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Abstract

A new four parameter extended Conway-Maxwell-Poisson (ECOMP) distribution
which unifies the recently proposed COM-Poisson type negative binomial (COM-NB)
distribution [Chakraborty, S. and Ong, S. H. (2014): A COM-type Generalization of the
Negative Binomial Distribution, Accepted in Communications in Statistics-Theory and
Methods] and the generalized COM-Poisson (GCOMP) distribution [Imoto, T. :(2014) A
generalized Conway-Maxwell-Poisson distribution which includes the negative binomial
distribution, Applied Mathematics and Computation, 247, 824–834] is proposed. The
additional parameter allows this distribution to have longer (shorter) tail compared
to COM-NB and GCOMP. The proposed distribution can be formulated as an
exponential combination of negative binomial and COM-Poisson distribution and
also arises from a queuing system with state dependent arrival and service rates and
belongs to exponential family when one of the parameter is considered as nuisance.
Important distributional, reliability and stochastic ordering properties along with
asymptotic approximations for the normalizing constant and the mean of this
distribution is investigated. Method of parameter estimation and three comparative
data fitting applications are also discussed.

Keyword: COM-Poisson, COM-Negative binomial, Generalized COM-Poisson, State
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1 Introduction
Recently, two new generalizations of the well known COM-Poisson (Conway and

Maxwell 1962) was proposed. One by Chakraborty and Ong (2014) known as the

COM-Negative binomial distribution and the other by Imoto (2014) referred to as the

generalized COM-Poisson Distribution. In this section we briefly introduce these two

distributions along with a hypergeometric type series which is used in the sequel.

COM-Poisson type negative binomial distribution: Chakraborty and Ong (2014)

proposed a new COM-Poisson type generalization of negative binomial distribution

that includes some well-known distributions including COM-Poisson, Negative

Binomial (page 208–250, Chapter 5, Johnson et al. 2005), as particular case and

Bernoulli (page 108, Chapter 3, Johnson et al. 2005), COM-Poisson as limiting cases
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among others. This distribution is log-concave and flexible enough to model under,

equi- and over dispersed count data.

A random variable (rv) X is said to follow the COM - Poisson type Negative Binomial

distribution with parameters (v, p, α) [COM-NB(v, p, α)] if its pmf is given by

P X ¼ kð Þ ¼ νð Þk pk= k!ð Þα1Ha 1 ν; 1; pð Þg; k ¼ 0; 1; 2;⋯
� ð1Þ

Where 1H ν; 1; pð Þ ¼
X∞
k¼0

νð Þk pk= k !ð Þα ð2Þ

The distribution is defined in the parameter space

ΘCOM−NB ¼ ν > 0; p > 0; α > 1f g∪ ν > 0; 0 < p < 1; α ¼ 1f g:
When α is a positive integer, 1Hα − 1(ν; 1; p) can be expressed as a particular

case of generalized hypergeometric series mFn a1; a2;⋯; am; b1; b2;⋯; bm; zð Þ ¼X∞
k¼0

a1ð Þk a2ð Þk⋯ amð Þk
b1ð Þk b2ð Þk⋯ bnð Þk

zk

k !
as 1Fα − 1(ν; 1, 1,⋯, 1; p).

Generalized COM-Poisson distribution: Imoto (2014) proposed another

generalization where an rv X is said to follow the GCOM-Poisson distribution with pa-

rameters (v, p, β) that is GCOMP (v, p, β) if its pmf is given by

P X ¼ kð Þ ¼ Γ νþ kð Þf gβ
C β; ν; pð Þ

pk

k!
ð3Þ

Where C β; ν; pð Þ ¼
X∞
k¼0

Γ νþ kð Þf gβ
k!

pk ð4Þ

The distribution is defined in the parameter space

ΘGCOMP ¼ ν > 0; p > 0; β < 1f g∪ ν > 0; 0 < p < 1; β ¼ 1f g:

A hypergeometric type series: We introduce the series

mS
β
a a1; a2;⋯; am; b; pð Þ ¼

X∞
k¼0

a1ð Þk
� �β

a2ð Þk⋯ amð Þk
bð Þk

� �α pk

k !
;

where (a)k = a(a + 1)⋯ (a + k − 1) = Γ(a + k)/Γa is the Pochhammer’s notation (see

Johnson et al. 2005, chapter 1, page 2). The series converges if (i) for any finite p,

β +m − 2 < α or (ii) |p| < 1, β +m − 2 < α. For α, β and m all positive integers, it re-

duces to a particular case of the generalized hypergeometric function β +m − 1Fα(a1,

a1,⋯, a1, a2,⋯, am; b, b,⋯, b; p). With this notation we haveX∞
k¼0

νð Þk
� �β

pk= k !ð Þα ¼ 1S
β
a 1 ν; 1; pð Þ ¼ βFa 1 ν; 1; 1;⋯; 1; pð Þ ð5Þ

Some important special cases of 1S
β
a 1 ν; 1; pð Þ are

i. 1S
1
a 1 ν; 1; pð Þ ¼ 1Ha 1 ν; 1; pð Þ [Chakraborty and Ong, 2014]

ii. 1S
β
0 ν; 1; pð Þ ¼ C β; ν; pð Þ= Γνð Þβ [Imoto 2014]

iii. 1S
1
0 ν; 1; pð Þ ¼ 1−pð Þ−ν [geometric series]
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iv. 1S
β
a 1 1; 1; pð Þ ¼ Z p; α−βð Þ [Conway and Maxwell 1962]

v. 1S
y
y 1; 1; pð Þ ¼ exp pð Þ

Some important limiting cases of 1S
β
a 1 ν; 1; pð Þ are

vi. lim
α→∞ 1S

β
a 1 ν; 1; pð Þ ¼ 1þ νβp:

vii. lim
α→∞ 1S

β
a 1 ν; 1; pð Þ ¼

X∞
k¼0

λk= k!ð Þα ¼ Z λ; αð Þ, where νβp = λ is finite positive.

In the present article we propose a natural four parameter extension of the

COM-Poisson distribution which includes the recently introduced COM-NB and

GCOM-Poisson distributions as special cases. This new distribution with additional

parameters is more flexible in terms of tail length and dispersion index. The definition

of the proposed distribution along with some of its important distributional properties are

presented in the Section 2. Reliability and stochastic ordering results are discussed in

Section 3. In Section 4 we presented applications of the proposed distribution by

considering three real life data sets. Concluding remarks is provided in the Section 5

which if followed by an appendix containing the proofs of the results and propositions in

the article.

2 Extended COM-Poisson (ECOMP) distribution
Here we introduce a new distribution that unifies both the COM-NB and GCOMP

distributions.

Definition 1. An rv X is said to follow the extended COM-Poisson distribution with

parameters (v, p, α, β) [ECOMP (v, p, α, β)] iff its pmf is given by

P X ¼ kð Þ ¼ νð Þk
� �β

1S
β
a 1 ν; 1; pð Þ

pk

k!ð Þα ¼
Γ νþ kð Þf gβ

Γνð Þβ1Sβ
a 1 ν; 1; pð Þ

pk

k!ð Þα ð6Þ

The distribution is defined in the parameter space

ΘE−COM ¼ ν≥0; p > 0; α > βf g∪ ν > 0; 0 < p < 1; α ¼ βf g:

It may be noted that unlike in the COM-NB distribution where the parameter

α ≥ 1 and in the GCOMP distribution where the parameter β ≤ 1, in the ECOMP

distribution these two parameters can be either positive or negative with the re-

striction of α ≥ β.

