) and has gained some popularity for generating data compliant
with the RM, wherefore it is considered in the present analysis.

3.2.2 Remainingwith the observed

Here we use both the person parameter estimates and the item parameter estimates
obtained from X0. The probability of a positive response is determined by using Eq. (1)
and the according parameter estimates θ̂v and β̂i. However, this method raises two issues:
First, the CML method only allows for obtaining the item parameter estimates β̂i. For

the estimation of the person parameters θv, the item parameter estimates β̂i are taken
as if they were the true parameters βi. Hence, the random error associated with the
item parameter estimates remains unconsidered, possibly rendering the person param-
eter estimates deficient. This could deteriorate the bootstrap procedure to an unknown
extent.
Second, the ML estimate for respondents solving no item or all items would tend

towards plus or minus infinity. Three ways of handling this situation could be thought of:

(i) The modified estimates (WLE) according to Warm (1989) could be applied instead.
But, as has been elucidated in the last paragraph of Section 2.2, this method



Alexandrowicz and Draxler Journal of Statistical Distributions and Applications  (2016) 3:2 Page 7 of 25

systematically attenuates the person parameter estimates, making the implications
for our bootstrap procedure imponderable.

(ii) The WLE could be inserted only for respondents with r = 0 and r = k, and the ML
estimates otherwise. This would probably reduce the problem largely, as in most cases
only few respondents (compared to the total sample size) will realize such scores. This
method is implemented in the WinMIRA software of von Davier (2001), for example.

(iii) One can deliberately use arbitrary values for respondents with r = 0 and r = k, for
example ±15, so that the resulting score will almost surely be equal to 0 or k. Such a
method is applied in the software package M-Plus (Muthén 1998–2004; p. 35).

However, any of these three approaches is heuristical and thus has to be considered as
unsatisfactory from a statistical point of view.
Because the intention is to maintain the original ability distribution as far as pos-

sible, method (iii) was applied in the present study. Nevertheless, this approach
will not preserve the individual scores rv. Therefore, this approach will be termed
free marginals, because the marginal scores are likely to differ from the original
ones.

3.2.3 The Rasch point of view

In contrast, a sequential importance sampling procedure following a truly conditional
approach will be taken into consideration. It merely regards the conditional pattern
probabilities in the way they are used in the CML estimation method. Here, the suf-
ficient statistics rv for the person parameter estimates are conditioned upon, making
any distributional assumptions superfluous. The probability of a response vector xv =
(xv1, . . . , xvk) conditional on the score equals

P(xv|rv) = γ −1
rv

∏
i

ε
xvi
i . (7)

The algorithm starts with a respondent’s observed score and computes his or her
probability of solving the first item

P(xv1 = 1|rv) = γ −1
rv ε1γrv−1. (8)

Then, we transform this response probability to a manifest response by comparing it
to a random number u drawn from the standard uniform distribution, i.e. u ∈ U(0, 1).
If P(xv1 = 1|rv) exceeds u, the bootstrap respondent’s v first manifest response xv1 is set
to one and otherwise to zero (cf. van den Wollenberg 1982, p. 88). In case the response
evaluates to one, this person’s score rv is reduced by one, otherwise not, yielding the
modified score after step one, r(1)v . The procedure continues with the second item in
the same manner and proceeds until all k items have been processed. As soon as the
modified score after i steps, r(i)v , equals zero, the probability of solving one of the remain-
ing items has zero probability and the corresponding responses are set to zero. If r(i)v at
any step i equals the number of the remaining items, all remaining responses are set to
one.
That way, each individuals original score rv is maintained, which is equivalent to fixing

the row marginals of the observed data set X0. Therefore, this procedure will be termed
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fixed marginals in the following. Nevertheless, the items’ sufficient statistics still vary
according to the probability distribution described by the RM, which is the information
the LRT relies upon.

3.3 Simulation parameters

The simulation comprised k = 5, 10, and 15 items and n = 100, 250, 500, 750, 1000, 2500,
and 5000 observations. To each of the 21 possible combinations arising, which will be
denoted designs, the three bootstrap algorithms (normal, free, and fixed) for both the H0
and the H1 case were applied. According to Eq. (6), the degrees of freedom were 4, 9, and
14, respectively.
One crucial aspect of the present study is to differentiate between inaccuracies due to

a lack of approximation of the actual distribution of the test statistic to the limiting dis-
tribution (i.e. a truly statistical problem) on the one hand and an inaccurate bootstrap
distribution due to an insufficient number of bootstrap samples (i.e. a merely techni-
cal problem) on the other hand. Preliminary trial runs suggested that m = 200,000
bootstrap replications seem to suffice for the required distinction. Assuming that this
number of bootstrap replicates makes the bootstrap caused (i.e. technical) error negligi-
ble, any remaining deviation from the limiting density will be attributable to a true lack of
approximation.
In order to determine the minimum number of bootstrap replicates required for a

sufficiently good approximation of the bootstrap densities to the true ones under the
null hypothesis (i.e. Q3 in Section 2.4), random samples of decreasing size m∗ < m
have repeatedly been drawn with replacement from the original 200,000 samples of each
design. The following values were chosen form∗: 500, 1000, 1500, 2000, 2500, 5000, 7500,
10,000, 15,000, 20,000, 25,000, 50,000, 100,000, and 150,000. Each draw of size m∗ was
repeated 1000 times (m∗∗) in order to obtain a distribution of the LR test statistic for
eachm∗.
The densities obtained by means of the bootstrap will be depicted using kernel density

estimators with bandwidth parameters of 0.2 to 0.5. The simulation itself was performed
with the program Ganz Rasch (Alexandrowicz 2012), which supports all three simula-
tion techniques introduced in Section 3.2. The simulation results were analyzed with R
(R Core Team 2015).

4 Results
The results of the simulation study regarding questions Q1 and Q2 are presented sepa-
rately for the H0- and the H1-case (Sections 4.1 and 4.2). Section 4.3 covers the results
regarding question Q3, the required number of bootstrap samples.

4.1 Approximation under the null hypothesis

In order to describe the approximation of the bootstrap distributions to the limit-
ing ones, we opposed the first four moments and selected quantiles of the estimated
and the theoretical distribution of the test statistic; This step is accompanied by a
density plot of the respective distributions. Second, the p-values of the LRT evalu-
ated using both the bootstrap and the limiting distributions were opposed to each
other.
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4.1.1 Descriptive approach

Tables 4, 5 and 6 in the Appendix show the sample statistics of the 21 different designs for
the fixed, the free, and the normal marginals case. The simulated values are opposed to
the respective values of the χ2-distribution with the according degrees of freedom (first
row in each block). Each pair of columns denotes the estimated value of the statistic along
with the relative deviation (in %) compared to the exact value of the limiting distribution.
Two tendencies are discernible across all designs: The largest deviations can be found for
the smallest sample size (n = 100) combined with the fewest items (k = 5, i.e. df = 4).
For example, in the fixed marginals case (Table 4), the mean deviates by 10.4 % for 5
items and 100 observations, by 6.0 % for 10/100, and by 4.3 % for 15/100. In comparison,
with 5000 observations, the respective deviations were −0.1 % (k = 5), 0.1 % (k = 10),
and < 0.1 % (k = 15).
Comparing the three simulation algorithms reveals the smallest relative deviation to

