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1 Introduction
Recently, two new generalizations of the well known COM-Poisson (Conway and
Maxwell 1962) was proposed. One by Chakraborty and Ong (2014) known as the
COM-Negative binomial distribution and the other by Imoto (2014) referred to as the
generalized COM-Poisson Distribution. In this section we briefly introduce these two
distributions along with a hypergeometric type series which is used in the sequel.
COM-Poisson type negative binomial distribution: Chakraborty and Ong (2014)
proposed a new COM-Poisson type generalization of negative binomial distribution
that includes some well-known distributions including COM-Poisson, Negative
Binomial (page 208-250, Chapter 5, Johnson et al. 2005), as particular case and
Bernoulli (page 108, Chapter 3, Johnson et al. 2005), COM-Poisson as limiting cases
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among others. This distribution is log-concave and flexible enough to model under,
equi- and over dispersed count data.

A random variable (rv) X is said to follow the COM - Poisson type Negative Binomial
distribution with parameters (v, p, @) [COM-NB(v, p, a)] if its pmf is given by

P(X = k) = (0 P /{0 Haa (v 1)}, k=0, 1,2, (1)

oo

Where H(v; 1;p) Z () P/ (kD)* (2)
=0

The distribution is defined in the parameter space
®COM—NB:{V>O7P>07a> 1}U{V>07O<p< 1,0[21}.
When a is a positive integer, H, _,(v; 1;p) can be expressed as a particular
case of generalized hypergeometric series ,,F,(ai,ay, -+, am;b1,ba, by z) =

 (@1)(a2)i (@i a
— (b1)(b2) -+ (bn), k!

Generalized COM-Poisson distribution: Imoto (2014) proposed another

as 1F, 1(»;1,1, -+, 1; p).

generalization where an rv X is said to follow the GCOM-Poisson distribution with pa-
rameters (v, p, ) that is GCOMP (v, p, p) if its pmf is given by

{T(v+ k)Y pr
C(B,v,p) k!

o y 8
Where C(B,v,p) = ZW}?I( (4)

P(X =k) = (3)

The distribution is defined in the parameter space

@GCOMp:{V>O,p>O,ﬂ<1}U{V>0,0<p<1,/))=1}.

A hypergeometric type series: We introduce the series

B . (@)} (@) (@) P
S (ﬂl,ﬂz, ﬂmabp) ; {(b } k'7

where (a)y=a(a+1) - (a+k-1)=T(a+k)/[a is the Pochhammer’s notation (see
Johnson et al. 2005, chapter 1, page 2). The series converges if (i) for any finite p,
p+m-2<a or (ii) |p|<1,f+m-2<a. For a, § and m all positive integers, it re-
duces to a particular case of the generalized hypergeometric function g ,, - 1Fs(a1,
ai, a1, 5 A b, b, -+, by p). With this notation we have

oo

Z }ﬁpk/ k') /3 1(v; 1;p) = gF,_ 1(v; 1,1, 1;p) (5)
k=0

Some important special cases of ;S4_;(v; 1;p) are
i Si1(v; 1;p) = (Hao(v; 1; p) [Chakraborty and Ong, 2014]

ii. 1Sﬁ(v 1;p) = C(B, v, p)/(Tv)? [Imoto 2014]
fi. SO(V 1;p) = (1-p)™" [geometric series]
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iv. 156,1(1; 1;p) = Z(p, a—f) [Conway and Maxwell 1962]
v. 18)(L Lip) = exp(p)

Some important limiting cases of ;S5 (v; 1;p) are

vi lim [ SE.(v; 1;p) = 1+ vPp.
a—0

vii.;ij?o SEL(v; Lp) = Z/lk/(k!)“ = Z(A, @), where v#p = ) is finite positive.
k=0

In the present article we propose a natural four parameter extension of the
COM-Poisson distribution which includes the recently introduced COM-NB and
GCOM-Poisson distributions as special cases. This new distribution with additional
parameters is more flexible in terms of tail length and dispersion index. The definition
of the proposed distribution along with some of its important distributional properties are
presented in the Section 2. Reliability and stochastic ordering results are discussed in
Section 3. In Section 4 we presented applications of the proposed distribution by
considering three real life data sets. Concluding remarks is provided in the Section 5
which if followed by an appendix containing the proofs of the results and propositions in
the article.

2 Extended COM-Poisson (ECOMP) distribution
Here we introduce a new distribution that unifies both the COM-NB and GCOMP
distributions.

Definition 1. An rv X is said to follow the extended COM-Poisson distribution with
parameters (v, p, a, 5) [ECOMP (v, p, a, )] iff its pmf is given by

P (01 G LB (V) ©

1Sha(v; Lip) (R (Tv)f S84 (v; 1;p) (RD*

The distribution is defined in the parameter space
Or_com = {v20,p>0,a>plu{r>0,0<p<1,a=p}

It may be noted that unlike in the COM-NB distribution where the parameter
a>1 and in the GCOMP distribution where the parameter f<1, in the ECOMP
distribution these two parameters can be either positive or negative with the re-
striction of a > p5.