Particular cases: The ECOMP (ν, p, α, β) distribution reduces to COM-NB (ν, p, α)

for β = 1, to GCOMP (ν, p, β) for α = 1, to COMP (p, α − β) for ν = 1, to COMP (p, α) for

β = 0, to Poisson (p) for ν = 1, α = β + 1, also to Poisson (p) for β = 0, α = 1, to NB (ν, p)

for α = β = 1 and to a new generalization of NB(NGNB) distribution when α = β = γ with

pmf

P X ¼ kð Þ ¼ νþ k−1
k

� �γ

pk=1S
y
y 1 ν; 1; pð Þ ð7Þ

For 0 < ν ≤ 1, the distribution in (7) is log-convex as will be seen in proposition 4 in

the Section 2.7.
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2.1 Shape of the pmf

It is observed from the plots of the pmf of the ECOMP(v, p, α, β) distribution for differ-

ent values of the parameters in Fig. 1, that the distribution is very flexible and can be

non increasing with mode at zero, unique non zero mode, two modes and also bimodal

with one mode always at zero.

2.2 Approximations of the normalizing constant

2.2.1 Approximation using truncation of the series

The normalizing constant 1S
β
a 1 ν; 1; pð Þ of the ECOMP(v, p, α, β) distribution is not

expressed in a closed form and includes the summation of infinite series. Therefore, we
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need approximations of this constant to compute the pmf and moments of the distri-

bution numerically.

A simple approximation is to truncate the series, that is

1S
β
a 1;m ν; 1; pð Þ ¼

Xm
k¼0

νð Þk
� �β
k !ð Þα pk ; ð8Þ

where m is an integer chosen such that εm = (ν −m + 1)βp/mα < 1. The relative

truncation error is then given by the expression Rm(ν, p, α, β) ¼
1S

β
a 1 ν; 1; pð Þ−1S

β
a 1;m ν; 1; pð Þg=1S β

a 1;m ν; 1; pð Þ :�
Then the relative error about the

pmf is give by {Pm(k) − P(k)}/P(k), where P(k) is given by the right hand side (r.h.s.) of

equation (6) in Section 2 and Pm(k) is given by the r.h.s. of (6) with 1S
β
a 1 ν; 1; pð Þ

substituted by 1S
β
a 1;m ν; 1; pð Þ. The upper bound of the relative truncation error is then

found to be

Rm ν; p; α; βð Þ < νð Þmþ1

� �β
pmþ1

mþ 1ð Þ!f gα1Sβ
a 1;m ν; 1; pð Þ

X∞
k¼0

εkm ¼ νð Þmþ1

� �β
pmþ1

1−εmð Þ mþ 1ð Þ!f gα1Sβ
a 1;m ν; 1; pð Þ

For α − β ≥ 1, this truncated approximation is good because εm =O(1/m) and

thus, the truncation point m is not large. However, for 0 < α − β < 1 and p > 1, the

truncation point become too large to compute the approximation. For example,

when ν = 1.5, p = 3, α = 3.1, β = 3, m has to be over 50,000. This is not practicable.

To avoid this difficulty it is useful to make a restriction for the parameter p such

that p < 1 when α − β→ 0. For example, with the restriction p < 10α − β, we see the

relative truncation error R50(1.5, 3, 3.1, 3) < 0.001.

2.2.2 Asymptotic approximation of the normalizing constant using the Laplace’s method

It is also useful to consider an asymptotic approximation formula of the normalizing

constant 1S
β
a 1 ν; 1; pð Þ . The approximation formula by the Laplace’s method (Bleistein

and Handelsman 1986, Ch 8.3, pages 331–340) is given by

1S
β
a v; 1; pð Þ≈p

1−αþ 2ν−1ð Þβg=2ðα−βf Þ exp α−βð Þp1= α−βð Þ� �
2πð Þ α−β−1ð Þ=2 ffiffiffiffiffiffiffiffi

α−β
p

Γ vð Þf gβ
ð9Þ

This formula reduces to the asymptotic formula by Minka et al. (2003) when ν = 1 or

β = 0 and that by Imoto (2014) when α = 1. The proof and numerical investigation

about the formula (9) are given in Appendix A.1.

2.3 Recurrence relation for probabilities

The ECOMP (ν, p, α, β) pmf has a simple recurrence relation given by

P X ¼ k þ 1ð Þ
P X ¼ kð Þ ¼ p νþ kð Þβ

k þ 1ð Þα ⇒ k þ 1ð ÞαP X ¼ k þ 1ð Þ ¼ p νþ kð ÞβP X ¼ kð Þ ð10Þ

with P X ¼ 0ð Þ ¼ 1S
β
a 1 ν; 1; pð Þ �−1�

. This will be useful for the computation of the prob-

abilities. Further using (10) we can see that the ECOMP(v, p, α, β) distribution has a

longer (shorter) tail than the COM-NB(v, p, α) for α < (>)1 and a longer (shorter) tail

than the GCOMP(v, p, β) for β > (<)1.
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2.4 Exponential family

The pmf in (6) can also be expressed as

P X ¼ kð Þ ¼ exp β log νð Þk−β logΓ νð Þ−α logk!þ k logp− log1S
β
a 1 ν; 1; pð Þ �� ð11Þ

Which immediately implies that the ECOMP (ν, p, α, β) distribution belongs to the expo-

nential family with parameters ( log p, α, β) when v, is a nuisance parameter or when its

value is given.

2.5 Index of dispersion

The pmf of ECOMP (ν, p, α, β) distribution in (6) can be seen as a weighted Poisson (p)

distribution with weight function w(x) = {Γ(ν + x)}β/(Γ(1 + x))α − 1. As such it will be over

(under) dispersed if w(x) in log-convex (log-concave). That is if d2

dx2 log w xð Þ½ �≥ ≤ð Þ0. [See
theorem 4 of Kokonendji et al. 2008]

⇒β
d2

dx2
logΓ νþ xð Þ þ 1−αð Þ d2

dx2
logΓ 1þ xð Þ≥ ≤ð Þ0

⇒β
X
k≥0

1

νþ xþ kð Þ2− α−1ð Þ
X
k≥0

1

xþ 1þ kð Þ2≥ ≤ð Þ0

[On using result 6.4.10 page 260 from Abramowitz and Stegun, 1970].

Hence, ECOMP (ν, p, α, β) is over dispersed (i) if α < 1, β ≥ 0 for all v (ii) if {α ≥ 1, β > 0}
or {α < 1, β < 0} when {0 < ν ≤ 1, β ≤ α ≤ β + 1} or {ν > 1, α ≤ 1} and under dispersed (i)

if α ≥ 1, β < 0 for all v (ii) for {α ≥ 1, β > 0} or {α < 1, β < 0} if {0 < ν ≤ 1, α ≥ β + 1} or

{ν > 1, α ≥ 1}.