appear for the bootstrap technique using normal marginals. For example, the relative
error regarding the 95 %-quantile (being most important for hypothesis testing) is 2.2 %
(df = 4), 1.2 % (df = 9), and 0.9 % (df = 14). The respective figures for the fixed
marginals case are 2.6 %, 1.2 %, and 1.0 %, while the normal marginals produces deviations
of 0.8 %, 0.5 %, and 0.6 %.
The density plots (Fig. 1) allow for a rough assessment of the overall fit of the boot-

strap distributions. The plot is threefold (normal, free, and fixed marginals) with three
clusters of densities according to the df. Each line represents a certain sample size
(i.e. seven per cluster). As can be seen, the seven lines per method and df cannot be
kept apart in any of the plots, therefore no attempt was made to label the lines. Also,
three lines indicating the limiting densities with the respective degrees of freedom have
been superimposed (red lines). However, they mostly disappear in the three clusters,
indicating overall agreement of the bootstrap generated distributions with the limiting
distributions.
In the normal marginals case (Fig. 1, left hand plot), we would virtually identify

no deviation of the bootstrap densities from the limiting ones. This observation was
independent of the degrees of freedom and the sample size. In the other two cases
(free and fixed marginals), one line per cluster seems somewhat dislocated, indicating
a reduced probability of smaller χ2-values and slightly heavier tails (the latter is hardly

df=4, n=100 ... 5000

df=9, n=100 ... 5000

df=14, n=100 ... 5000

Normal Marginals

0 10 20 30 40
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df=4, n=100 ... 5000

df=9, n=100 ... 5000

df=14, n=100 ... 5000

Free Marginals

0 10 20 30 40

df=4, n=100 ... 5000

df=9, n=100 ... 5000

df=14, n=100 ... 5000

Fixed Marginals

0 10 20 30 40

Fig. 1 Bootstrap densities of the test statistic using normal, free, and fixed marginals. Each density cluster
represents same degrees of freedom; lines cover the sample sizes involved. The red lines indicate the limiting
distribution with the according degrees of freedom
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discernible). These lines represent the n = 100 cases, in which the approximation seems
deficient.
For both the free and the fixed marginals method (Fig. 1, middle and right hand plot),

the bootstap densities for df = 4 are located beyond the limiting distributions. The den-
sities covering df = 9 show the same tendency but to a much slighter extent, and when
df = 14, this effect vanishes entirely. The free and the fixed marginals method seem not
to differ with respect to this issue. Therefore, we can conclude that the approximation
improves with the degrees of freedom, which is in line with theory. Roughly ten degrees
of freedom seem sufficient for the approximation to be considered satisfactory, given a
sample size of at least 250.

4.1.2 Inferential Approach

In order to compare the bootstrap distributions with the according limiting ones, we used
the Kolmogorov-Smirnov (K-S) test (cf. Thode 2002, ch. 5.1.1) to test the null hypothesis
that the bootstrap distributions follow a χ2-distribution with the respective degrees of
freedom (i.e. 4 in the 5-items designs, 9 in the 10-items designs, and 14 in the 15-items
designs). The results are given in Table 7 in the Appendix.
Many of the tests yield a significant result using a type-I error risk of 5 %. How-

ever, we recognize some non-significant results for (a) larger samples and (b) larger
instruments: Non-significant results were obtained for the combinations (k/n) 5/5000
(fix), 10/1000 (free + nv), 10/5000 (nv), 15/750 (nv), 15/2500 (fix + free), and all three
combinations 15/5000. The normal marginals appeared slightly better, as 4 out of 21
tests were not significant, opposed to 3 out of 21 for both the fixed and the free
marginals cases. This is in line with the findings based on the descriptive statistics
above.
Note that the K-S-tests rely on 200,000 bootstrap samples each, hence they are by

far overpowered. Assuming that the probability of an error of the second kind almost
vanishes with such large samples, a non-significant result corroborates our supposi-
tion that the bootstrap distribution in fact realizes the limiting distribution. Therefore,
the mere fact that at least some of the tests were not significant is in fact a remark-
able result. If we further look at the values of the K-S test statistics D: None of them
exceeds 0.07 (which appeared with 5/100, fixed marginals algorithm). The K-S test
evaluates the maximum difference of the CDFs of the bootstrap generated distribu-
tions and the limiting ones, which diverge at most by 7 % in the cases considered
here.

4.1.3 Comparison of the p-values

Two comparisons shall enhance conclusions from a practical point of view: First, we
emulate the action a person ignorant of approximation problems might take. This
means, we simply use the seeked quantile of the limiting χ2-distribution (e.g. 9.49 for
α = 0.05 and df = 4) and decide whether or not to retain the H0. For that pur-
pose, we calculated the p-value the χ2-quantile of the limiting distribution would yield
when applied to the according bootstrap distribution (reflecting the proper probability
measure). The (relative) difference of the p-value to the nominal α quantifies how mis-
leading such a procedure would be. Table 8 in the Appendix presents this comparison
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for the three simulation algorithms, considering critical values of α = 0.10, 0.05,
and 0.01.
The p-values were considerably increased for small samples, yielding differences of up

to 52 % (α = 0.01, n = 100, k = 10, nv). Generally, sample sizes 100 and 250 and (in some
instances) 500 would lead to substantially more significant results if we decided to use the
quantiles of the limiting distribution rather than the bootstrap-based ones. Comparing
the three simulation algorithms revealed that the normal marginals procedure performed
somewhat better than the free and the fixed marginals algorithm. However, the discrep-
ancies of the three methods are mostly moderate. Further, errors are more pronounced
for low values of the type-I-error risk. As soon as samples exceed 500 observations, the
deviations become increasingly smaller.
Remember that each bootstrap analysis is based on an actual realization of the test

statistic (5), allowing for a second check: Table 1 compares the observed values of these
test statistics applied to both the limiting χ2-distribution and to the respective bootstrap
generated distribution. As can be seen, most differences seem negligible. This is not sur-
prising, because we now consider values far away from the regions relevant to inferential
decisions (i.e. the distributions’ tails). Hence too heavy tails of the bootstrap distributions

Table 1 Comparison of p-values of the observed test statistics evaluated at both the limiting and the
bootstrap distribution

Normal marginals Free marginals Fixed marginals

k = 5/df = 4 χ2
l χ2

b Diff. χ2
l χ2

b Diff. χ2
l χ2

b Diff.

100 0.01 0.01 0.000 0.01 0.01 0.001 0.01 0.01 0.000

250 0.97 0.97 0.001 0.97 0.96 0.008 0.97 0.96 0.008

500 0.03 0.03 0.000 0.03 0.03 0.001 0.03 0.03 0.000

750 0.39 0.39 0.000 0.39 0.39 0.004 0.39 0.38 0.007

1000 0.69 0.69 0.001 0.69 0.68 0.004 0.69 0.68 0.004

2500 0.44 0.44 −0.001 0.44 0.44 0.000 0.44 0.44 0.001

5000 0.96 0.96 0.001 0.96 0.96 0.000 0.96 0.96 −0.001

k = 10/df = 9

100 0.48 0.46 0.017 0.48 0.43 0.046 0.48 0.43 0.049

250 0.32 0.32 0.006 0.32 0.31 0.010 0.32 0.31 0.010

500 0.96 0.95 0.002 0.96 0.96 0.000 0.96 0.95 0.002

750 0.63 0.63 0.002 0.63 0.63 0.004 0.63 0.63 0.000

1000 0.79 0.79 −0.002 0.79 0.79 0.000 0.79 0.79 0.001

2500 0.26 0.26 0.000 0.26 0.25 0.000 0.26 0.25 0.001

5000 0.31 0.31 0.000 0.31 0.31 0.002 0.31 0.31 0.002

k = 15/df = 14

100 0.08 0.07 0.006 0.08 0.07 0.011 0.08 0.07 0.010

250 0.60 0.59 0.007 0.60 0.58 0.012 0.60 0.59 0.009

500 0.07 0.07 0.001 0.07 0.07 0.002 0.07 0.07 0.003

750 0.58 0.58 0.001 0.58 0.57 0.002 0.58 0.58 0.000

1000 0.96 0.96 0.002 0.96 0.96 −0.001 0.96 0.96 0.001

2500 0.34 0.34 0.003 0.34 0.34 0.000 0.34 0.34 0.001

5000 0.63 0.63 0.001 0.63 0.63 0.000 0.63 0.63 0.000

Notes: χ2
l : limiting distribution of the test statistic; χ2

b : bootstrap distribution of the test statistic; Diff.=Difference of p-values
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are compensated by regions of decreased probabilities for lower values of the test
statistic.

