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Abstract

In this note we develop a new Kaplan-Meier product-limit type estimator for the
bivariate survival function given right censored data in one or both dimensions. Our
derivation is based on extending the constrained maximum likelihood density based
approach that is utilized in the univariate setting as an alternative strategy to the
approach originally developed by Kaplan and Meier (1958). The key feature of our
bivariate survival function is that the marginal survival functions correspond exactly to
the Kaplan-Meier product limit estimators. This provides a level of consistency between
the joint bivariate estimator and the marginal quantities as compared to other
approaches. The approach we outline in this note may be extended to higher
dimensions and different censoring mechanisms using the same techniques.
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1 Introduction
In this note we develop a new Kaplan-Meier product-limit type estimator for the bivariate
survival function given right censored data in one or both dimensions. Our deriva-
tion is based on extending the constrained maximum likelihood density based approach
(Satten and Datta 2001; Zhou 2005) that is utilized in the univariate setting as an alter-
native strategy to the classical discrete nonparametric hazard function approach (Kaplan
and Meier 1958). There are several methods for estimating a bivariate survival function
across different censoring patterns that have been proposed in the literature based on
extending the univariate hazard function approach or creating various decompositions
(Akritas and Van Keilegom 2003; Gill et al. 1995; Lin and Ying 1993; Prentice et al. 2004;
Wang andWells 1997). In general, they are somewhat complex to compute and may have
deficiencies such as negative mass estimates at given points (Prentice et al. 2004). The
large sample theory involving these estimators is quite technical (Gill et al. 1995). To the
best of our knowledge one of the key limitations of all of the completely nonparametric
bivariate survival function estimators developed to-date is that they yield marginal esti-
mators that may not be equivalent to the product-limit estimator corresponding to each
dimension. Our estimator, framed as a sparse multinomial estimation problem given sim-
plex constraints, remedies this issue. In addition, in terms of future work our method may
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be extended to higher dimensions and other censoring mechanisms (left and interval)
using the techniques outlined in this note. We also can consider support over the entire
real line.
In terms of background, we start by outlining the nonparametric maximum likelihood

based density estimator in the univariate setting given right censored data. We can utilize
this estimator to define a survival function estimator, which is equivalent to the product-
limit estimator. We then move to the bivariate setting in the next section as a direct
extension of this approach. As noted above there are two approaches towards arriving
at the Kaplan-Meier product-limit estimator (Kaplan and Meier 1958). The well-known
nonparametric textbook approach focuses on utilizing the discrete hazard function to
define the parameters of interest. Towards this end let X1,X2, · · · ,Xn denote i.i.d. failure
times and letC1,C2, · · · ,Cn denote the corresponding i.i.d. non-informative right censor-
ing times, i = 1, 2, · · · , n. Given right censoring we only observe g ≤ n of the X’s. Now let
0 < x(1) < x(2) < · · · x(g) be the distinct ordered observed failure times. The classic max-
imum likelihood based derivation of the product-limit estimator starts by assuming the
underlying distribution is discrete with probabilities πj = P(X = x(j)), j = 1, 2, · · · , g for
g ≤ n. Given a discrete hazard of hj = P(X = x(j)|X ≥ x(j)) for 0 ≤ hj ≤ 1 we have that
π1 = h1,π2 = (1− h1)h2, · · · ,πg = (1− h1)(1− h2) · · · (1− hg−1)hg . Then the estimator
of S(x) = P(X > x) = ∏

x(j)≤x
(1 − hj) in the discrete case is given as

Ŝ(x) =
∏
x(j)≤x

(
1 − ĥj

)
. (1)