As a particular cases of the above result, when β = 1, we can see that the COM-

NB (ν, p, α) distribution always over dispersed for {0 < ν ≤ 1, 1 ≤ α < 2} or {ν > 1, α =

1} and under dispersed compared to COMP distribution for {0 < ν ≤ 1, α ≥ 2}. Simi-

larly when α = 1, the GCOMP(v, p, β) distribution is seen to be is over dispersed

for 0 < β ≤ 1 and under dispersed for β < 0. When ν = 1, we derive that COMP

(p, α − β) is over dispersed for α − β > 1 under dispersed for α − β < 1 and equi-

dispersed when α − β = 1. Finally, the new generalized NB distribution with pmf (7) is

over dispersed when γ = 1 (which is when it reduces to Negative binomial) and under dis-

persed if γ > 1.

It can also be checked that ECOMP (v, p, α, β) is over (under) dispersed for

α ≥ β > (≤)0 w.r.t. COM-NB (v, p, α) and w.r.t. GCOM-Poisson (v, p, β) it is over

(under) dispersed for β ≤ α < 1 (1 < β ≤ α).

2.6 Different formulations of ECOMP (v, p, α, β)

Two different formulations of the proposed distribution are presented in this section.

2.6.1 ECOMP (v, p, α, β) as a distribution from a queuing set up

Like the COM-Poisson distribution, the ECOMP (v, p, α, β) distribution can also be de-

rived as the probability of the system being in the kth state for a queuing system with

state dependent service and arrival rate.

Consider a single server queuing system with state dependent (that is dependent

on the system state, kth state means k number of units in the system) arrival rate

λk = (ν + k)βλ, and state dependent service rate μk = k αμ , where, 1/μ and 1/λ are
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respectively the normal mean service and mean arrival time for a unit when that

unit is the only one in the system; α and v are the pressure coefficients, reflect-

ing the degree to which the service and arrival rates of the system are affected

by the system state.

Proposition 1. Under the above set up where the arrival rate and the service rate in-

creases exponentially as queue lengthens (i.e. as k increases) the probability of the sys-

tem being in the kth state is ECOMP (v, p, α, β).

Proof: See Appendix B.1

2.6.2 ECOMP (v, p, α, β) as exponential combination formulation

The general form of the exponential combination of two pmfs say f1(x; θ1) and f2(x; θ2)

is given by (Atkinson 1970)

f 1 x; θ1ð Þf gβ f 2 x; θ2ð Þf g1−β=
X

f 1 x; θ1ð Þβf 2 x; θ2ð Þ1−β

This combining of the pmf was suggested by Cox (1961, 1962) for combining the two

hypotheses (β = 1, i.e. the distribution is f1 and β = 0 that is the distribution is f2) in a

general model of which they would both be special cases. The inferences about β made

in the usual way and testing the hypothesis that the value of β is zero or one is equiva-

lent to testing for departures from one model in the direction of the other.

Proposition 2. ECOMP (ν, p, α, β) distribution is an exponential combination NB

(v, λ) and COM-Poisson (μ, θ) distributions, with λβμ1 − β = p and α = θ(1 − β) + β.

Proof: See Appendix B.2.

From the above formulations it is clear that for ECOMP (v, p, α, β), β close to zero

will indicate departure from COM-Poisson towards NB, while β close to one will indi-

cate the reverse. Thus ECOMP (v, p, α, β) can also be regarded as a natural extension

of COM-Poisson, and negative binomial distributions.

2.7 Log-concavity and modality

Proposition 3. The ECOMP (v, p, α, β) has a log-concave pmf when {ν > 1, p > 0, α ≥ β}

Proof: See Appendix B.3.

From the above result the corresponding results of COM-NB (v, p, α) and GCOMP

(v, p, β) can be obtained as particular cases. That is COM-NB (v, p, α) is log-concave

when {ν > 1, p > 0, α ≥ 1} and GCOMP (v, p, β) is log-concave when {ν > 1, p > 0, β ≤ 1}.

Following two important results follows as a consequence of log-concavity:

If {ν ≥ 1, p > 0, α > β} the ECOMP (v, p, α, β) distribution is

➢ a strongly unimodal distribution

➢ has an increasing failure rate function

Using the recurrence relation of the probabilities in (10) it is observed that the

ECOMP (ν, p, α, β) has

(i) a non increasing pmf with a unique mode at X = 0 if νβ p < 1,

e.g. ν = 2, α = 3, β = 2, p should be less than 0.25 to have unique mode at X = 0.

(ii) a unique mode at X = k if kα/(ν + k − 1)β < p < (k + 1)α/(ν + k)β
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e.g. ν = 2, α = 3, β = 2, p should be between 1.6875 and 2.560 to have unique mode

at X = 3.

(iii) two modes at X = k and X = k − 1 if (ν + k − 1)β p = kα. In particular the two modes

are at X = 0 and X = 1 if νβ p = 1.

e.g. ν = 2, α = 3, β = 2, p should be equal to 4.408 to have two modes at X = 5

and X = 6.

Graphical illustrations of the above three examples are presented in the first plots of

Fig. 1. It is interesting to note that the distribution may be bimodal with one of the

mode always at zero as shown the last two plots in Fig. 1.

Proposition 4. ECOMP (v, p, α, β) has a log-convex pmf for {0 < ν ≤ 1, α = β}

Proof. See Appendix B.4.

Following important results follows as a consequence of log-convexity:

If {ν ≤ 1, p > 0, α = β} the ECOMP (v, p, α, β) distribution with pmf in (7)

➢ is Infinitely divisible (see Warde and Katti 1971) distribution, hence Discrete

Compound Poisson distribution. (see page 409 of Gómez-Déniz et al. 2011)

➢ has an decreasing failure rate function, hence increasing mean residual life function

➢ has an upper bound for variance as p νβ (using result of page 410 of Gómez-Déniz

et al. 2011)

2.8 Moments

The rth factorial moment E(X[r]) = μ[r] of the ECOMP (v, p, α, β) is given by

μ r½ � ¼ νð Þr
� �β

pr

r !ð Þα−1
1S β

a 1 νþ r; r þ 1; pð Þ
1Sβ

a 1 ν; 1; pð Þ

¼ νð Þr
� �β

pr

r !ð Þα−1
βFa 1 νþ r ; r þ 1; r þ 1;⋯; r þ 1; pð Þ

βFa 1 ν; 1; 1;⋯; 1; pð Þ ;

where the second expression in terms of hypergeometric function is for the case when

α, β are both positive integers.