4.2 Approximation under the alternative hypothesis

The analysis of the three bootstrap methods under the alternative refers to comparing
the observed differences between the three methods with the given sample sizes. At
this point, we have to keep in mind that each original sample X0 constitutes a random
realization of a population distribution of its own, hence the bootstrap generated dis-
tributions of the test statistic differ across the various designs (i.e. each combination of
number of items k and sample size n) and are therefore incomparable. Any attempt to
achieve the same subgroup parameter would go beyond the objectives of the present
study.
Table 2 shows the descriptive statistics for the three bootstrap methods. We see con-

siderable differences in some cases: For example, in the k = 5/n = 250 design,
the mean of the bootstrap distribution generated with the normal marginals method
is more than three times larger than in the free or the fixed marginals case (the lat-
ter two being fairly similar). A similar tendency occurs in the k = 5/n = 750
design, also for the normal marginals method, yet to a weaker extent. In contrast,
the fixed and the free marginals method yielded fairly similar distributions for all
designs.
In order to rule out technical reasons for the unexpected distributions, simulations

of the 5-items designs have been repeated twice. However, the results were virtually
identical, highly deviating distributions appeared repeatedly, with no apparent pat-
tern regarding sample size (in the first repetition, the phenomenon occurred with
n = 500, n = 750, and n = 2500, and in the second with n = 250, n = 500,
and, to a lesser extent, n = 500, n = 2500, and n = 5000). In no case, such
pecularities were to observe with any of the other two algorithms, i.e. fixed or free
marginals.

4.3 Number of bootstrap samples

When applying the bootstrap, we have to decide on the number m∗ of bootstrap
samples, required to obtain sufficiently precise results in justifiable time, as bootstrap-
ping may consume a considerable amount of time for large data sets and/or many
items. First of all, a means is required to summarize the (loss of ) precision when m∗

decreases. Because it is a common choice to evaluate the test statistic with respect to
the 95 %-quantile of the appropriate limiting distribution, we will concentrate on this
measure.
Rather than starting a new simulation, we resorted on the vast amount of data already

at hand: The original simulation covered 7 sample sizes times 3 item counts times 3
algorithms, which totals in 7 × 3 × 3 = 63 vectors, each containing m = 200, 000
realizations of the test statistic (5). In order to evaluate the effect of less than 200,000
bootstrap samples (m∗ < m), we drew random subsamples of 14 different sizes m∗ from
each of the 63 vectors, each repeated 1000 times. For each of these 882 × 1000 sam-
ples, we determined the empirical 95 %-quantile, yielding 882 vectors containing 1000
estimates of the quantile under consideration, q̂.95. (For notational ease, the index will be
omitted.)
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The minimum and maximum value per vector would express a worst case appraisal of
error to be found in the simulated data sets. However, in order to avoid singular outliers
to detract from amore general perspective, the five most extreme values in each direction
were averaged, a procedure which can be considered a stabilized minimum and maxi-
mum. The difference of these two figures is divided by the corresponding quantile of the
according limiting distribution, which makes the measure comparable across all designs.
It will be termed relative range, rr:

rr =
1
5

∑n
i=n−4 q̂(i) − 1

5
∑5

i=1 q̂(i)

χ2
[.95;df ]

, (9)

with q̂(i) denoting the sorted values of the quantile estimates per combination of n, k,
algorithm, andm∗.
Figure 2 shows the relative range by number of bootstrap replications m∗. Two clear

structures are discernible: First, all lines exhibit a (negative) logarithmic shape without
exemption, with deviations rapidly decreasing with increasing number of bootstrap sam-
ples. Second, the larger the number of items k, the faster the deviations decrease together
with increasingm∗. However, the latter phenomenon is considerably smaller than the first
one.
Due to the clear shape of the curves, we tried to formulate a general model pre-

dicting the required number of bootstrap replicates given a desired precision crite-
rion in terms of rr. In order to apply a linear model, the logarithm of the relative
range rr and the negative logarithm of the bootstrap replication number m∗ were
taken. The algorithm was dummy coded (fr serving as reference category) and the
number of variables k and the sample size n were directly entered into the model
equation

y = β0 + β1 log(m∗) + β2k + β3n + β4[1] fx + β4[2]nv, (10)

Fig. 2 Relative range by number of bootstrap replications. Vertical: Relative range rr as defined in Eq. (9);
Horizontal: number of bootstrap replications,m∗ . The 63 lines indicate the 3 algorithms × 3k × 7n different
simulation designs. Grey shadings indicate k: light = 5 items, medium = 10 items, and dark = 15 items
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with y = − log(rr) and β(·) denoting the regression coefficients. Their estimates are given
in Table 3 along with the respective significance measures.
The model R2 equalled .994, which indicates a good fit of model (10). Aside of the

intercept β0, the coefficients regarding the bootstrap replication number, β1, and the
number of items, β2, were significantly different from zero, but not those for the sample
size, β3, or the simulation algorithm, β4[·].
This affirms the impression already derived from Fig. 2 that m∗ and (to a much lesser

extent) k suffice for the determination of the precision of the bootstrap analysis. From the
coefficients indicated in Table 3, a rule of thumb has been developed to obtain a rough
estimation of the required number of bootstrap samples (the coefficients were rounded):

m̂∗ = exp
(
4 − 0.1k − 2 log(rr)

)
. (11)

If, for example, one wants to test 8 items with the LRT using two split groups,
then the critical value χ2

[.95;7] = 14.067. The 95 % quantile of the bootstrap distribu-
tion shall not exceed the interval [13, 15] (which complies with the probabilities .964
and .927, respectively), the range is two and the relative range is rr = 2/14.1 = 0.142
(note that the deviations do not behave symmetrically, but this seems negligible in order
to obtain a rough estimation of m∗). Then, the optimal number of bootstrap replicates
according to (11) amounts to 1219, hence 1200 bootstrap samples will be a good choice.

5 Discussion
The present study focuses on practical issues when applying the Likelihood Ratio statistic
according to Andersen (1973) for testing the binary Rasch Model. If the model holds, the
Likelihood Ratio test statistic approaches the limiting distribution to a sufficient extent
even in cases where samples were small or items were few. The most problematic com-
bination of 5 items and 100 observations revealed moderate deviations from the limiting
distribution. But even in the most problematic cases the CDFs of the bootstrap and the
according limiting distribution differed by no more than 7 %, which seems justifiable
to us.
Generally, the approximation of the test statistic under the null-hypothesis shows suf-

ficient approximation to the theoretical distribution if samples comprise at least 500
respondents and an instrument with more than ten items is considered. For studies con-
sidering smaller samples or fewer items we recommend the more expensive bootstrap
method. However, this is little a drawback as bootstrapping small samples takes only a
reasonable amount of time. In order to further control the required time, Eq. (11) provides
an easily applicable rule of thumb allowing to limit the number of bootstrap samples
warranting a precision criterion of interest.