The estimates of the discrete hazard parameters are obtained frommaximizing the log-
likelihood

log L =
g∑

j=1
dj log hj +

(
rj − dj

)
log(1 − hj), (2)

where dj denotes the number of events and rj denotes the number at risk at time x(j), j =
1, 2, · · · , g, e.g. See Cox and Oakes (1984) for details of this derivation. The maximization
of (2) with respect to the parameters hj, j = 1, 2, · · · , g, yields the oft utilized estimates
ĥj = dj/rj, where rj denotes the number of subjects at risk at time x(j) and dj denotes
the number of subjects who fail at time x(j). For a technical treatment with respect to
the behavior of the product-limit estimator and how it translates to continuous case see
Chen and Lo (1997). It is well-known, but not immediately obvious, that the product-
limit estimator reduces to the classic empirical estimator of the survival function Ŝ(x) =
1 − ∑n

i=1 I(x(i) ≤ x)/n when there are no censored observations, where I(·) denotes the
indicator function. This is the starting point for most of the bivariate survival estimators
found in the literature (Gill et al. 1995).
As an alternative approach to the Kaplan-Meier construction we start by estimating

the density function first in a nonparametric fashion from which the survival function
and distribution functions are then readily estimated. This approach mirrors the clas-
sic parametric maximum likelihood estimation given right censored data in terms of the
likelihood containing a density function component and a survival function component
whose relative contributions depends upon whether or not an observation is censored.
In this framework denote the observed values as Ti = min(Xi,Ci), i = 1, 2, · · · , n.
Note that in our alternative derivation we allow the more general assumption that both
X and C may have support over the entire real line as compared to the more common
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restriction in survival modeling that X and C have support only on the positive real
line. Furthermore, denote the censoring indicator variable as δi = I(Xi≤Ci), denote the
ordered observed Ti’s as t(1) < t(2) < · · · < t(n) and define the parameters of interest
as πi = P(X ≤ t(i)|δi = 1) − P(X < t(i)|δi = 1), i = 1, 2, · · · , n. The parameter def-
inition is the justification and linkage for this estimator towards underlying continuous
data (Owen 1988). Note that similar to the traditional product-limit estimator πi = 0 if
δi = 0 by definition. Now, given right-censoring we only observe j ≤ n of the X’s, where
j = ∑n

i=1 δi.
Maximum likelihood estimation is now carried forth under the constraint that∑n
i=1 πi = 1 similar to classic maximum likelihood based empirical density estimation.

The classic product-limit estimator is derived through a straightforward extension of the
uncensored case and starts with the same assumption that the Xi’s are functionally dis-
crete, i.e. the true distributions of interest are continuous and we are discretizing the time
scale with respect to are definition of the πi’s. In the case of observed ties in the data
under the assumption of a truly continuous underlying distribution we can arbitrarily
rank order those respective observations and combine the point masses corresponding
to the respective given ties. In our alternative formulation the likelihood accounting for
right-censoring now takes a form similar to the parametric setting and is given by

L =
n−1∏
i=1

π
δi
i

⎛
⎝1 −

i∑
j=1

πj

⎞
⎠

1−δi

×
⎛
⎝1 −

n−1∑
j=1

πj

⎞
⎠ (3)

The last term in the likelihood corresponds to the constraint that
∑n

i=1 πi = 1. If the
last observation is censored this implies as in the traditional approach that we still may
have an improper distribution of the survival function. Hence, by definition we set this
to be an uncensored observation per asymptotic consistency arguments (Chen and Lo
1997). Obviously the likelihood at (3) reduces to the likelihood for the classical empirical
estimator given no censoring with π̂i = 1/n.
The form of the likelihood at (3) has been presented in other contexts such as empir-

ical likelihood constrained maximum likelihood estimation and inference, e.g. see Zhou
(2005) and the references there within. The constraint that

∑n
i=1 πi = 1 yields n − 1

score equations given by sj = ∂ log L/∂πj. Solving the system of equations that sj = 0 for
j = 1, 2, · · · , n − 1 yields the following nonparametric maximum likelihood estimates for
the πi’s given as

π̂i =
⎧⎨
⎩

δ1
n , i = 1,∏i−1
j=1((n−j+1)−δj)δi∏i

j=1(n+j−i)
, i > 1,

(4)

where π̂n = 1 − ∑n−1
j=1 π̂j, see Satten and Datta (2001).