Since the ECOMP (v, p, α, β) distribution is a member of exponential family (see

Section 2.4), the mean is given by differentiating the logarithm of the normalizing con-

stant with respect to p. Hence an asymptotic approximation for the mean is obtained

by differentiating the logarithm of the function (9) as

p
1= α−βð Þ þ 1−αþ 2ν−1ð Þβ

2 α−βð Þ : ð12Þ

This function approximates the mean of the ECOMP (v, p, α, β) distribution for

large p and small |α − β|, where it is difficult to compute the approximation by

truncation. A numerical illustration of this asymptotic approximation is presented

in the Appendix A.2.
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3 Reliability characteristics and stochastic ordering
3.1 Survival and failure rate functions

The survival function is given by

S tð Þ ¼ 1−P X < tð Þ ¼ 1−
1

1Sβ
a 1 ν; ; 1 ; pð Þ

Xt−1
k¼0

νð Þk
� �β

pk

k!ð Þα

¼ 1−
1

βFa 1 ν; 1; 1;⋯; 1; pð Þ
Xt−1
k¼0

νð Þk
� �β

pk

k!ð Þα :

Alternatively, S(t) can also be expressed as

S tð Þ ¼ νð Þt pt
t !ð Þα

2S β
a 1 νþ t; 1; t þ 1; pð Þ

1Sβ
a 1 ν; ; 1 ; pð Þ

¼ νð Þt pt
t !ð Þα

βþ1Fa 1 νþ t; 1; t þ 1; t þ 1;⋯; t þ 1; pð Þ
βFa 1 ν; 1; 1;⋯; 1; pð Þ :

The failure rate function is given by

r tð Þ ¼ P X ¼ tð Þ
P X≥tð Þ ¼ 1

2Sβ
a 1 νþ t; 1; t þ 1; pð Þ ¼

1

βþ1Fa νþ t; 1; t þ 1; t þ 1;⋯; t þ 1; pð Þ;

where the second expression in terms of hypergeometric function is for the case when

α, β are positive integers.

3.2 Stochastic orderings

An rv X with pmf P(X = n) is said to be smaller than another rv Y pmf P(Y = n) in the like-

lihood ratio order that is X ≤ lr Y if P(Y = n)/P(X = n) increases in n over the union of the

supports of X and Y. Again X ≤ lr Y implies X is smaller than Y in the hazard rate order

and subsequently in the mean residual (MRL) life order (see Gupta et al. 2014).

Theorem 1. X ~ ECOMP (ν, p, α, β) is smaller than Y ~ COM-NB (ν, p, α) in the likeli-

hood ratio order i.e. X ≤ lr Y when β < 1.

Proof: If X ~ ECOMP (v, p, α, β) and Y ~ COM-NB (v, p, α), then

P Y ¼ nð Þ
P X ¼ nð Þ ¼ νð Þn

� �1−β 1S β
a 1 ν; 1; pð Þ

1S1a 1 ν; 1; pð Þ :

This is clearly increasing in n as β < 1 (Definition 1.C.1 of Chapter 1, Shaked and

Shanthikumar 2007 and Gupta et al. 2014). Hence the result is proved.

As an implication of theorem 1, we get X ≤ hr Y⇒ X ≤MRLY, for β < 1.

Theorem 2. X ~ ECOMP (v, p, α, β) is smaller than Y ~GCOMP (v, p, β) in the likeli-

hood ratio order i.e. X ≤lr Y when α > 1.

Proof: If X ~ ECOM-NB (v, p, α, β) and Y ~GCOMP (v, p, β), then

P Y ¼ nð Þ
P X ¼ nð Þ ¼

n !ð Þα−1
Γνð Þβ

1S β
a 1 ν; 1; pð Þ

1S
β
0 ν; 1; pð Þ

:

This is clearly increasing in n as α > 1 (Definition 1.C.1 of Chapter 1, Shaked and

Shanthikumar 2007 and Gupta et al. 2014). Hence the result is proved.
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As an implication of theorem 2, we get X ≤ hr Y⇒ X ≤MRLY, for α > 1.

4 Numerical examples
To fit the proposed distribution, we have to estimate the parameters (v, p, α, β) in (6).

The maximum likelihood (ML) estimation is often used for fitting to real data, but the

log likelihood function of the proposed distribution

L ν; p; α; βð Þ ¼ β
Xk
i¼0

f i log νð Þi−α
Xk
i¼0

f i logi!þ logp
Xk
i¼0

i f i−N log1S
β
a 1 ν; 1; pð Þ ð13Þ

where fi is the observed frequency of ith observed value(event), N ¼
Xk
i¼1

f i , k is

the highest observed value, has some local maximum points for some datasets, or

the likelihood equations do not always have unique solution. Therefore, we use

the profile likelihood estimation. We first consider the maximum likelihood esti-

mation by fixing the parameter v and finding the maximum point p̂ν; α̂ν; β̂ν

� 	
of

the function (13). The maximum point p̂ν; α̂ν; β̂ν

� 	
is uniquely determined because

the proposed distribution belongs to the exponential family when v is fixed. For

finding p̂ν; α̂ν; β̂ν

� 	
computationally, it is convenient to use some initial values.

The simple initial values can be obtained as follow. Putting cx = P(X = x + 1)/P(X = x)

and dx = log(cx + 1/cx), where X is the rv following ECOMP (ν, p, α, β) distribution, we

have the equation

Ax vð Þ α
β

� �
¼ dx

dxþ1

� �
; where Ax vð Þ ¼

log
xþ 1
xþ 2

log
vþ xþ 1
vþ x

log
xþ 2
xþ 3

log
vþ xþ 2
vþ xþ 1

0B@
1CA:

For given v, we choose the integer k such that |Ak(v)| ≠ 0 and put

s1;k vð Þ
s2;k vð Þ

� �
¼ Ak vð Þ−1 dk

dkþ1

� �
where P(X = x) is substituted with fx in dx. Then we can obtain the initial values

pek vð Þ; αek vð Þ; βek vð Þ
� 	

for (p, α, β) as

αek vð Þ ¼ s1;k vð Þ s1;k vð Þ > s2;k vð Þ
s2;k vð Þ otherwise

; βek vð Þ ¼ s2;k vð Þ and pel vð Þ ¼ l þ 1ð Þ αk vð Þe
vþ lð Þ βk vð Þe ;

(

where l is the lowest observed value (e.g. l = 0 for neither censored nor truncated data).

These values are available even for the truncated version of ECOMP (v, p, α, β) distri-

bution. Then by studying the behavior of L ν; p̂ν; α̂ν; β̂ν

� 	
with v varying, we find the

range of v where the function will give the global maximum. For the range, the max-

imum point of the function (13) gives the ML estimates ν̂; p̂; α̂; β̂
� 	

.

By using this method, we fit the proposed distribution to three datasets and compare

with NB (r, p), COMP (θ, p) COM-NB (v, p, α) and GCOMP (v, p, β). Simultaneously,

we fit Delaporte distribution, which is derived from the convolution of a NB (r, p) and

Poisson (λ) rv, and some mixed Poisson distributions; mixing with generalized gamma
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distribution of Agarwal and Kalla (1996) with parameters (δ,m, α, n), mixing with

generalized inverse Gaussian gamma distribution of Jorgensen (1982) with parameters

(χ, η, ω, λ), mixing with generalized exponential distribution of Ong and Lee (1986) with

parameters (v, a, d, β). These distributions are derived as the generalized negative

binomial distributions and used for long-tailed count data. The detailed studies are

given in Gupta and Ong (2005). Here we show only the best fitting distribution

among these distributions in Gupta and Ong (2005). The performances of various

distributions are compared using the χ2 goodness of fit and the Akaike Information

Criterion (AIC). Following Burnham and Anderson (2004) we look at the difference

Δi =AICi −AICmin where AICmin is the minimum of the AIC values of the all the fitted

model and AICi is that of the ith model. According to Burnham and Anderson (2004),

models having Δi ≤ 2 had substantial support (evidence) and those in which 4 ≤Δi have

considerably less support. For computing the χ2 goodness of fit statistics we group the

cells whose expected number is less than 5 such that the expected number of grouped cell

is not less than 5.