5.1 Size Matters

But so far, only the type-I error probability of falsely rejecting the null hypothesis has
been taken into consideration. It will be overpowered if samples are large, hence irrelevant
model deviations will become significant, although they might be acceptable from a sub-
stantial point of view, which, in turn, might give rise to generally scorn the LRT as
such.
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However, a significance test has its merits as well, as it allows to rely on the decision cri-
terion of statistical significance, which is fundamental in scientific reasoning. In order to
avoid the propagation of unsubstantiated rules of thumb (cf. Maxwell 2000), a prospective
power analysis (in the sense of Cohen 1988) is required. For that purpose, the simulation
technique presented here provides a reliable means to obtain the required non-central
distributions of the test statistic.

5.2 Simulation technique

In the present study, three pertinent bootstrap algorithms, which we termed normal
marginals, free marginals, and fixed marginals method, have been compared. While there
was hardly any difference in the null hypothesis cases, some striking differences were
encountered for the non-central distributions, deserving further inspection: The LRT
assumes the rowsums rv to be fixed at their observed values, therefore the fixed marginals
bootstrap adopts this assumption. Any deviation from the observed scores inevitably
yields a different likelihood and the sampling distribution of the test statistic will
change.
Interestingly, the present study revealed that such a change primarily occurs in the

non-central case, which can be explained: If we let the rowsums vary freely (as has been
done in the normal marginals and the free marginals case), score frequencies change
as well. Now, in the central case, the same item parameter estimates β̂

(0)
are used for

all subsamples, which supports the assumptions made in the null-hypothesis. But in the
non-central case, possibly differing subgroup estimates are used for generating the boot-
strap samples. If, say, score group two yields highly deviating estimates β̂

(2)
, but the score

two has (by chance) only sometimes occurred, the deviation will not be much reflected
in the test statistic. But if the same score group would have appeared with a high fre-
quency, the deviating estimates will considerably change the product of the subgroup
likelihoods in Eq. (4) and the the test statistic will reflect the model violation. Hence, the
test statistic (and, in turn, its bootstrap distribution) depends on the relative frequencies
of the scores, which explains the observed differences of the three bootstrap methods
considered.
Hence, the fixed marginals method has to be considered superior, not only for

the theoretical reasons outlined above, but also for the present study revealed in
certain cases the differences to be striking. The normal marginals method yielded
problematic distributions of the test statistic (5) when simulating the H1-distribution,
which may also be explained: If we split along the score rv (using the median,
for example), score distributions in the subsamples will inevitably differ, causing the
observed differences. Therefore, the normal marginals method is not eligible for that
purpose.

5.3 Don’t be naïve!

As has been mentioned above, the naïve bootstrap (i.e. drawing response vectors with
replacement from the original sample, cf. Davison and Hinkley 1997) cannot be applied
to the present problem: In the specific case of the LRT, this would cause the split group
membership to be drawn at random as well, thus changing the subgroup frequencies nj of
each bootstrap sample in an entirely unpredictable manner (the likewise argument exists
for the case of regression analysis, cf. Enders 2010, p. 150).
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One might therefore consider to draw the observations separately from the original
subsamples. However, this would not yield the desired results: Only the response patterns
of the possibly differing subgroup members form each group then, hence we end up with
the distribution of the test statistic under the alternative hypothesis.

5.4 Subgroup frequencies

The similarities of the three algorithms in theH0-case could be traced back to the fact that
the original samples X0 have been generated with θ ∼ N(0, 1): All bootstrap procedures
reproduced the marginals’ distributions exceptionally well, what will not be necessar-
ily the case in a practical application. Hence, we should not use the free or the normal
marginals method but the fixed marginals method to perform a power analysis in the
sense of Cohen (1988).
However, this algorithm has far-reaching consequences for further research: If one

wanted to perform a power analysis of the LRT by means of a simulation study using the
fixed marginals method, he or she would have to consider both the item parameters and
the score group frequencies. But unfortunately, we face a technical complication here: In
order to vary the sample size seamlessly (which is necessary to obtain the optimal sam-
ple size), the relative subgroup frequencies have to be maintained. For twice the original
sample (or any other integer multiple), each observation can be drawn twice (or three
times, and so on). But for any other sample size, the relative frequencies nj/n would have
to be carefully approximated, allowing for a sufficient reproduction of the marginals with
increasing n.

5.5 Howmany bootstrap samples?

One question, which always has to be considered when applying of the bootstrap, is the
number of bootstrap replicates that have to be generated. For this purpose, a very gen-
eral solution has been found in the present study. Within the parameters considered, the
expected maximum deviation of the 95 % quantile of the true distribution can be deter-
mined using the number of samples and the number of items. Of course, Eq. (11) could be
extended to any other measure of interest, like another quantile, for example. The present
approach demonstrated the feasibility of a means to generally determine the required
number of bootstrap samples.

5.6 Limitations and outlook

One limitation of the present study can be seen in the fact that only the two groups
sample split has been considered. However, the procedure presented here allows for a
straightforward extension to any number of split groups. Further, this seems to be only
a minor obstactle for the practical application of the present results, as available sample
sizes seldom allow for splitting into more than two groups.
The LRT can also be applied to polytomous extensions of the RM, like, for exam-

ple, the Rating Scale Model (Andrich 1978), or the Partial Credit Model (Masters
1982). Power considerations for these models have to be tackled separately, as the
number of parameters to be estimated changes with the number of response cat-
egories involved. Further, the LRT plays a crucial role in testing the linear logis-
tic extension of the RM (Linear Logistic Test Model, LLTM, Fischer 1973), where,
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the likelihood of the (empirically more restrictive) LLTM is opposed to that of the
RM (cf. Alexandrowicz 2011). Again, the methods described here can be adapted
accordingly.
The results obtained in the present study have two important implications: First, we

are able to obtain the distribution of the test statistic under a fixed alternative by means
of the recommended bootstrap method. This allows for determining the required sam-
ple size to detect a model violation which is considered relevant from a substantive
point of view with fixed risks for the type-I and the type-II errors. And second, the
necessary number of bootstrap replications for warranting a desired precision can be
obtained. One might object that Eq. (11) only covers up to 15 items and may there-
fore not be used for larger instruments. But as we have seen, the larger the number of
items, the fewer bootstrap samples are necessary given everything else is held constant.
Therefore, one is on the safe side using a minimum of 500 bootstrap samples for data
sets comprising more items. The same applies to sample sizes beyond those considered
here.
One reason impairing the applicability of the LRT is that the power of the test for a

given model deviation could not be determined. As a consequence, no sample planning
was possible, leaving the researcher in the dark whether a significant result indicates
a model deviation of substantial interest or was merely the consequence of too large
a sample. However, this fundamental problem has been overcome by Draxler (2010)
for the Wald-test and generalized to the LRT and the Rao-Score-test by Draxler and
Alexandrowicz.
These present results allow to determine the optimal sample size required to detect

a model deviation considered relevant from a substantial point of view with given risks
of an error of the first and the second kind. We believe that the LRT is a valuable tool
for testing whether an instrument allows for establishing a measurement and the present
findings will facilitate its liable utilization.