In addition, it follows straightforward that similar to the standard empirical distribution
function estimator we have for right-censored data that

F̂(x) =
n∑

i=1
π̂iI(t(i)≤x) (5)

and

Ŝ(x) = 1 − F̂(x) = 1 −
n∑

i=1
π̂iI(t(i)≤x), (6)
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where π̂i’s are given at (4) and π̂n = 1 − ∑n−1
j=1 π̂j. The estimator of the survival function

given at (6) is equivalent to the product-limit form at (1) in terms of the actual estimated
survival probabilities. This is the jumping off point of our new bivariate survival function
estimator.
In Section 2 we outline the new constrained maximum likelihood procedure used to

develop a bivariate estimator of the joint density f (x, y) from which estimators of the
bivariate distribution function F(x, y) and bivariate survival function are readily calcu-
lated. In Section 3 we provide some illustrative toy examples followed by two real data
examples. We finish with some basic conclusions.

2 Constrainedmaximum likelihood estimation
In this section we describe the process for estimating f (x, y) nonparametrically condi-
tional on marginal constraints. This in turn will lead to an estimator for the bivariate
distribution function F(x, y) and survival function S(x, y). Towards this end let (Xi,Yi),
i = 1, 2, · · · , n, be independent and identically distributed pairs of bivariate failure times
with joint probability density function f (x, y) and corresponding cumulative distribution
function F(x, y) with S(x, y) = 1 − F(x, y). Furthermore, let (Cx

i ,C
y
i ), i = 1, 2, · · · , n, be

independent and identically bivariate distributed pairs of censoring variables. Under right
censoring in each dimension we observe

(Si,Ti) = ((
Xi ∧ Cx

i
)
,
(
Yi ∧ Cy

i
))

and
(
δxi , δ

y
i
) = (

I
(
Xi < Cx

i
)
, I

(
Yi < Cy

i
))
,

i = 1, 2, · · · , n,

where ∧ denotes the minimum between pairs of random variables and I(·) denotes the
indicator function. For this note we assume the (Xi,Yi)’s and (Cx

i ,C
y
i )’s are absolutely con-

tinuous and are also pairwise independent from each other. In the nonparametric setting
the distribution and survival functions are defined as follows:

F(x, y) =
n∑

i=1

n∑
j=1

πi,jI(s(i)≤x,t(j)≤y) (7)

S(x, y) = 1 − F(x, y), (8)

where the parameters, i.e. the πi,j’s, i = 1, 2, · · · , n, j = 1, 2, · · · , n, are in essence weights
between 0 and 1 and are defined in detail below at (17).
Now similar to the univariate case, outlined in the introduction, denote the parameters

corresponding to the nonparametric estimators of the marginal densities fx and fy as

πrsi ,. = �Fs
(
Srsi

)
= Fs

(
Srsi

)
− Fs

(
Srsi−

)
= P

(
Srsi ≤ srsi

)
− P

(
Srsi < srsi

)
and

π.,rtj = �Ft
(
Trtj

)
= Ft

(
Trtj

)
− Ft

(
Trtj−

)
= P

(
Trtj ≤ trtj

)
− P

(
Trtj < trtj

)
, (9)

where we denote the ranks of the observed failure or censoring times per each margin
as rsi = rank(Si) and rtj = rank(Tj), respectively, corresponding to the order statistics
S(1) < S(2) < · · · < S(n) and T(1) < T(2) < · · · < T(n). The parameters at (9) are
instrumental with respect to defining the simplex constraints used in our maximization
procedure described below. The inter-relationships between the cell probabilities, the
πi,j’s, and the marginal probabilities, the πrsi ,.’s and π.,rtj ’s, are defined in detail below at
(20) and (21), respectively.
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As described in Section 1, and with a simplemodification of the notation, the parameter
estimates derived from the form of the likelihood at (3) corresponding to the marginal
density fx were derived by Satten and Datta (2001) as

π̂i,. =

⎧⎪⎨
⎪⎩

δx
(1)
n , i = 1,

∏i−1
j=1

(
(n−j+1)−δx

(j)