Particular cases: The ECOMP (v, p,a, 5) distribution reduces to COM-NB (v, p, a)
for B=1, to GCOMP (v, p, ) for a =1, to COMP (p,a — ) for v=1, to COMP (p, a) for
B =0, to Poisson (p) for v=1,a=p+1, also to Poisson (p) for $=0,a =1, to NB (v, p)
for « = f =1 and to a new generalization of NB(NGNB) distribution when a = = y with
pmf

Y
Poc=k = (") s 1) )

For 0 <v <1, the distribution in (7) is log-convex as will be seen in proposition 4 in
the Section 2.7.
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2.1 Shape of the pmf

It is observed from the plots of the pmf of the ECOMP(y, p, a, ) distribution for differ-
ent values of the parameters in Fig. 1, that the distribution is very flexible and can be

non increasing with mode at zero, unique non zero mode, two modes and also bimodal

with one mode always at zero.

2.2 Approximations of the normalizing constant
2.2.1 Approximation using truncation of the series

The normalizing constant ;S%_;(v;1;p) of the ECOMP(v, p, @, ) distribution is not
expressed in a closed form and includes the summation of infinite series. Therefore, we

Prob(x)
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Fig. 1 pmfs of ECOMP
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need approximations of this constant to compute the pmf and moments of the distri-
bution numerically.

A simple approximation is to truncate the series, that is

m [ 18
(S (v ip) =) {Ek)'l;i 7, (8)
k=0 :

where m is an integer chosen such that ¢, =(v-m+ l)ﬁp/m“ <1. The relative
truncation error is then given by the expression R, (v,p,a,p) =
{1S6.1(v; 1;p) =SB 1, (v; 1;p) }/1SE-1,m (v; 1;p) . Then the relative error about the
pmf is give by {P,,(k) — P(k)}/P(k), where P(k) is given by the right hand side (r.h.s.) of
equation (6) in Section 2 and P,(k) is given by the r.hs. of (6) with ;S&_;(v; 1;p)
substituted by ,S£_1,,, (v; 1;p). The upper bound of the relative truncation error is then
found to be

. {1 s V!
=" {(Q-ep)(m+ )1}, SE 1, (v; 1;p)

v 1 ﬁm+1
{( )m+}l’ Z

Rvo 21 B) < D)) S e (0 1)

For a- =1, this truncated approximation is good because ¢,, = O(1/m) and
thus, the truncation point m is not large. However, for 0<a - <1 and p>1, the
truncation point become too large to compute the approximation. For example,
when v=15, p=3,a0=3.1, =3, m has to be over 50,000. This is not practicable.
To avoid this difficulty it is useful to make a restriction for the parameter p such
that p <1 when a -8 — 0. For example, with the restriction p < 10 %, we see the
relative truncation error Rs0(1.5,3, 3.1, 3) < 0.001.

2.2.2 Asymptotic approximation of the normalizing constant using the Laplace’s method

It is also useful to consider an asymptotic approximation formula of the normalizing
constant ;S%_;(v,1,p). The approximation formula by the Laplace’s method (Bleistein
and Handelsman 1986, Ch 8.3, pages 331-340) is given by

p{l_a+(2v_l)ﬁ}/2(a_ﬁ) exp{ (“_ﬁ)pl/(‘x_ﬁ) }
(2m) P2 T (v)}

1Sg(v;1,p) (9)

This formula reduces to the asymptotic formula by Minka et al. (2003) when v=1 or
B =0 and that by Imoto (2014) when a =1. The proof and numerical investigation
about the formula (9) are given in Appendix A.1.

2.3 Recurrence relation for probabilities
The ECOMP (v, p, a, B) pmf has a simple recurrence relation given by
PX=k+1) pv+kf

=l ~ Sk DPX =kt D) =p(v+ K)PP(X = k) (10)

with P(X = 0) = [,S£.1(v; 1;p) ]”!. This will be useful for the computation of the prob-
abilities. Further using (10) we can see that the ECOMP(v, p, a, f5) distribution has a
longer (shorter) tail than the COM-NB(v, p, a) for a < (>)1 and a longer (shorter) tail
than the GCOMP(v, p, ) for B> (<)1.
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2.4 Exponential family
The pmf in (6) can also be expressed as

P(X = k) = exp|B log(v),—B logl'(v)-a logk! + k logp- log,S%_1(v; 1;p)] (11)

Which immediately implies that the ECOMP (v, p, a, f8) distribution belongs to the expo-
nential family with parameters (logp, a, 5) when v, is a nuisance parameter or when its
value is given.