6 Conclusion
The test statistic of the conditional Likelihood Ratio Test approximates its limiting dis-
tribution very fast. Only the combination of 5 items and 100 respondents revealed
slight deviations, however, increasing either the number of items or the sample size will
allow for employing the quantiles of the respective χ2-distribution in the usual manner.
Hence, the cLRT may be applied with confidence in many situations. All three boot-
strap algorithms perform well under the null hypothesis and provide reliable estimates
of the quantiles required for testing the null hypothesis of model fit taking the error
of the first kind into consideration. In order to take the error of the second kind into
account as well, we have to find the according non-central distribution of the test statistic
given a specified model deviation. Here, the three simulation methods differed consid-
erably. We recommend the newly introduced technique warranting the row marginals
to remain at their observed values for this technique has to be considered superior
on theoretical reasons. Finally, we provide an easy to apply formula for identifying the
necessary number of bootstrap samples allowing to limit the bootstrap-related error to
a freely definable degree. Especially in studies involving a large set of items or sam-
ple, this formula will prove useful to perform the bootstrap in a reasonable amount of
time.
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Appendix

Table 2Moments and quantiles of the non-central bootstrap distributions

k/df n meth mean var cv skew kurt q50 q90 q95 q99

5/4 100 nv 4.46 9.80 0.70 1.39 2.90 3.75 8.65 10.54 14.70

free 4.65 10.07 0.68 1.31 2.64 4.01 8.89 10.73 14.82

fix 4.72 9.78 0.66 1.24 2.29 4.10 8.92 10.75 14.70

250 nv 50.60 123.32 0.22 0.25 0.02 50.14 65.15 69.58 78.32

free 14.89 27.97 0.36 0.75 0.86 14.19 21.97 24.66 30.01

fix 13.43 23.23 0.36 0.78 0.82 12.66 20.03 22.35 27.03

500 nv 5.07 12.34 0.69 1.34 2.63 4.30 9.81 11.83 16.42

free 4.65 10.64 0.70 1.38 2.87 3.91 9.01 10.95 15.29

fix 4.66 10.75 0.70 1.39 2.87 3.92 9.06 11.02 15.41

750 nv 9.36 29.00 0.58 0.98 1.32 8.45 16.61 19.47 25.63

free 6.77 18.59 0.64 1.16 1.89 5.93 12.61 15.03 20.20

fix 6.77 18.47 0.63 1.15 1.90 5.94 12.58 14.99 19.98

1000 nv 11.61 38.43 0.53 0.89 1.08 10.65 19.97 23.14 29.83

free 8.64 26.15 0.59 1.05 1.57 7.75 15.51 18.34 24.17

fix 8.80 26.28 0.58 1.03 1.50 7.93 15.66 18.47 24.53

2500 nv 9.82 31.20 0.57 1.00 1.46 8.91 17.33 20.24 26.67

free 6.95 19.47 0.63 1.14 1.83 6.10 12.91 15.39 20.71

fix 7.01 19.70 0.63 1.14 1.79 6.15 13.03 15.51 20.78

5000 nv 20.44 73.41 0.42 0.67 0.63 19.49 31.91 35.99 44.45

free 13.48 44.64 0.50 0.82 0.93 12.56 22.48 25.80 32.77

fix 13.95 45.78 0.48 0.79 0.88 13.06 23.05 26.33 33.54

10/9 100 nv 16.63 48.66 0.42 0.76 0.84 15.73 25.98 29.40 36.58

free 16.93 49.66 0.42 0.71 0.67 16.07 26.36 29.88 36.84

fix 17.76 53.02 0.41 0.70 0.66 16.90 27.50 31.02 38.17

250 nv 15.23 43.00 0.43 0.80 0.98 14.37 24.01 27.26 34.21

free 15.23 42.59 0.43 0.78 0.85 14.36 23.97 27.25 34.03

fix 15.83 45.04 0.42 0.77 0.83 14.97 24.82 28.11 35.05

500 nv 24.60 80.08 0.36 0.60 0.47 23.66 36.55 40.73 49.11

free 25.09 82.19 0.36 0.60 0.52 24.17 37.13 41.32 50.00

fix 26.38 88.22 0.36 0.61 0.52 25.42 38.92 43.31 52.47

750 nv 17.83 53.23 0.41 0.73 0.77 16.95 27.59 31.15 38.46

free 18.13 54.32 0.41 0.73 0.76 17.21 28.00 31.63 39.10

fix 18.83 57.38 0.40 0.72 0.77 17.90 28.96 32.67 40.32

1000 nv 19.13 58.74 0.40 0.71 0.71 18.22 29.33 33.11 40.76

free 20.03 62.19 0.39 0.69 0.67 19.13 30.53 34.31 42.26

fix 21.12 66.66 0.39 0.65 0.57 20.24 32.04 35.97 43.88

2500 nv 14.21 38.70 0.44 0.82 0.91 13.34 22.57 25.73 32.28

free 14.47 39.67 0.44 0.80 0.89 13.63 22.97 26.10 32.56

fix 14.96 42.22 0.43 0.80 0.93 14.11 23.64 26.98 33.72

5000 nv 15.19 42.61 0.43 0.79 0.90 14.31 23.92 27.23 33.92

free 15.14 42.54 0.43 0.80 0.92 14.27 23.86 27.15 33.93

fix 15.49 43.84 0.43 0.77 0.76 14.62 24.38 27.65 34.50

15/14 100 nv 21.08 56.32 0.36 0.68 0.66 20.23 31.10 34.73 42.13

free 21.59 58.86 0.36 0.66 0.61 20.74 31.86 35.45 42.99

fix 21.98 59.95 0.35 0.62 0.50 21.15 32.32 35.97 43.36

250 nv 27.02 80.26 0.33 0.60 0.52 26.13 38.94 43.13 51.73

free 28.16 84.17 0.33 0.57 0.44 27.30 40.38 44.68 53.11

fix 28.84 87.07 0.32 0.56 0.38 27.92 41.25 45.48 54.39
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Table 2Moments and quantiles of the non-central bootstrap distributions (Continued)

k/df n meth mean var cv skew kurt q50 q90 q95 q99

500 nv 20.85 55.05 0.36 0.66 0.62 20.05 30.72 34.36 41.78

free 20.85 55.55 0.36 0.67 0.64 20.01 30.76 34.34 41.62

fix 21.13 56.11 0.35 0.69 0.71 20.25 31.10 34.78 42.27

750 nv 27.01 80.95 0.33 0.60 0.51 26.08 39.02 43.18 51.58

free 27.86 82.61 0.33 0.59 0.60 27.01 39.87 44.06 52.72

fix 28.37 85.27 0.33 0.58 0.49 27.50 40.65 45.00 53.45

1000 nv 36.14 115.14 0.30 0.49 0.32 35.28 50.30 55.18 65.02

free 37.22 121.78 0.30 0.51 0.34 36.31 51.83 56.89 66.78

fix 38.39 124.94 0.29 0.49 0.35 37.49 53.20 58.22 68.15

2500 nv 24.07 68.46 0.34 0.62 0.54 23.20 35.08 38.98 47.12

free 24.78 71.02 0.34 0.62 0.55 23.90 36.02 39.95 48.09

fix 25.39 73.60 0.34 0.61 0.54 24.51 36.81 40.85 48.82

5000 nv 27.56 81.96 0.33 0.58 0.45 26.69 39.65 43.83 52.29

free 28.52 85.93 0.33 0.56 0.42 27.65 40.82 45.09 53.90

fix 29.17 89.11 0.32 0.58 0.47 28.26 41.71 46.07 55.00

Table 3 Coefficients of the linear model predicting the negative log of the relative error from the log
of the number of bootstrap samples, the number of items, the sample size and the bootstrap
algorithm