4.1 The spots in southern pine beetle

The first example is the frequency distribution of Corbet’s Malayan Buttery with zeros

(Corbet 1942). Corbet caught altogether 620 species, but he also estimated that the

total buttery fauna of the area contained 924 species, so that 304 species were missing

from the collection and treated as count zero. In this dataset, the counts more than 24

are grouped as 25+, so we use the log-likelihood function of the form

X24
i¼0

f i logP X ¼ ið Þ þ f 25 logP X≥25ð Þ;

where X is the rv of the fitted distribution.

Comparing the performance of the distributions presented in Table 1, we see that the

Delaporte distribution gives best and marginally better fit than the ECOMP distribution in

terms of AIC and χ2 goodness of fit but looking at the value Δi suggests that the ECOMP

distribution also has substantial support (evidence) for the data. Both theses two distribu-

tions give much better fittings for the count 0, 1 and the tail part 25+ compared to the rest.

More over for it can be observed, the ML estimate α̂ of the COM-NB distribution

and ML estimate β̂ of the GCOMP distribution show these two distributions reduce to

the negative binomial distribution, while the proposed ECOMP distribution does not

seem to reduce to the negative binomial distribution. Actually, the likelihood ratio test

for H0: Negative binomial distribution (α = β = 1) Vs H1: ECOMP distribution (α ≠ 1 or

β ≠ 1) rejects the negative binomial distribution (p-value is 0.001). So the ECOMP

distribution brings in substantial improvement in fitting this data set over both COM-

NB and GCOMP distributions.

4.2 The spots in southern pine beetle

The second example is the frequency data of the number of spots (k) in southern pine

beetle, Dentroctonus frontails Zimmerman, (Coleopetra: Scolytidae), in Southeast

Texas (Lin 1985). Table 2 shows the fitting results and Poi-GE means the mixed

Poisson distribution with generalized exponential distribution. From χ2 goodness of fit
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and AIC, the GCOMP distribution gives the best fitting among fitted distributions.

However, a look at the value Δi suggests that the ECOMP distribution gives equally

good fitting to the data. From the estimated parameters of the ECOMP distribution, we

can see that fitted ECOMP distribution reduces to the new generalization of NB distri-

bution given in equation (7) with estimated parameters ν̂ ¼ 0:002; p̂ ¼ 0:69; γ̂ ¼ 0:28.

Further, by virtue of proposition 2 in Section 2.6.2 and we can conclude that fitted

ECOMP distribution reduces to an exponential combination of NB (0.003, λ) and

Geometric (μ) in the ratio 0.28:0.72, where λ and μ can be calculated using the formula

given in the Section 2.6.2.

Table 1 Distribution of Corbet’s Malayan Buttery with zeros (Corbet 1942)

Count Observed NB Delaporte COMP COMNB GCOMP ECOMP

0 304 315.36 303.10 104.93 315.36 315.36 304.97

1 118 94.24 123.28 93.03 94.24 94.24 117.12

2 74 59.76 62.83 82.47 59.76 59.76 67.25

3 44 44.58 43.29 73.11 44.58 44.58 45.92

4 24 35.74 33.73 64.81 35.74 35.74 34.51

5 29 29.85 27.77 57.45 29.85 29.85 27.57

6 22 25.60 23.61 50.93 25.60 25.60 22.94

7 20 22.37 10.51 45.14 22.37 22.37 19.66

8 19 19.81 18.10 40.02 19.81 19.81 17.23

9 20 17.73 16.16 35.47 17.73 17.73 15.35

10 15 16.0 14.57 31.44 16.00 16.00 13.86

11 12 14.53 13.23 27.87 14.53 14.53 12.64

12 14 13.27 12.09 24.70 13.27 13.27 11.63

13 6 12.18 11.10 21.90 12.18 12.18 10.77

14 12 11.23 10.24 19.41 11.23 11.23 10.04

15 6 10.38 9.49 17.20 10.38 10.38 9.39

16 9 9.63 8.82 15.25 9.63 9.63 8.83

17 9 8.96 8.21 13.51 8.96 8.96 8.32

18 6 8.35 7.68 11.98 8.35 8.35 7.86

19 10 7.80 7.19 10.62 7.80 7.80 7.45

20 10 7.30 6.74 9.41 7.30 7.30 7.07

21 11 6.84 6.34 8.34 6.84 6.84 6.73

22 5 6.42 5.97 7.39 6.42 6.42 6.40

23 3 6.04 5.63 6.55 6.04 6.04 6.10

24 3 5.69 5.32 5.81 5.69 5.69 5.82

25+ 119 114.36 119.00 45.27 114.36 114.36 118.57

Total 924 924 924 924 924 924 924

AIC 4516.22 4508.40 45021.16 4518.22 4518.22 4510.02

χ2 28.50 19.46 660.91 28.50 28.50 18.57

p-value 0.20 0.62 0.00 0.15 0.15 0.61

MLEs ν̂ ¼ 0:31 r̂ ¼ 0:26 —— ν̂ ¼ 0:31 ν̂ ¼ 0:31 ν̂ ¼ 2:86

p̂ ¼ 0:97 p̂ ¼ 0:97 p̂ ¼ 0:01 p̂ ¼ 0:97 p̂ ¼ 0:97 p̂ ¼ 1:26

λ̂ ¼ 0:15 α̂ ¼ 0:89 α̂ ¼ 1:00 — α̂ ¼ −1:07

β̂ ¼ 1:00 β̂ ¼ −1:13
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4.3 Borrowing library books

The third example shows the number of books that were borrowed k times (k ≥ 1) from

the long loan collection at Sussex University over the period of a year (Burrell and Cane

1982). For fitting to this dataset, we consider the zero-truncation of each distribution.

Table 3 shows the fitting results. From χ2 goodness of fit and AIC, the zero-truncation

of the ECOMP distribution gives best fitting among fitted distributions. Studying the

values of Δi suggest that the COM-NB distribution also has good support (evidence)

while rest of the models have considerably less support for the data.. Here we interpret

the size of queue in Section 2.6.1 as the popularity of books. Then, from the estimated

parameters of the ECOMP distribution, we see that new interest is hard to increase but

the popularity is hard to decrease for the book which is borrowed many times. This

might be because, according as a book is borrowed more times, there are fewer oppor-

tunities to borrow the book.