2.5 Index of dispersion

The pmf of ECOMP (v, p, a, B) distribution in (6) can be seen as a weighted Poisson (p)
distribution with weight function w(x) = {T'(v + /(1 +x))* L. As such it will be over
(under) dispersed if w(x) in log-convex (log-concave). That is if ij log[w(x)]>2(<) 0. [See
theorem 4 of Kokonendji et al. 2008]

d? d?
:ﬁﬁ logF(v +x) + (1-a) g logli(l +x)2(<)0
> —(a-1 — >(<)0
ﬁ; v+x+k );(x+1+k)2 )

[On using result 6.4.10 page 260 from Abramowitz and Stegun, 1970].

Hence, ECOMP (v, p, a, ) is over dispersed (i) if a <1, =0 for all v (ii) if {a > 1, 5> 0}
or {#<1,5<0} when {0<v<l,f<a<f+1} or {v>1,a<1} and under dispersed (i)
if a>1, B<0 for all v (ii) for {«>1,5>0} or {a<1,5<0} if {0<v<l,a=2f+1} or
{v>1,a>1}.

As a particular cases of the above result, when =1, we can see that the COM-
NB (v, p, a) distribution always over dispersed for {0<v<1,1<a<2} or {v>1,a=
1} and under dispersed compared to COMP distribution for {0 <v<1, a >2}. Simi-
larly when a =1, the GCOMP(v, p, ) distribution is seen to be is over dispersed
for 0<f<1 and under dispersed for f<0. When v=1, we derive that COMP
(p,a - p) is over dispersed for a-f>1 under dispersed for a« - <1 and equi-
dispersed when a - f5=1. Finally, the new generalized NB distribution with pmf (7) is
over dispersed when y =1 (which is when it reduces to Negative binomial) and under dis-
persed if y > 1.

It can also be checked that ECOMP (v, p, a, f5) is over (under) dispersed for
azp>(£)0 wr.t. COM-NB (v, p, ) and w.r.t. GCOM-Poisson (v, p, f5) it is over
(under) dispersed for f<a<1 (1<fB<a).

2.6 Different formulations of ECOMP (v, p, a, B)
Two different formulations of the proposed distribution are presented in this section.

2.6.1 ECOMP (v, p, a, B) as a distribution from a queuing set up
Like the COM-Poisson distribution, the ECOMP (v, p, a, ) distribution can also be de-
rived as the probability of the system being in the k™ state for a queuing system with
state dependent service and arrival rate.

Consider a single server queuing system with state dependent (that is dependent
on the system state, k™ state means k number of units in the system) arrival rate
A= +kP)L, and state dependent service rate p;=k“, where, 1/ and 1/1 are
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respectively the normal mean service and mean arrival time for a unit when that
unit is the only one in the system; a and v are the pressure coefficients, reflect-
ing the degree to which the service and arrival rates of the system are affected
by the system state.

Proposition 1. Under the above set up where the arrival rate and the service rate in-
creases exponentially as queue lengthens (i.e. as k increases) the probability of the sys-
tem being in the k™ state is ECOMP v, pa, p).

Proof: See Appendix B.1

2.6.2 ECOMP (v, p, a, B) as exponential combination formulation
The general form of the exponential combination of two pmfs say f(x; 6;) and fo(x; 65)
is given by (Atkinson 1970)

{15 00)Y {2 0) Y /Y f 1 (61 F 5 (3 62)

This combining of the pmf was suggested by Cox (1961, 1962) for combining the two
hypotheses (5 =1, i.e. the distribution is f; and =0 that is the distribution is f;) in a
general model of which they would both be special cases. The inferences about S made
in the usual way and testing the hypothesis that the value of /5 is zero or one is equiva-
lent to testing for departures from one model in the direction of the other.

Proposition 2. ECOMP (v,p,a, ) distribution is an exponential combination NB
(v, 1) and COM-Poisson (y4, 6) distributions, with /1/3/41 B =p and a=6(1-p)+p.

Proof: See Appendix B.2.

From the above formulations it is clear that for ECOMP (v, p, a, f5), S close to zero
will indicate departure from COM-Poisson towards NB, while S close to one will indi-
cate the reverse. Thus ECOMP (v, p, a, ) can also be regarded as a natural extension
of COM-Poisson, and negative binomial distributions.

2.7 Log-concavity and modality
Proposition 3. The ECOMP (v, p, a, f5) has a log-concave pmf when {v>1,p>0,a = S}

Proof: See Appendix B.3.

From the above result the corresponding results of COM-NB (v, p, ) and GCOMP
(v, p, P) can be obtained as particular cases. That is COM-NB (v, p, a) is log-concave
when {v>1,p>0,a>1} and GCOMP (v, p, ) is log-concave when {v>1,p >0, 5<1}.

Following two important results follows as a consequence of log-concavity:

If{r=1,p>0,a>p} the ECOMP (v, p, a, f5) distribution is

> a strongly unimodal distribution
> has an increasing failure rate function

Using the recurrence relation of the probabilities in (10) it is observed that the
ECOMP (v, p, a, ) has

(i) @ non increasing pmf with a unique mode at X =0 if v p <1,
eg v=2,a=3,5=2, p should be less than 0.25 to have unique mode at X = 0.
(ii) a unique mode at X =k if K*/(v + k - P<p<(k+1)(v+kP
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eg v=2,a=3,5=2, p should be between 1.6875 and 2.560 to have unique mode
at X=3.