Par. Pred. Est. S.E. t-value Pr (> |t|)
β0 Intcpt −2.079 0.014 −144.488 < .001

β1 m∗ 0.498 0.001 361.291 < .001

β2 k 0.052 0.001 91.534 < .001

β3 n 0.000 0.000 1.009 0.313

β4[1] fr : fx −0.004 0.006 − 0.719 0.472

β4[2] fr : nv −0.002 0.006 − 0.291 0.771
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Table 4 Descriptive statistics for the fixed marginals case under the null hypothesis

mean % var % cv % skew % kurt % q50 % q90 % q95 % q99 %

limiting: df = 4 4.00 8.00 0.71 1.41 3.00 3.36 7.78 9.49 13.28

k = 5/n = 100 4.42 10.4 8.86 10.7 0.67 −4.7 1.23 −12.8 2.17 −27.7 3.81 13.5 8.45 8.6 10.17 7.2 13.82 4.1

k = 5/n = 250 4.19 4.7 8.88 10.9 0.71 0.6 1.39 −1.9 2.74 −8.6 3.47 3.4 8.22 5.7 9.99 5.3 13.91 4.8

k = 5/n = 500 4.10 2.4 8.53 6.7 0.71 0.9 1.44 1.8 3.10 3.2 3.42 1.9 7.98 2.6 9.81 3.4 13.70 3.2

k = 5/n = 750 4.06 1.5 8.26 3.3 0.71 0.2 1.43 1.2 3.12 3.9 3.40 1.3 7.90 1.5 9.60 1.2 13.46 1.4

k = 5/n = 1000 4.02 0.6 8.05 0.7 0.71 −0.3 1.40 −0.7 2.96 −1.3 3.38 0.7 7.81 0.4 9.54 0.6 13.29 0.1

k = 5/n = 2500 4.02 0.5 8.19 2.3 0.71 0.7 1.43 1.2 3.03 1.2 3.37 0.4 7.83 0.6 9.57 0.9 13.51 1.8

k = 5/n = 5000 4.00 −0.1 7.99 −0.2 0.71 −0.0 1.43 0.9 3.19 6.4 3.36 0.1 7.76 −0.2 9.47 −0.2 13.14 −1.0

avg. (df = 4) 4.12 2.9 8.39 4.9 0.70 −0.4 1.39 −1.5 2.90 −3.3 3.46 3.0 7.99 2.7 9.74 2.6 13.55 2.1

limiting: df = 9 9.00 18.00 0.47 0.94 1.33 8.34 14.68 16.92 21.67

k = 10/n = 100 9.54 6.0 20.05 11.4 0.47 −0.4 0.89 −5.9 1.10 −17.7 8.88 6.4 15.55 5.9 17.87 5.6 22.77 5.1

k = 10/n = 250 9.14 1.6 18.67 3.7 0.47 0.3 0.95 1.2 1.36 2.3 8.47 1.5 14.93 1.7 17.23 1.8 22.07 1.9

k = 10/n = 500 9.08 0.9 18.32 1.8 0.47 −0.0 0.95 0.6 1.42 6.4 8.43 1.0 14.80 0.8 17.07 0.9 21.83 0.8

k = 10/n = 750 9.02 0.2 18.22 1.2 0.47 0.4 0.95 0.3 1.30 −2.6 8.33 −0.2 14.75 0.5 16.97 0.3 21.81 0.7

k = 10/n = 1000 9.01 0.1 17.93 −0.4 0.47 −0.3 0.94 0.1 1.37 2.8 8.34 −0.0 14.69 0.0 16.92 0.0 21.64 −0.1

k = 10/n = 2500 9.02 0.2 17.97 −0.2 0.47 −0.3 0.93 −1.1 1.26 −5.5 8.36 0.2 14.73 0.3 16.95 0.2 21.48 −0.9

k = 10/n = 5000 9.01 0.1 17.87 −0.7 0.47 −0.5 0.93 −0.9 1.30 −2.3 8.37 0.3 14.69 0.0 16.88 −0.2 21.65 −0.1

avg. (df = 9) 9.12 1.3 18.43 2.4 0.47 −0.1 0.93 −0.8 1.30 −2.4 8.45 1.3 14.88 1.3 17.13 1.2 21.89 1.1

limiting: df = 14 14.00 28.00 0.38 0.76 0.86 13.34 21.06 23.68 29.14

k = 15/n = 100 14.60 4.3 30.69 9.6 0.38 0.4 0.75 −1.2 0.79 −7.8 13.92 4.4 21.99 4.4 24.74 4.5 30.52 4.7

k = 15/n = 250 14.13 1.0 28.75 2.7 0.38 0.4 0.77 2.1 0.92 7.0 13.45 0.8 21.28 1.0 23.91 1.0 29.53 1.3

k = 15/n = 500 14.07 0.5 27.84 −0.6 0.37 −0.8 0.74 −2.0 0.78 −9.4 13.40 0.5 21.15 0.4 23.73 0.2 29.26 0.4

k = 15/n = 750 14.03 0.2 28.39 1.4 0.38 0.5 0.77 2.3 0.95 10.3 13.36 0.2 21.16 0.5 23.82 0.6 29.26 0.4

k = 15/n = 1000 14.04 0.3 28.44 1.6 0.38 0.5 0.77 2.0 0.92 7.5 13.37 0.2 21.11 0.2 23.79 0.4 29.49 1.2

k = 15/n = 2500 14.02 0.2 28.19 0.7 0.38 0.2 0.75 −0.9 0.78 −9.4 13.35 0.1 21.13 0.3 23.76 0.3 29.25 0.4

k = 15/n = 5000 14.01 0.0 28.06 0.2 0.38 0.1 0.75 −0.4 0.83 −3.3 13.34 0.0 21.09 0.1 23.70 0.1 29.15 0.0

avg. (df = 14) 14.13 0.9 28.62 2.2 0.38 0.2 0.76 0.3 0.85 −0.7 13.46 0.9 21.27 1.0 23.92 1.0 29.49 1.2
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Table 5 Descriptive statistics for the free marginals case under the null hypothesis

mean % var % cv % skew % kurt % q50 % q90 % q95 % q99 %

limiting: df = 4 4.00 8.00 0.71 1.41 3.00 3.36 7.78 9.49 13.28

k = 5/n = 100 4.38 9.6 9.11 13.8 0.69 −2.6 1.29 −8.9 2.43 −18.8 3.76 12.0 8.43 8.4 10.18 7.3 14.10 6.2

k = 5/n = 250 4.16 4.1 8.76 9.6 0.71 0.5 1.39 −1.5 2.77 −7.7 3.47 3.4 8.16 4.9 9.98 5.2 13.81 4.0

k = 5/n = 500 4.08 2.0 8.35 4.4 0.71 0.2 1.41 −0.2 2.93 −2.3 3.42 1.9 7.97 2.4 9.71 2.3 13.58 2.3

k = 5/n = 750 4.03 0.8 8.16 2.0 0.71 0.2 1.43 1.4 3.16 5.5 3.39 1.0 7.84 0.8 9.52 0.3 13.46 1.4

k = 5/n = 1000 4.03 0.7 8.09 1.2 0.71 −0.2 1.38 −2.1 2.85 −4.8 3.38 0.7 7.87 1.2 9.55 0.7 13.27 −0.1