Table 2 The number of spots in southern pine beetle (Lin 1985)

Count Observed NB Poi-GE COMP COMNB GCOMP ECOMP

0 1169 1165.32 1168.98 922.62 1168.56 1168.71 1169.00

1 144 169.40 148.01 373.44 152.87 151.88 147.59

2 92 78.91 82.91 151.15 80.17 80.69 84.21

3 54 45.18 51.87 61.18 49.76 50.13 52.00

4 29 28.28 33.51 24.76 32.60 32.75 33.17

5 18 18.61 21.93 10.02 21.80 21.82 21.54

6 10 12.65 14.44 4.06 14.68 14.64 14.14

7 12 8.78 9.55 1.64 9.89 9.84 9.36

8 6 6.20 6.32 0.66 6.65 6.60 6.23

9 9 4.44 4.19 0.27 4.45 4.41 4.16

10 3 3.20 2.78 0.11 2.96 2.93 2.79

11 2 2.33 1.85 0.04 1.96 1.94 1.88

12 0 1.71 1.23 0.02 1.29 1.28 1.27

13 0 1.26 0.81 0.01 0.84 0.84 0.85

14 1 0.93 0.54 0.00 0.55 0.55 0.58

15 0 0.69 0.36 0.00 0.35 0.35 0.39

16 0 0.52 0.24 0.00 0.23 0.23 0.27

17 0 0.39 0.16 0.00 0.15 0.15 0.18

18 0 0.29 0.11 0.00 0.09 0.09 0.12

19 1 0.92 0.22 0.00 0.15 0.16 0.28

Total 1550 1550.00 1550.00 1550.00 1550.00 1550.00 1550.00

AIC 3117.28 3116.33 3518.85 3113.24 3112.99 3113.84

χ2 14.79 8.56 669.08 8.99 8.65 8.18

p-value 0.06 0.13 0.00 0.25 0.28 0.23

MLEs ⌢r ¼ 0:18 ⌢v ¼ 0:08
⌢

θ ¼ 0:00 ⌢v ¼ 0:13 ⌢v ¼ 0:10 ⌢v ¼ 0:002
⌢p ¼ 0:79 ⌢p ¼ 0:59 ⌢p ¼ 0:40 ⌢p ¼ 1:03 ⌢p ¼ 0:98 ⌢p ¼ 0:69

⌢

β ¼ 2:03 ——— ⌢α ¼ 1:15 —— ⌢α ¼ 0:28
⌢

d ¼ 0:68
⌢

β ¼ 0:87
⌢

β ¼ 0:28
⌢

l ¼ 1:05
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5 Concluding remarks
Extended Conway-Maxwell-Poisson distribution proposed here unifies the COM-NB

and GCOMP which were recently introduced to add more flexibility to the COM-

Poisson distribution. The proposed distribution with additional parameter has more

flexibility in terms of its tail behavior and dispersion level. Further it also arises from

queuing theory set up and as exponential combination of negative binomial and COM-

Poisson distribution and has many interesting properties. It is therefore envisaged that

ECOMP distribution has the potential in modeling varieties of count data.

Appendix
A. Approximations of the normalizing constant 1S

β
a 1 ν; 1; pð Þ and the mean

A.1 Asymptotic approximation of the normalizing constant 1S
β
a 1 ν; 1; pð Þ using the

Laplace’s method

Defining i ¼ ffiffiffiffiffiffi
−1

p
, we have the identity for non-negative integers n and k

1
2π

Zþπ

−π

exp eiz−izn
� �

e−izkdz ¼ 1
nþ kð Þ! :

This leads to the identities

Table 3 The number of books that were borrowed k times (Burrell and Cane 1982)

Count Observed NB Poi-GE COMP COMNB GCOMP ECOMP

1 9647 9522.59 9557.15 9364.75 9604.38 9576.21 9648.57

2 4351 4595.67 4538.89 4706.62 4401.32 4458.54 4341.37

3 2275 2296.39 2296.51 2365.50 2314.68 2311.93 2291.26

4 1250 1167.09 1179.55 1188.87 1231.23 1213.94 1244.90

5 663 599.12 608.51 597.51 643.23 630.96 663.27

6 355 309.61 313.75 300.31 327.22 322.40 339.49

7 154 160.75 161.73 150.93 161.73 161.61 165.46

8 72 83.76 83.27 75.86 77.67 79.45 76.51

9 37 43.76 42.82 38.12 36.28 38.33 33.54

10 14 22.91 22.00 19.16 16.50 18.16 13.95

11 6 12.02 11.28 9.63 7.32 8.46 5.51

12 2 6.31 5.78 4.84 3.17 3.87 2.07

13 0 3.32 2.96 2.43 1.34 1.75 0.74

14 1 3.89 3.28 2.46 0.93 1.37 0.56

Total 18,827 18827.00 18827.00 18827.00 18827.00 18827.00 18827.00

AIC 52461.94 52453.14 52472.22 52414.70 52422.75 52411.67

χ2 51.96 38.33 66.83 7.20 14.75 2.37

p-value 0.00 0.00 0.00 0.51 0.06 0.94

MLEs ⌢r ¼ 0:81 ⌢v ¼ 0:27
⌢

θ ¼ 0:00 ⌢v ¼ 0:01 ⌢v ¼ 0:01 ⌢v ¼ 2:30
⌢p ¼ 0:53 ⌢p ¼ 0:38 ⌢p ¼ 0:50 ⌢p ¼ 1:18 ⌢p ¼ 0:93 ⌢p ¼ 6:40

⌢

β ¼ 1:78 —— ⌢α ¼ 1:37 —— ⌢α ¼ −2:98
⌢

d ¼ 1:16
⌢

β ¼ 0:74
⌢

β ¼ −3:95
⌢

l ¼ 1:03
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1
2π

Zþπ

−π

exp eiz
� �

1S
β
a 1 ν; 1; peiz

 �

dz ¼ 1 S
β
a ν; 1; pð Þ and

1
2π

Zþπ

−π

exp eiz−iz ν−1ð Þ� �
Γ vð Þf gβ1S β

a 1 ν; 1; peiz

 �

dz ¼ Γ vð Þf gβ−11S β −1
a 1 ν; 1; pð Þ

From these two identities, we get the formula for integer values α ≥ 0 and β ≤ 0

1 S
β
a 1 ν; 1; pð Þ Γ vð Þf gβ

¼ 1

2πð Þα−β−1
Zþπ

−π

⋯
Zþπ

−π

exp
Xα−β−1
l¼1

eiz1 þ pe
−
Xα−β−1

l¼1
izl− ν−1ð Þ

Xα−β−1
l¼1

izl

( )
dz1⋯dzα−β−1

Changing the variables izl = ixl + log p/(α − β) and then applying the Laplace’s method

for approximation of multiple integral, we obtain the formula (9).

The formula (9) has been derived for an integer values α ≥ 1 and − β ≥ 0, but numer-

ical studies suggest that it holds for 0 < α − β < 1 and p > 1, where it is difficult to com-

pute 1S
β
a 1 ν; 1; pð Þ by truncated approximation (8). The Table 4 gives the percentage

errors 100 1S
eβ
a 1 ν; 1; pð Þ−1S

β
a 1;m ν; 1; pð Þg=1S β

a 1;m ν; 1; pð Þ
n

, with m = 18000 such that

Rm(ν, p, α, β) < 10
− 28, where 1S

eβ
a 1 ν; 1; pð Þ is the r.h.s. of the formula (9)

A.2 Asymptotic approximation of the mean

A numerical illustration of the performance of the asymptotic approximation formula

of mean in equation (12) is provided in Table 5.