(iii) two modes at X =k and X=k-1if (v + k- 1)ﬁp = k” In particular the two modes
areat X=0and X=1if v/ p=1.
eg v=2,a=3,8=2, p should be equal to 4.408 to have two modes at X =5
and X =6.

Graphical illustrations of the above three examples are presented in the first plots of
Fig. 1. It is interesting to note that the distribution may be bimodal with one of the
mode always at zero as shown the last two plots in Fig. 1.

Proposition 4. ECOMP (v, p, a, ) has a log-convex pmf for {0<v<1,a=/}

Proof. See Appendix B.4.

Following important results follows as a consequence of log-convexity:

If {r<1,p>0,a=p} the ECOMP (v, p, a, ) distribution with pmf in (7)

> is Infinitely divisible (see Warde and Katti 1971) distribution, hence Discrete
Compound Poisson distribution. (see page 409 of Gémez-Déniz et al. 2011)

> has an decreasing failure rate function, hence increasing mean residual life function

> has an upper bound for variance as p ¥ (using result of page 410 of Gémez-Déniz
et al. 2011)

2.8 Moments
The ™ factorial moment E(X") = 4! of the ECOMP (v, p, a, f) is given by

M _ {(V)r}ﬁPr SEL(v+rr+1,p)

(l"!)a71 155_1(]/,1,[7)
AW P v r L1 r 4+ 1 p)
(r!)“_l ﬂFa—l(V; ]-7 17 ) 17 p) ’

where the second expression in terms of hypergeometric function is for the case when
a, 5 are both positive integers.

Since the ECOMP (v, p, a, ) distribution is a member of exponential family (see
Section 2.4), the mean is given by differentiating the logarithm of the normalizing con-
stant with respect to p. Hence an asymptotic approximation for the mean is obtained
by differentiating the logarithm of the function (9) as

Viap y Loat (v-1)f

P 2(a=p)

(12)

This function approximates the mean of the ECOMP (v, p, a, f8) distribution for
large p and small |a - f5|, where it is difficult to compute the approximation by
truncation. A numerical illustration of this asymptotic approximation is presented
in the Appendix A.2.
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3 Reliability characteristics and stochastic ordering
3.1 Survival and failure rate functions
The survival function is given by

St)=1-PX <t)=1

V
1 Vavl pk:O (

B tl{v)}/”k
=1 ,;Pﬂl(v11 ZO (kH™

Alternatively, S(¢) can also be expressed as

V), P 2Sha(v+1t1; £+ 1; p)

(£ 188.4(v,5 15 p)
(V)tpt ﬁ+1Fa—1(V+ta la t+ 17 t+ 17 L+ 1; p)

- (t!)“ ﬁFa—l(V; 17 17 Y 17 p)

S(t) =

The failure rate function is given by

PX=1t) 1 B 1
P(X2t) SSEa(v+t 1 t+1p) phF(v+t L t+1,t+1,- t+1; p),

where the second expression in terms of hypergeometric function is for the case when
a, 8 are positive integers.

3.2 Stochastic orderings
An rv X with pmf P(X = n) is said to be smaller than another rv Y pmf P(Y = n) in the like-
lihood ratio order that is X <. Y if P(Y = n)/P(X = n) increases in # over the union of the
supports of X and Y. Again X <, Y implies X is smaller than Y in the hazard rate order
and subsequently in the mean residual (MRL) life order (see Gupta et al. 2014).

Theorem 1. X ~ ECOMP (v, p, a, p) is smaller than Y ~ COM-NB (v, p, a) in the likeli-
hood ratio order i.e. X <. Y when < 1.

Proof: If X ~ECOMP (v, p, a, B) and Y ~ COM-NB (v, p, ), then

P(Y =n) 1-61844(v, 1, p)
PX=mn) {®).} 18i1(v, 1,p) -

This is clearly increasing in n as f<1 (Definition 1.C.1 of Chapter 1, Shaked and
Shanthikumar 2007 and Gupta et al. 2014). Hence the result is proved.

As an implication of theorem 1, we get X<, Y= X< yp Y, for f< 1.

Theorem 2. X ~ ECOMP (v, p, a, B) is smaller than Y ~GCOMP (v, p, p) in the likeli-
hood ratio order i.e. X <, Y when a > 1.

Proof: If X ~ECOM-NB (v, p, a, ) and Y ~ GCOMP (v, p, f5), then

PY=n) (n)*" 186,(v.1,p)
PX=n) (v} Shv,1,p)

This is clearly increasing in # as a>1 (Definition 1.C.1 of Chapter 1, Shaked and
Shanthikumar 2007 and Gupta et al. 2014). Hence the result is proved.
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As an implication of theorem 2, we get X<, Y= X< yz; Y, for a > 1.