k = 5/n = 2500 4.01 0.1 7.95 −0.6 0.70 −0.5 1.39 −1.9 2.84 −5.4 3.36 0.1 7.78 0.0 9.46 −0.3 13.27 −0.0

k = 5/n = 5000 4.00 0.1 8.01 0.1 0.71 −0.1 1.44 2.1 3.28 9.2 3.37 0.4 7.79 0.1 9.47 −0.2 13.29 0.1

avg. (df = 4) 4.10 2.5 8.35 4.4 0.71 −0.4 1.39 −1.6 2.89 −3.5 3.45 2.8 7.98 2.5 9.70 2.2 13.54 2.0

limiting: df = 9 9.00 18.00 0.47 0.94 1.33 8.34 14.68 16.92 21.67

k = 10/n = 100 9.53 5.9 20.14 11.9 0.47 −0.1 0.92 −2.0 1.27 −5.0 8.86 6.2 15.54 5.8 17.89 5.7 22.82 5.3

k = 10/n = 250 9.14 1.5 18.51 2.8 0.47 −0.1 0.95 0.7 1.36 2.2 8.47 1.5 14.90 1.5 17.16 1.4 22.05 1.8

k = 10/n = 500 9.04 0.4 18.04 0.2 0.47 −0.3 0.93 −1.5 1.29 −3.6 8.40 0.7 14.70 0.1 16.91 −0.1 21.75 0.4

k = 10/n = 750 9.05 0.6 18.13 0.7 0.47 −0.2 0.93 −1.5 1.26 −5.5 8.38 0.4 14.78 0.7 16.97 0.3 21.68 0.1

k = 10/n = 1000 9.00 0.0 18.02 0.1 0.47 0.0 0.95 0.5 1.34 0.7 8.34 −0.0 14.70 0.1 16.94 0.1 21.66 −0.0

k = 10/n = 2500 9.03 0.3 18.23 1.3 0.47 0.4 0.95 0.4 1.36 1.8 8.38 0.4 14.70 0.1 17.02 0.6 21.80 0.6

k = 10/n = 5000 9.02 0.2 18.08 0.5 0.47 −0.0 0.96 1.7 1.39 3.9 8.37 0.3 14.71 0.2 16.98 0.4 21.82 0.7

avg. (df = 9) 9.12 1.3 18.45 2.5 0.47 −0.0 0.94 −0.2 1.32 −0.8 8.46 1.4 14.86 1.2 17.12 1.2 21.94 1.3

limiting: df = 14 14.00 28.00 0.38 0.76 0.86 13.34 21.06 23.68 29.14

k = 15/n = 100 14.58 4.2 30.67 9.5 0.38 0.5 0.76 0.8 0.85 −0.3 13.88 4.1 21.98 4.3 24.74 4.5 30.43 4.4

k = 15/n = 250 14.15 1.1 28.51 1.8 0.38 −0.1 0.76 0.2 0.85 −0.8 13.49 1.1 21.27 1.0 23.91 1.0 29.56 1.4

k = 15/n = 500 14.05 0.4 28.17 0.6 0.38 −0.1 0.77 2.0 0.94 9.7 13.39 0.4 21.14 0.4 23.76 0.3 29.31 0.6

k = 15/n = 750 14.03 0.2 27.91 −0.3 0.38 −0.4 0.74 −2.6 0.78 −9.4 13.37 0.2 21.11 0.2 23.66 −0.1 29.11 −0.1

k = 15/n = 1000 14.03 0.2 27.86 −0.5 0.38 −0.5 0.75 −0.7 0.84 −2.0 13.38 0.3 21.11 0.2 23.67 −0.1 29.04 −0.3

k = 15/n = 2500 14.01 0.1 28.04 0.1 0.38 −0.0 0.77 1.9 0.88 2.2 13.35 0.1 21.09 0.1 23.75 0.3 29.25 0.4

k = 15/n = 5000 14.02 0.2 28.19 0.7 0.38 0.2 0.77 1.6 0.89 4.4 13.34 0.0 21.09 0.1 23.76 0.3 29.23 0.3

avg. (df = 14) 14.12 0.9 28.48 1.7 0.38 −0.1 0.76 0.5 0.86 0.5 13.46 0.9 21.26 0.9 23.89 0.9 29.42 1.0
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Table 6 Descriptive statistics for the normal marginals case under the null hypothesis

mean % var % cv % skew % kurt % q50 % q90 % q95 % q99 %

limiting: df = 4 4.00 8.00 0.71 1.41 3.00 3.36 7.78 9.49 13.28

k = 5/n = 100 4.11 2.7 8.46 5.8 0.71 0.1 1.42 0.7 3.04 1.2 3.45 2.8 7.98 2.6 9.79 3.2 13.66 2.9

k = 5/n = 250 4.04 1.0 8.19 2.4 0.71 0.2 1.43 1.4 3.14 4.7 3.39 1.0 7.86 1.0 9.60 1.2 13.43 1.2

k = 5/n = 500 4.02 0.6 8.09 1.2 0.71 0.0 1.42 0.3 3.04 1.2 3.37 0.4 7.82 0.5 9.53 0.4 13.34 0.5

k = 5/n = 750 4.01 0.3 8.04 0.5 0.71 −0.1 1.41 −0.2 2.98 −0.6 3.37 0.4 7.80 0.3 9.50 0.1 13.35 0.6

k = 5/n = 1000 4.02 0.4 8.05 0.6 0.71 −0.1 1.41 −0.6 2.93 −2.2 3.37 0.4 7.80 0.3 9.51 0.2 13.30 0.2

k = 5/n = 2500 4.00 0.1 8.03 0.4 0.71 0.1 1.44 1.8 3.16 5.2 3.35 −0.2 7.79 0.1 9.48 −0.1 13.33 0.4

k = 5/n = 5000 4.03 0.6 8.12 1.5 0.71 0.1 1.41 −0.2 2.98 −0.8 3.39 1.0 7.83 0.6 9.54 0.6 13.30 0.2

avg. (df = 4) 4.03 0.8 8.14 1.8 0.71 0.0 1.42 0.5 3.04 1.2 3.38 0.8 7.84 0.8 9.56 0.8 13.39 0.9

limiting: df = 9 9.00 18.00 0.47 0.94 1.33 8.34 14.68 16.92 21.67

k = 10/n = 100 9.20 2.2 18.86 4.8 0.47 0.1 0.95 0.3 1.32 −0.6 8.52 2.1 15.02 2.3 17.30 2.3 22.15 2.2

k = 10/n = 250 9.05 0.6 18.12 0.7 0.47 −0.2 0.92 −2.3 1.25 −5.9 8.41 0.8 14.77 0.6 16.98 0.4 21.64 −0.1

k = 10/n = 500 9.06 0.7 18.25 1.4 0.47 0.0 0.95 0.5 1.32 −1.2 8.38 0.4 14.78 0.7 17.01 0.5 21.86 0.9

k = 10/n = 750 9.02 0.3 18.16 0.9 0.47 0.2 0.95 0.5 1.42 6.8 8.37 0.3 14.72 0.2 16.95 0.2 21.67 0.0

k = 10/n = 1000 8.99 −0.1 17.86 −0.8 0.47 −0.3 0.94 −0.3 1.32 −1.2 8.33 −0.2 14.68 −0.0 16.88 −0.2 21.57 −0.4

k = 10/n = 2500 9.01 0.2 18.05 0.3 0.47 −0.0 0.95 0.8 1.39 4.4 8.38 0.4 14.68 −0.0 16.92 0.0 21.70 0.2