)
δx
(i)∏i

j=1(n+j−i)
, i > 1,

(10)

where we set δx(n) = 1. In the case of no censoring all π̂i,.’s are equal to 1/n.
It follows straightforward that similar to the standard empirical distribution function

estimator we have for right-censored data that

F̂x(x) =
n∑

i=1
π̂i,.I(s(i)≤x) (11)

and

Ŝx(x) = 1 − F̂x(x) = 1 −
n∑

i=1
π̂i,.I(s(i)≤x), (12)

where π̂i,.’s are given at (10) and π̂n,. = 1 − ∑n−1
j=1 π̂j,.. It should be obvious that π̂i,. = 0

from (10) when δx(i) = 0 in the case of a censored observation.
Similarly, we have the estimated parameters corresponding to the marginal density fy,

δ
y
(n) = 1, given as

π̂.,j =

⎧⎪⎨
⎪⎩

δ
y
(1)
n , j = 1,∏j−1
i=1((n−i+1)−δ

y
(i))δ

y
(j)∏j

i=1(n+i−j)
, j > 1,

(13)

which yields the marginal estimators of the distribution and survival functions as

F̂y(y) =
n∑

j=1
π̂.,jI(t(j)≤y) (14)

and

Ŝy(y) = 1 − F̂y(y) = 1 −
n∑

j=1
π̂.,jI(t(j)≤y), (15)

where π̂.,j’s are given at (13) and π̂.,n = 1 − ∑n−1
i=1 π̂i,..

Let us now define the parameters associated with the nonparametric likelihood cor-
responding to the joint density f (x, y). In terms of determining the relevant parameters
for use in the nonparametric likelihood model we need to define an indicator func-
tion as a type of bookkeeping feature given censoring information from both marginal
distributions. Towards this end let

δi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if δxi δ
y
i = 1,∀i = 1, 2, · · · , n

1, if
(
1 − δxi

)
δ
y
i = 1,∀i = rsj+1, · · · , n, j = 1, 2, · · · , n,

1, if δxi
(
1 − δ

y
i
) = 1,∀i = 1, 2, · · · , n, j = rti+1, · · · , n,

1, if
(
1 − δxi

) (
1 − δ

y
i
) = 1,∀i = rsj+1, · · · , n, j = rti+1, · · · , n,

0, otherwise.

(16)



Hutson Journal of Statistical Distributions and Applications  (2016) 3:9 Page 6 of 14

Then ∀(rsi , rtj) combinations for which δrsi ,rtj �= 0, δxrsi �= 0 and δ
y
rtj �= 0, i = 1, 2, · · · , n

and j = 1, 2, · · · , n the parameters of interest in our nonparametric model corresponding
to the joint density f (x, y) are given as

πrsi ,rtj = �F
(
Srsi ,Trtj

)

= F
(
Srsi ,Trtj

)
− F

(
Srsi ,Trtj−

)
− F

(
Srsi−,Trtj

)
+ F

(
Srsi−,Trtj−

)

= P
(
Srsi ≤ srsi ,Trtj ≤ trtj

)
− P

(
Srsi ≤ srsi ,Trtj < trtj

)

−P
(
Srsi < srsi ,Trtj ≤ trtj

)
+ P

(
Srsi < srsi ,Trtj < trtj

)
, (17)

else we define πrsi ,rtj = 0, i.e. πrsi ,rtj = 0 if δrsi ,rtj = 0 or δxrsi
= 0 or δ

y
rtj = 0. In the

specific case where there is no censoring for both X and Y the number of parameters is
of size n and the corresponding maximum likelihood estimator for πrsi ,rtj is 1/n as per
the standard empirical density estimator, i.e. there is a point mass of 1/n per each set of
paired observations.
It now follows similar to that of the univariate case at (3) that the likelihood function

for the joint density f (x, y) defined through the parameters at (17) is given as

L =
n∏

i=1
π

δxi δ
y
i

rsi ,rti

⎛
⎝

n∑
j=rsi+1

δxj πj,rti

⎞
⎠

(1−δxi )δ
y
i
⎛
⎝

n∑
k=tsi+1

δ
y
kπrsi ,k

⎞
⎠

δxi (1−δ
y
i )