4 Numerical examples
To fit the proposed distribution, we have to estimate the parameters (v, p, a, f5) in (6).
The maximum likelihood (ML) estimation is often used for fitting to real data, but the

log likelihood function of the proposed distribution

L(v,p, a, B) ﬁZf log(v —aZf logi! + logpz if ~N'log,S8 (v, 1,p) (13)

k
where f; is the observed frequency of i observed value(event), N = Z fi kis
=1
the highest observed value, has some local maximum points for some datasets, or
the likelihood equations do not always have unique solution. Therefore, we use

the profile likelihood estimation. We first consider the maximum likelihood esti-

mation by fixing the parameter v and finding the maximum point (ﬁv,ézv, BV) of

the function (13). The maximum point (ﬁv,&v,ﬁv) is uniquely determined because
the proposed distribution belongs to the exponential family when v is fixed. For
finding (ﬁv,ézv, /;’V> computationally, it is convenient to use some initial values.

The simple initial values can be obtained as follow. Putting ¢, = P(X =x + 1)/P(X = x)
and d, =log(c, ; 1/cx), where X is the rv following ECOMP (v, p, a, ) distribution, we
have the equation

logx—i—l logv+x+1

a d,

w00 (5) = () e a0 = | 513 %00
10gx+3 lOgv+x+1

For given v, we choose the integer k such that |A;(v)| # 0 and put

$1 k(V) 1 dx
’ =A
(at)) = ()
where P(X x) is substituted with f, in d,. Then we can obtain the initial values

(). @ (). B.)) for (e p) as

E(v)—{sl“v) sal) = $240) g (1) — 53 (0) and py(v) = MV),
k sk (v) otherwise k k vt DA

where [ is the lowest observed value (e.g. /=0 for neither censored nor truncated data).
These values are available even for the truncated version of ECOMP (v, p, a, ) distri-
bution. Then by studying the behavior of L(V, ﬁv,&v,/;’],) with v varying, we find the
range of v where the function will give the global maximum. For the range, the max-
imum point of the function (13) gives the ML estimates (f/, p,a, /;’)

By using this method, we fit the proposed distribution to three datasets and compare
with NB (r, p), COMP (6, p) COM-NB (v, p, a) and GCOMP (v, p, ). Simultaneously,
we fit Delaporte distribution, which is derived from the convolution of a NB (r, p) and

Poisson (1) rv, and some mixed Poisson distributions; mixing with generalized gamma
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distribution of Agarwal and Kalla (1996) with parameters (9, m, a, n), mixing with
generalized inverse Gaussian gamma distribution of Jorgensen (1982) with parameters
(x» 7, @, A), mixing with generalized exponential distribution of Ong and Lee (1986) with
parameters (v, a, d, ). These distributions are derived as the generalized negative
binomial distributions and used for long-tailed count data. The detailed studies are
given in Gupta and Ong (2005). Here we show only the best fitting distribution
among these distributions in Gupta and Ong (2005). The performances of various
distributions are compared using the y* goodness of fit and the Akaike Information
Criterion (AIC). Following Burnham and Anderson (2004) we look at the difference
A; = AIC; - AIC,,;, where AIC,,;, is the minimum of the AIC values of the all the fitted
model and AIC, is that of the i™ model. According to Burnham and Anderson (2004),
models having A; <2 had substantial support (evidence) and those in which 4 < A; have
considerably less support. For computing the y* goodness of fit statistics we group the
cells whose expected number is less than 5 such that the expected number of grouped cell
is not less than 5.

4.1 The spots in southern pine beetle

The first example is the frequency distribution of Corbet’s Malayan Buttery with zeros
(Corbet 1942). Corbet caught altogether 620 species, but he also estimated that the
total buttery fauna of the area contained 924 species, so that 304 species were missing
from the collection and treated as count zero. In this dataset, the counts more than 24

are grouped as 25+, so we use the log-likelihood function of the form
2
Zfi logP(X = i) + f55 logP(X225),
=0

where X is the rv of the fitted distribution.

Comparing the performance of the distributions presented in Table 1, we see that the
Delaporte distribution gives best and marginally better fit than the ECOMP distribution in
terms of AIC and x* goodness of fit but looking at the value A; suggests that the ECOMP
distribution also has substantial support (evidence) for the data. Both theses two distribu-
tions give much better fittings for the count 0, 1 and the tail part 25+ compared to the rest.

More over for it can be observed, the ML estimate @ of the COM-NB distribution

and ML estimate S of the GCOMP distribution show these two distributions reduce to
the negative binomial distribution, while the proposed ECOMP distribution does not
seem to reduce to the negative binomial distribution. Actually, the likelihood ratio test
for Hy: Negative binomial distribution (@ =f=1) Vs H;: ECOMP distribution (a =1 or
B #1) rejects the negative binomial distribution (p-value is 0.001). So the ECOMP
distribution brings in substantial improvement in fitting this data set over both COM-
NB and GCOMP distributions.