B. Proof of the propositions

B.1 Proof of proposition 1

Following Conway and Maxwell (1962), the system differential difference equations are

given by

P0 t þ Δð Þ ¼ 1−λνβΔ

 �

P0 tð Þ þ μΔP1 tð Þ ð14Þ

and

Table 4 The percentage errors for approximation (9) with β = 2.5

ν = 0.5 ν = 1.5

p \ α 2.6 2.7 2.8 2.9 3.0 2.6 2.7 2.8 2.9 3.0

1.0 37 2 −14 −24 −31 −88 −80 −73 −68 −31

1.2 −57 −44 −42 −43 −44 −55 −61 −60 −58 −44

1.4 −49 −58 −54 −52 −51 −21 −42 −47 −48 −51

1.6 −8 −55 −57 −55 −54 −7 −28 −37 −40 −54

1.8 −2 −38 −54 −55 −55 −2 −18 −28 −33 −55

2.0 −1 −18 −46 −52 −54 −1 −11 −22 −28 −54

2.2 0 −9 −34 −47 −51 0 −7 −17 −23 −51

2.4 0 −5 −23 −40 −47 0 −5 −13 −20 −47
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Pk t þ Δð Þ ¼ 1−λ νþ kð ÞβΔ−μkαΔ
� 	

Pk tð Þ þ λ νþ k−1ð ÞβΔPk−1 tð Þ
þμ k þ 1ð ÞαΔPkþ1 tð ÞÞ k ¼ 1; 2;⋯

ð15Þ

Let λ/μ = p. Then from (14) and (15) we get

P0 t þ Δð Þ−P0 tð Þf g=Δ ¼ −μpνβP0 tð Þ þ μP1 tð Þ and
Pk t þ Δð Þ−Pk tð Þf g=Δ ¼ μ p νþ k−1ð Þβ Pk−1 tð Þ−μ p νþ kð Þ þ kαð ÞPk tð Þ

þμ k þ 1ð Þα Pkþ1 tð ÞÞ; k ¼ 1; 2;⋯

Now as Δ→ 0 we get

P0
= tð Þ g ¼ −μpνβ P0 tð Þ þ μP1 tð Þ and

Pk
= tð Þ ¼ μp νþ k−1ð Þβ Pk−1 tð Þ−μ p νþ kð Þβ þ kα

� 	
Pk tð Þ þ μ k þ 1ð Þα Pkþ1 tð ÞÞ;

k ¼ 1; 2;⋯

Assuming a steady state (i.e. P=
k tð Þ ¼ 0 for all k) we get

P1 tð Þ ¼ pνβ P0 tð Þ and

Pkþ1 tð Þ ¼ kα

k þ 1ð Þα Pk tð Þ− νþ kð Þβ
k þ 1ð Þα pPk tð Þ þ νþ k−1ð Þβ

k þ 1ð Þα pPkþ1 tð Þ; k ¼ 1; 2;⋯

Putting k = 1 we get

P2 tð Þ ¼ 1
2α

P1 tð Þ− νþ 1ð Þβ
2α

pP1 tð Þ þ νβ z
2α

pP0 tð Þ

¼ 1
2α

νβ pP0 tð Þ− νþ 1ð Þβ
2α

νβ pP0 tð Þ þ νβ z
2α

pP0 tð Þ

¼ ν νþ 1ð Þf gβ
2!ð Þα p2 P0 tð Þ ¼ νð Þ2

� �β
2!ð Þα p2 P0 tð Þ

Similarly, for k = 2 we get

Table 5 The percentage errors for mean with β = 2.5 using the approximation formula in
equation (12)

ν = 0.5 ν = 1.5

p \ α 2.6 2.7 2.8 2.9 3.0 2.6 2.7 2.8 2.9 3.0

1.0 −1055 −731 −575 −475 −403 107 78 64 55 48

1.2 −187 −290 −276 −249 −221 30 39 38 36 34

1.4 46 −40 −93 −107 −106 5 18 23 24 24

1.6 1 42 2 −24 −35 1 8 14 16 17

1.8 0 28 36 19 6 0 3 8 11 13

2.0 0 7 35 35 27 0 1 5 8 10

2.2 0 1 22 35 34 0 1 3 6 7

2.4 0 0 11 29 35 0 −0 2 4 6
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P3 tð Þ ¼ 2α

3α
−

νþ 2ð Þβ
3α

p

 !
P2 tð Þ þ νþ 1ð Þβ p

3α
P1 tð Þ

¼ 2α

3α
−

νþ 2ð Þβ
3α

p

 !
ν νþ 1ð Þf gβ

2!ð Þα p2 P0 tð Þ þ νþ 1ð Þβ z
3α

νpP0 tð Þ

¼ ν νþ 1ð Þ νþ 2ð Þf gβ
3!ð Þα p3 P0 tð Þ

In general, Pk tð Þ ¼ νð Þkf gβ

k!ð Þα pk P0 tð Þ, where P0 tð Þ ¼ 1=
X∞
i¼0

νð Þi
� �β

i!ð Þα pi
( )

.

Since we have assumed a steady state (i.e. P=
k tð Þ ¼ 0 for all k) Pk(t) can be replaced by Pk.

B.2 Proof of proposition 2

The probability function resulting from the exponential combination of NB (v,λ) and

COM-Poisson (μ, θ) is given by

(
ðνÞk
k!

λk
)β(

μk

ðk!Þθ
)1−β,X

i≥0

(
ðνÞi
i!

λi
)β(

μi

ði!Þθ
)1−β

¼ fðνÞkgβfλβμ1−βg
k

ðk!Þθð1−βÞþβ

,X
i≥0

fðνÞigβfλβμ1−βg
i

ði!Þθð1−βÞþβ
¼ fðνÞkgβpk

ðk!Þα
,X

i≥0

fðνÞigβpi
ði!Þα ;

substituting λβμ1 − β = p and α = θ(1 − β) + β

This is the pmf of ECOMP (v, p, α, β).

B.3 Proof of proposition 3

For a distribution to be log-concave we must have (see Gupta et al. 1997)

Δη tð Þ ¼ P t þ 1ð Þ=P tð Þ−P t þ 2ð Þ=P t þ 1ð Þ > 0:

For ECOMP (v, p, α, β), Δη tð Þ ¼ p
νþtð Þβ tþ2ð Þα− νþtþ1ð Þβ tþ1ð Þα

tþ1ð Þα tþ2ð Þα

Now p
νþ tð Þβ t þ 2ð Þα− νþ t þ 1ð Þβ t þ 1ð Þα

t þ 1ð Þα t þ 2ð Þα > 0

⇒ νþ tð Þβ t þ 2ð Þα− νþ t þ 1ð Þβ t þ 1ð Þα > 0 since t þ 1ð Þα t þ 2ð Þα > 0; p > 0
⇒ νþ tð Þβ t þ 2ð Þα− νþ t þ 1ð Þβ t þ 1ð Þα > 0
But for ν > 1; t þ 1ð Þ= t þ 2ð Þ < νþ tð Þ= νþ t þ 1ð Þ
⇒ t þ 1ð Þ= t þ 2ð Þf gα < νþ tð Þ= νþ t þ 1ð Þf gα≤ νþ tð Þ= νþ t þ 1ð Þf gβ since α≥β
⇒ t þ 1ð Þ= t þ 2ð Þf gα νþ t þ 1ð Þ= νþ tð Þf gβ < 1
⇒1− t þ 1ð Þ= t þ 2ð Þf gα νþ t þ 1ð Þ= νþ tð Þf gβ > 0
⇒ νþ tð Þβ t þ 2ð Þα− νþ t þ 1ð Þβ t þ 1ð Þα > 0

B.4 Proof of proposition 4

ECOMP (v, p, α, β) has a log-convex probability mass function if Δ η(t) ≤ 0. That is
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νþ tð Þβ t þ 2ð Þα < νþ t þ 1ð Þβ t þ 1ð Þα
⇒ t þ 2ð Þ= t þ 1ð Þf gα < νþ t þ 1ð Þ= νþ tð Þf gβ
⇒f 1þ 1= t þ 1ð Þð gα < 1þ 1= νþ tð Þf gβ

ð16Þ

Since α ≥ β the inequality in (16) cannot hold for ν > 1.