k = 10/n = 5000 9.01 0.1 18.03 0.2 0.47 0.0 0.95 0.9 1.37 3.0 8.34 −0.0 14.66 −0.2 16.96 0.2 21.71 0.2

avg. (df = 9) 9.05 0.6 18.19 1.1 0.47 −0.0 0.94 0.1 1.34 0.8 8.39 0.5 14.76 0.5 17.00 0.5 21.76 0.4

limiting: df = 14 14.00 28.00 0.38 0.76 0.86 13.34 21.06 23.68 29.14

k = 15/n = 100 14.32 2.3 29.30 4.7 0.38 0.0 0.76 0.2 0.87 1.4 13.65 2.3 21.53 2.2 24.20 2.2 29.88 2.5

k = 15/n = 250 14.09 0.7 28.27 1.0 0.38 −0.2 0.76 0.6 0.90 4.8 13.45 0.8 21.20 0.6 23.82 0.6 29.22 0.3

k = 15/n = 500 14.05 0.4 28.33 1.2 0.38 0.2 0.75 −1.1 0.82 −4.4 13.40 0.5 21.19 0.6 23.80 0.5 29.16 0.1

k = 15/n = 750 14.00 −0.0 27.85 −0.5 0.38 −0.2 0.73 −3.9 0.72 −15.8 13.35 0.1 21.09 0.1 23.65 −0.1 28.88 −0.9

k = 15/n = 1000 14.07 0.5 28.40 1.4 0.38 0.2 0.77 2.1 0.91 6.3 13.42 0.6 21.16 0.5 23.84 0.7 29.50 1.2

k = 15/n = 2500 14.04 0.3 28.30 1.1 0.38 0.3 0.77 2.5 0.99 15.4 13.39 0.4 21.08 0.1 23.77 0.4 29.37 0.8

k = 15/n = 5000 14.02 0.1 28.10 0.4 0.38 0.0 0.75 −0.6 0.83 −3.3 13.37 0.2 21.07 0.0 23.73 0.2 29.20 0.2

avg. (df = 14) 14.08 0.6 28.36 1.3 0.38 0.0 0.76 −0.0 0.86 0.6 13.43 0.7 21.19 0.6 23.83 0.6 29.32 0.6
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Table 7 Kolmogorov-Smirnov test for fit to the limiting distribution

fix free nv

k n D p D p D p

5 100 0.0700 < 0.0001 0.0608 < 0.0001 0.0155 < 0.0001

5 250 0.0256 < 0.0001 0.0212 < 0.0001 0.0063 < 0.0001

5 500 0.0127 < 0.0001 0.0108 < 0.0001 0.0039 0.0052

5 750 0.0087 < 0.0001 0.0071 < 0.0001 0.0033 0.0241

5 1000 0.0063 < 0.0001 0.0062 < 0.0001 0.0040 0.0037

5 2500 0.0036 0.0123 0.0033 0.0288 0.0037 0.0096

5 5000 0.0028 0.0842 0.0038 0.0060 0.0061 < 0.0001

10 100 0.0521 < 0.0001 0.0499 < 0.0001 0.0188 < 0.0001

10 250 0.0135 < 0.0001 0.0139 < 0.0001 0.0072 < 0.0001

10 500 0.0093 < 0.0001 0.0076 < 0.0001 0.0061 < 0.0001

10 750 0.0043 0.0013 0.0061 < 0.0001 0.0046 0.0005

10 1000 0.0037 0.0074 0.0019 0.4893 0.0028 0.0971

10 2500 0.0035 0.0150 0.0061 < 0.0001 0.0044 0.0007

10 5000 0.0044 0.0009 0.0039 0.0044 0.0027 0.1048

15 100 0.0447 < 0.0001 0.0421 < 0.0001 0.0243 < 0.0001

15 250 0.0104 < 0.0001 0.0126 < 0.0001 0.0088 < 0.0001

15 500 0.0079 < 0.0001 0.0060 < 0.0001 0.0060 < 0.0001

15 750 0.0048 0.0002 0.0042 0.0017 0.0026 0.1301

15 1000 0.0049 0.0001 0.0043 0.0011 0.0069 < 0.0001

15 2500 0.0028 0.0926 0.0026 0.1269 0.0054 < 0.0001

15 5000 0.0019 0.4897 0.0022 0.2775 0.0030 0.0593
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Table 8 The p-values of the theoretical quantiles applied to the bootstrap distributions

α = .10 α = .05 α = .01

n k = 5/df = 4 nv free fix nv free fix nv free fix

100 p-value 0.11 0.13 0.13 0.06 0.07 0.07 0.01 0.01 0.01

rel. err. 8 % 28 % 30 % 13 % 32 % 33 % 18 % 41 % 28 %

250 p-value 0.10 0.12 0.12 0.05 0.06 0.06 0.01 0.01 0.01

rel. err. 3 % 16 % 18 % 5 % 21 % 22 % 6 % 25 % 30 %

500 p-value 0.10 0.11 0.11 0.05 0.06 0.06 0.01 0.01 0.01

rel. err. 2 % 7 % 8 % 2 % 10 % 13 % 3 % 13 % 21 %

750 p-value 0.10 0.10 0.11 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 1 % 3 % 5 % 1 % 2 % 4 % 3 % 9 % 8 %

1000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 1 % 4 % 1 % 1 % 3 % 2 % 1 % 0 % 1 %

2500 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 0 % 0 % 2 % 0 % −1 % 3 % 2 % 0 % 11 %

5000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 3 % 1 % −1 % 3 % 0 % −1 % 1 % 1 % −6 %

k = 10/df = 9

100 p-value 0.11 0.13 0.13 0.06 0.07 0.07 0.01 0.02 0.02

rel. err. 10 % 27 % 27 % 13 % 34 % 34 % 20 % 52 % 46 %

250 p-value 0.10 0.11 0.11 0.05 0.05 0.06 0.01 0.01 0.01

rel. err. 3 % 6 % 7 % 3 % 8 % 10 % −1 % 14 % 15 %

500 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 3 % 0 % 4 % 3 % 0 % 5 % 8 % 3 % 6 %

750 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 1 % 3 % 2 % 1 % 2 % 2 % 1 % 1 % 6 %

1000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 0 % 1 % 0 % −1 % 1 % 0 % −3 % 0 % −1 %

2500 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 0 % 1 % 1 % 0 % 4 % 2 % 1 % 5 % −5 %

5000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. −1 % 1 % 0 % 1 % 2 % −1 % 1 % 5 % 0 %

k = 15/df = 14

100 p-value 0.11 0.12 0.13 0.06 0.07 0.07 0.01 0.02 0.02

rel. err. 12 % 24 % 25 % 15 % 31 % 32 % 25 % 47 % 49 %

250 p-value 0.10 0.11 0.11 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 3 % 5 % 6 % 4 % 7 % 6 % 2 % 14 % 12 %

500 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 3 % 2 % 2 % 3 % 2 % 1 % 1 % 5 % 4 %

750 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 1 % 2 % 2 % −1 % −1 % 4 % −5 % −1 % 5 %

1000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 2 % 1 % 1 % 4 % −1 % 4 % 11 % −2 % 9 %

2500 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 0 % 1 % 2 % 2 % 2 % 2 % 7 % 3 % 3 %

5000 p-value 0.10 0.10 0.10 0.05 0.05 0.05 0.01 0.01 0.01

rel. err. 0 % 1 % 1 % 1 % 2 % 0 % 2 % 2 % 0 %

Note: rel. err.: Relative error of the p-values compared to the respective value of α given in the top row
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