4.2 The spots in southern pine beetle

The second example is the frequency data of the number of spots (k) in southern pine
beetle, Dentroctonus frontails Zimmerman, (Coleopetra: Scolytidae), in Southeast
Texas (Lin 1985). Table 2 shows the fitting results and Poi-GE means the mixed
Poisson distribution with generalized exponential distribution. From y* goodness of fit
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Table 1 Distribution of Corbet’s Malayan Buttery with zeros (Corbet 1942)

Count Observed NB Delaporte COMP COMNB GCOMP ECOMP
0 304 31536 303.10 10493 31536 31536 304.97
1 18 9424 12328 9303 94.24 94.24 117.12
2 74 59.76 62.83 8247 5976 59.76 67.25
3 44 4458 4329 7311 4458 4458 4592
4 24 3574 3373 64.81 3574 3574 3451
5 29 29.85 2777 5745 29.85 2985 2757
6 22 2560 2361 5093 2560 2560 2294
7 20 2237 1051 4514 2237 2237 19.66
8 19 19.81 1810 4002 19.81 19.81 17.23
9 20 17.73 16.16 3547 17.73 17.73 1535
10 15 160 1457 3144 16.00 16.00 1386
11 12 1453 13.23 27.87 1453 1453 12,64
12 14 1327 12.09 2470 1327 1327 1163
13 6 12,18 11.10 21.90 12,18 1218 1077
14 12 11.23 10.24 1941 11.23 1123 10,04
15 6 1038 949 17.20 1038 1038 939
16 9 963 882 1525 963 963 883
17 9 896 821 1351 896 896 832
18 6 835 7.68 11.98 835 835 786
19 10 7.80 7.19 1062 7.80 7.80 745
20 10 7.30 674 941 7.30 730 707
21 1 6.84 634 834 6.84 6.84 6.73
22 5 642 597 7.39 642 642 640
23 3 604 563 6.55 604 6.04 6.10
24 3 569 532 581 569 569 582
25+ 119 11436 119.00 4527 11436 11436 11857
Total 924 924 924 924 924 924 924
AIC 451622 450840 4502116 451822 451822 451002
¥ 2850 19.46 66091 2850 2850 1857
p-value 020 062 0.00 0.15 0.15 061
MLEs V=03 F=0.26 — V=031 V=031 V=286
p =009 p =097 p =0.01 p=097  pH=097 p=126
A=0.15 4=08 a=100 — 4=-1.07
=100 pB=-1.3

and AIC, the GCOMP distribution gives the best fitting among fitted distributions.
However, a look at the value A; suggests that the ECOMP distribution gives equally

good fitting to the data. From the estimated parameters of the ECOMP distribution, we

can see that fitted ECOMP distribution reduces to the new generalization of NB distri-

bution given in equation (7) with estimated parameters v = 0.002, p = 0.69, y = 0.28.

Further, by virtue of proposition 2 in Section 2.6.2 and we can conclude that fitted
ECOMP distribution reduces to an exponential combination of NB (0.003, 1) and
Geometric (u) in the ratio 0.28:0.72, where A and g can be calculated using the formula

given in the Section 2.6.2.

Page 12 of 19
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Table 2 The number of spots in southern pine beetle (Lin 1985)