Now for 0 < ν ≤ 1 the inequality in (16) implies

⇒α=β≤ log 1þ 1=t þ νð Þ= log 1þ 1=t þ 1ð Þ≥1

⇒ α/β ≤ 1. Which implies α = β since α ≥ β.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SC conceptually developed the proposed distribution with related mathematical results of the paper and drafted the
manuscript. TI developed the Sections 2.2, 2.8 and 4 of the manuscript. Both authors read and approved the final
manuscript.

Acknowledgments
The corresponding author Prof. Subrata Chakraborty would like to thank the Editors –in-Chief Prof. Felix Famoye
andProf. Carl Lee, for the invitation to write a paper for this esteemed Journal. Both the authors acknowledge the
comments and suggestions of the editor and both the reviewers which lead to substantial improvement in the
presentation of the work.

Author details
1Department of Statistics, Dibrugarh University, Dibrugarh 786004, Assam, India. 2The Institute of Statistical
Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan.

Received: 10 October 2015 Accepted: 9 February 2016

References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. 9th Print. Dover, New York (1970)
Agarwal, S.K., Kalla, S.L.: A generalized gamma distribution and its application in reliability. Commun. Stat. Theory Methods

25, 1, 201–210 (1996)
Atkinson, A.C.: A method for discriminating between models. J. R. Stat. Soc. Series B (Methodological) 32, 3, 323–353 (1970)
Bleistein, N., Handelsman, R.A.: Asymptotic expansions of integrals. Dover, New York (1986)
Burnham, K.P., Anderson, D.R.: Multimodel Inference-Understanding AIC and BIC in Model Selection. Sociol. Methods Res.

33, 2, 261–304 (2004)
Burrell, Q.L., Cane, V.R.: The analysis of library data. J. R. Stat. Soc., Series A 145, 439–471 (1982)
Chakraborty, S., Ong, S.H. A COM-type generalization of the negative binomial distribution, Accepted in April 2014,

(available on line since 07 November 2015) to appear in Communications in Statistics-Theory and Methods
Conway, R.W., Maxwell, W.L.: A queueing model with state dependent service rates. J Industrl Engng 12, 132–136 (1962)
Corbet, A.S.: The distribution of butteries in the Malay peninsula. Proc. R. Entomol. Soc. London, Series A, General

Entomology 16, 101–116 (1942)
Cox, D.R.: Tests of separate families of hypotheses. Proc. 4th Berkeley Symp. 1, 105–123 (1961)
Cox, D.R.: Further results on tests of separate families of hypotheses. J. R. Statist. Soc. B 24, 406–424 (1962)
Gómez-Déniz, E., María Sarabia, J., Calderín-Ojeda, E.: A new discrete distribution with actuarial applications. Insur.

Math. Econ. 48, 406–412 (2011)
Gupta, R.C., Ong, S.H.: Analysis of long-tailed count data by Poisson mixtures. Commun. Stat. Theory Methods

34, 557–574 (2005)
Gupta, P.L., Gupta, R.C., Tripathi, R.C.: On the monotonic properties of discrete failure rates. J. Stat. Plan. Inference

65, 255–268 (1997)
Gupta, R.C., Sim, S.Z., Ong, S.H.: Analysis of discrete data by Conway-Maxwell Poisson distribution. AStA Adv. Stat. Anal.

98, 327–343 (2014)
Imoto, T.: A generalized Conway-Maxwell-Poisson distribution which includes the negative binomial distribution.

Appl. Math. Comput. 247, 824–834 (2014)
Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate discrete distributions. Wiley, New York (2005)
Jorgensen, B.: Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in Statistics, Springer-

Verlag, New York (1982)
Kokonendji, C.C., Mizère, D., Balakrishnan, N.: Connections of the Poisson weight function to over dispersion and unde

rdispersion. J. Stat. Plan. Inference 138, 1287–1296 (2008)
Lin, S-K.: Characterization of lightning as a disturbance to the forest ecosystem in East Texas. M.Sc. thesis. Texas A & M

University, College Station (1985)

Chakraborty and Imoto Journal of Statistical Distributions and Applications  (2016) 3:5 Page 18 of 19



Minka, T.P., Shmueli, G., Kadane, J.B., Borle S., and Boatwright, P.: Computing with the COM-Poisson distribution. Technical
Report: 776, Department of Statistics, Carnegie Mellon University, http://repository.cmu.edu/cgi/viewcontent.
cgi?article=1174&context=statistics . (2003)

Ong, S.H., Lee, P.A.: On a generalized non-central negative binomial distribution. Commun. Stat. Theory Methods
15, 1065–1079 (1986)

Shaked, M., Shanthikumar, J.G.: Stochastic orders. Springer Verlag, New York (2007)
Warde, W.D., Katti, S.K.: Infinite divisibility of discrete distributions II. Ann. Math. Stat. 42, 3, 1088–1090 (1971)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Chakraborty and Imoto Journal of Statistical Distributions and Applications  (2016) 3:5 Page 19 of 19

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1174&context=statistics
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1174&context=statistics

	Abstract
	1 Introduction
	2 Extended COM-Poisson (ECOMP) distribution
	2.1 Shape of the pmf
	2.2 Approximations of the normalizing constant
	2.2.1 Approximation using truncation of the series
	2.2.2 Asymptotic approximation of the normalizing constant using the Laplace’s method

	2.3 Recurrence relation for probabilities
	2.4 Exponential family
	2.5 Index of dispersion
	2.6 Different formulations of ECOMP (v, p, α, β)
	2.6.1 ECOMP (v, p, α, β) as a distribution from a queuing set up
	2.6.2 ECOMP (v, p, α, β) as exponential combination formulation

	2.7 Log-concavity and modality
	2.8 Moments

	3 Reliability characteristics and stochastic ordering
	3.1 Survival and failure rate functions
	3.2 Stochastic orderings

	4 Numerical examples
	4.1 The spots in southern pine beetle
	4.2 The spots in southern pine beetle
	4.3 Borrowing library books

	5 Concluding remarks
	Appendix
	A. Approximations of the normalizing constant Sα−1β1ν;1;p and the mean
	A.1 Asymptotic approximation of the normalizing constant Sα−1β1ν;1;p using the Laplace’s method
	A.2 Asymptotic approximation of the mean

	B. Proof of the propositions
	B.1 Proof of proposition 1
	B.2 Proof of proposition 2
	B.3 Proof of proposition 3
	B.4 Proof of proposition 4


	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