Count Observed  NB PoI-GE COMP COMNB GCOMP ECOMP

0 1169 116532 1168.98 92262 116856 1168.71 1169.00

1 144 169.40 14801 37344 15287 151.88 147.59

2 92 7891 8291 151.15 80.17 80,69 84.21

3 54 4518 5187 61.18 4976 50.13 52,00

4 29 28.28 3351 2476 32,60 3275 3317

5 18 1861 2193 1002 21.80 21.82 21.54

6 10 1265 1444 406 1468 1464 14.14

7 12 878 955 164 989 9.84 936

8 6 6.20 632 066 6.65 660 6.23

9 9 444 419 027 445 44 416

10 3 320 278 011 296 293 279

1 2 233 185 004 196 194 188

12 0 171 123 002 1.29 128 127

13 0 126 081 001 084 084 085

14 1 093 054 000 055 055 058

15 0 069 036 000 035 035 039

16 0 052 024 000 023 023 027

17 0 039 0.16 000 015 0.15 018

18 0 029 0.11 000 009 009 012

19 1 092 022 000 015 016 028

Total 1550 155000 1550.00 155000 155000 1550.00 1550.00

AIC 311728 311633 3518.85 311324 311299 311384

% 14.79 856 669.08 899 865 8.18

p-value 006 013 000 025 028 023

MLEs 7=018 ©7=008 6=000 ©=013 v=010 7 =0.002

p=079 p=059 p=040 p=103 p=098 p=069

B =203 _ a=115 — a=028
d =068 B =087 B=028
T=1.05

4.3 Borrowing library books

The third example shows the number of books that were borrowed k times (k> 1) from
the long loan collection at Sussex University over the period of a year (Burrell and Cane
1982). For fitting to this dataset, we consider the zero-truncation of each distribution.
Table 3 shows the fitting results. From x* goodness of fit and AIC, the zero-truncation
of the ECOMP distribution gives best fitting among fitted distributions. Studying the
values of A; suggest that the COM-NB distribution also has good support (evidence)
while rest of the models have considerably less support for the data.. Here we interpret
the size of queue in Section 2.6.1 as the popularity of books. Then, from the estimated
parameters of the ECOMP distribution, we see that new interest is hard to increase but
the popularity is hard to decrease for the book which is borrowed many times. This
might be because, according as a book is borrowed more times, there are fewer oppor-
tunities to borrow the book.
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Table 3 The number of books that were borrowed k times (Burrell and Cane 1982)

Count Observed  NB PoI-GE COMP COMNB GCOMP ECOMP

1 9647 9522.59 9557.15 936475 9604.38 9576221 964857

2 4351 459567 453889 4706.62 440132 445854 434137

3 2275 229639 229651 236550 231468 231193 229126

4 1250 1167.09 117955 118887 123123 1213.94 1244.90

5 663 599.12 608.51 597.51 643.23 63096 663.27

6 355 30961 31375 30031 327.22 32240 33949

7 154 16075 16173 15093 16173 16161 16546

8 72 83.76 8327 7586 7767 7945 76.51

9 37 4376 4282 38.12 36.28 3833 3354

10 14 2291 2200 19.16 16.50 18.16 1395

1 6 1202 11.28 963 7.32 846 551

12 2 631 578 484 317 387 207

13 0 332 296 243 134 175 074

14 1 389 328 246 093 137 056

Total 18827 18827.00 18827.00 18827.00 18827.00 18827.00 18827.00

AIC 5246194 5245314 5247222 5241470 5242275 5241167

X 51.96 3833 66.83 7.20 1475 237

p-value 000 000 0.00 051 006 094

MLEs 7 =081 v=027 0=000 V=001 v =001 v =230

p=05 p=038 p=050 p=118 p=093 pP=640

=178 — a=137 — G =-2.98
d=1.16 =074 B=-3.9
T=1.03

5 Concluding remarks
Extended Conway-Maxwell-Poisson distribution proposed here unifies the COM-NB
and GCOMP which were recently introduced to add more flexibility to the COM-
Poisson distribution. The proposed distribution with additional parameter has more

flexibility in terms of its tail behavior and dispersion level. Further it also arises from

queuing theory set up and as exponential combination of negative binomial and COM-

Poisson distribution and has many interesting properties. It is therefore envisaged that

ECOMP distribution has the potential in modeling varieties of count data.

Appendix

A. Approximations of the normalizing constant ,S%_;(v; 1;p) and the mean

A.1 Asymptotic approximation of the normalizing constant 15‘34 (v;1;p) using the

Laplace’s method

Defining i = v/—1, we have the identity for non-negative integers n and k

+

21

-

1 exp{e”~iznle " dz =

This leads to the identities

1

(n+k)!
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+
1 ) )
7 / exp{e”},SE_1 (v; L;pe®)dz = | Sh(v; 1;p) and
+i
1 ; ; _
o [ e =izt DHTO)Y S8 1) de = {10540 1)

From these two identities, we get the formula for integer values @ >0 and <0
LS Lp){T(m))P

1 By a-p-1 ] ) a7ﬁ71i21 apl
= ap1 / / eXp{ € +pe L<i=1 T —(v-1) zzl} dzydz, g
(2m) p A =1 =1
Changing the variables iz; = ix; + log p/(a — ) and then applying the Laplace’s method
for approximation of multiple integral, we obtain the formula (9).
The formula (9) has been derived for an integer values a >1 and - 8> 0, but numer-

ical studies suggest that it holds for 0 <a — <1 and p > 1, where it is difficult to com-
pute ,S£_;(v,1,p) by truncated approximation (8). The Table 4 gives the percentage

errors 100{156_1(1/; 1;p)=1SE 1, (v 1;p) }/1SB1,m (v; 1;p), with m = 18000 such that

R, (v, p, &, B) < 10~ ?%, where 1SB_1(v; 1;p) is the r.hs. of the formula (9)

A.2 Asymptotic approximation of the mean
A numerical illustration of the performance of the asymptotic approximation formula
of mean in equation (12) is provided in Table 5.

B. Proof of the propositions

B.1 Proof of proposition 1

Following Conway and Maxwell (1962), the system differential difference equations are
given by

Po(t + A) = (1-AvP A)Py(t) + p AP (¢) (14)
and

Table 4 The percentage errors for approximation (9) with §=2.5

v=05 v=15

p\a 26 2.7 2.8 29 30 26 2.7 2.8 29 30

1.0 37 2 -14 —24 =31 —88 -80 73 —68 =31
12 =57 —44 —42 —43 —44 =55 —61 -60 -58 —44
14 —49 -58 —54 =52 =51 =21 —42 —47 —48 =51
1.6 -8 =55 =57 =55 —54 -7 -28 -37 —40 -54
1.8 -2 -38 -54 =55 =55 -2 -18 —-28 =33 =55
20 -1 -18 —46 =52 —54 -1 =11 =22 -28 —54
2.2 0 -9 —34 -47 =51 0 -7 =17 =23 =51

24 0 =5 =23 —40 —47 0 =5 =13 =20 —47
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Table 5 The percentage errors for mean with =25 using the approximation formula in
equation (12)

v=05 v=15
p\a 26 2.7 238 29 3.0 26 27 238 29 30
10 —1055 —731 -575 —475 —403 107 78 64 55 48
12 -187 -290 -276 —249 —221 30 39 38 36 34
14 46 —40 -93 —107 —-106 5 18 23 24 24
16 1 42 2 —24 -35 1 8 14 16 17
18 0 28 36 19 6 0 3 8 11 13
20 0 7 35 35 27 0 1 5 8 10
22 0 1 22 35 34 0 1 3 6 7
24 0 0 " 29 35 0 -0 2 4 6
Pi(t+ A) = (I—A (v + k)P A-p k™ A)Pk(t) F A+ k-1 AP ()
+p (k+1)" AP (1)) k=1,2,-
(15)

Let A/u = p. Then from (14) and (15) we get
{Po(t + A)=Py(t)} /A = —up VP Po(t) + uPy1(t) and
{Pr(t+ A)-Pi(t)} /A = pp (v+ k-1 Pry(£)-p (p (v + k) + k) Pi(t)
+/’L(k+ l)aP/H-l(t))ak = 1527

Now as A — 0 we get

o/ (1) } = ~upvPPy(t) + uPy(t) and

P () = up (v -+ k=1 Pea(€)=p (p (v + K + K ) Pa(t) + e (k + 1) Prga (8),
k=1,2,-

Assuming a steady state (i.e. P,{(t) = 0 for all k) we get

Py(t) = pvP Py(t) and

Pen(t) = k* (v+k)f (v+k-1)

mpk(t) (k+1)“p k( )+prk+l( ),k: 1,2,

Putting k =1 we get

(v+1)

Py(t) = —Pl(t)—

= ? VﬁPPO(t)—

vy,
@i°

v B
Po(t) = X2t 2 p o)

Similarly, for k =2 we get
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Py(e) = (2 . Z)ﬁp)m(t) LD

3¢ 3¢ 3%
& (pa 2B\ fu(ya 18 s
- (;—( +2 p>{ om0 + T )

_ v+ 1) +2))
(31)°

P> Po(t)

(@)*

Since we have assumed a steady state (i.e. P,/((t) = 0 for all k) Pi(t) can be replaced by P.

o B
In general, Pk(t):{( k} p* Py (t), where Py(t) = Z{{ )i} }

B.2 Proof of proposition 2
The probability function resulting from the exponential combination of NB (1) and
COM-Poisson (4, 0) is given by

(e (i /(S i)

{(v }W Ay /Z{ W () /
PPN 6(1 -B)+B kl) =

substituting A4’ "# =p and a = 6(1 - f) + 8
This is the pmf of ECOMP (v, p, «, j3).

B.3 Proof of proposition 3
For a distribution to be log-concave we must have (see Gupta et al. 1997)

Ay(t) = P(t + 1)/P(£)-P(t + 2) /P(t + 1) > 0.

(0P (142)7 - (v+t+1)P (1+1)°

For ECOMP (v, p, &, B), An(t) = (+10)" (t+2)"

v+t +2)"-(v+t+ 1Pt +1)°
(t+1)%(t+2)"

S+ Pt +2)-(v+t+1Pt+1)">0 since (t+1)%(t+2)">0,p>0

S+ Pt +2) " -(v+t+ 1Pt +1)*>0

Butfor v>1, (¢+1)/t+2)<(v+1t)/(v+t+1)

S{(t+1)/E+2)) <{v+0)/v+t+ D)} <{(v+t)/(v+t+1)}¥ since axp

S{(t+1)/E+ 2} {(v+e+1)/(v+ )} <1

>1-{(t+1)/(t+2)}* {(v+t+1)/(v+ )} >0

S+t (t+2)-(v+t+ 1Pt +1)" >0

Now p >0

B.4 Proof of proposition 4
ECOMP (v, p, a, f5) has a log-convex probability mass function if A y(t) <0. That is
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v+t (t+2)" < v+ t4+ 1Pt +1)°
+2)/t+ DY <{(v+t+1)/(v+1)}f

=>{(¢
S{1+1/E+1D)} < {14+1/(v+0))f

Since a > f3 the inequality in (16) cannot hold for v > 1.
Now for 0 < v <1 the inequality in (16) implies

sa/f<log(l+ 1/t +v)/log(l+ 1/t +1)=1

= a/p < 1. Which implies a = f3 since a = f5.
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