×
⎛
⎝

n∑
j=rsi+1

n∑
k=tsi+1

δxj δ
y
kπj,k

⎞
⎠

(1−δxi )
(
1−δ

y
i
)

, (18)

where the components of the likelihood correspond to the four possible right-censoring
combinations for the (δxi , δ

y
i ) pairs, i.e. there is a simple point mass given no censoring else

probability is shifted to the right similar to the classic Kaplan-Meier estimator given the
various censoring patterns. The objective is to maximize L at (18) subject to the simplex
constraints

n∑
i=1

n∑
j=1

δi,jδ
x
i δ

y
j πi,j = 1, (19)

n∑
j=1

δi,jδ
y
j πi,j = πi,., (20)

n∑
i=1

δi,jδ
x
i πi,j = π.,j, (21)

if δi,j = δxi = δ
y
j = 1 then 0 ≤ πi,j ≤ 1,∀i = 1, · · · , n, j = 1, · · · , n. (22)

The constraints at (20) and (21) pertain to the marginal constraints where πi,. and
π.,j are defined at (9) . Our approach is similar to the problems described for multino-
mial distribution parameter estimation given sparse data and a class of linear simplex
constraints (Liu 2000). The argument for replacing πi,. and π.,j at (9) with their corre-
sponding estimators π̂i,. and π̂.,j at (10) and (13), respectively, follows similar to the classic
R×C contingency table exact inference case. The contribution of the π̂i,.’s and π̂.,j’s to the
multinomial distribution given sparse data and linear simplex constraints corresponding
to π̂rsi ,rtj ’s of interest depend on the data through the censoring values for the δx’s and
δy’s. The joint distribution of the π̂i,.’s and π̂rsi ,rtj ’s is identical to the distribution of the
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π̂rsi ,rtj ’s since by definition the π̂i,.’s are determined by the π̂rsi ,rtj ’s . The same holds in the
other dimension relative to the π̂.,j’s, i.e. the π̂rsi ,rtj ’s are sufficient statistics in terms of
determinig the parameters that define the marginal densities.
Steps in the parameter estimation:

1. Given the observed censoring pattern utilize the constraints (19), (20) and (21) to
define the parameter space.

2. Obtain the estimates of marginal probabilities πi,. and π.,j given by π̂i,. and π̂.,j at
(10) and (13),respectively. Substitute the estimates into (20) and (21) after first
processing step 1 above.

3. Utilize standard maximum likelihood technique on the likelihood defined at (18) to
solve for the remaining unknown parameters given the constraints defined at
(19)–(22).

It then follows that the estimators of the bivariate distribution function and survival
function are given as:

F̂(x, y) =
n∑

i=1

n∑
j=1

π̂i,jI(s(i) ≤ x, t(j) ≤ y) (23)

Ŝ(x, y) = 1 − F̂(x, y), (24)

respectively. Some small sample toy examples will be provided in the next section in order
to illustrate the process followed by some real data examples.
Note that if censoring occurs solely in either the x or y dimension the likelihood at (18)

reduces substantially in complexity and has a form very similar to that of the univariate
setting at (3).

Comment Large sample variance estimates for F̂(x, y) and Ŝ(x, y) are conceptually
straightforward in that they follow standard methods based on obtaining the co-
information matrix with dimensions that vary as a function of the proportion of cen-
sored observations. For small samples this is straightforward. However for moderate to
large samples and from a programming point of view, this becomes a rather complex
computational problem such that we would recommend either bootstrap or jackknife
methodologies for the purpose of variance estimation.

3 Examples
In this section we provide a few straightforward small sample scenarios in order to
illustrate the maximization process for the estimator of f (x, y) and S(x, y) given vari-
ous censoring patterns. This is followed by two real data examples used by previous
researchers in the past to illustrate this type of estimator. It is important to note that as we
present the results we set δx(n) = δ

y
(n) = 1 by definition. The rational for this was described

above.

3.1 Toy data examples

Example 1. For n = 6 we have the following data:

s = (6.1, 4.5, 6.2, 4.8, 5.9, 3.3), rs = (5, 2, 6, 3, 4, 1), δx = (1, 1, 0, 1, 0, 1),

t = (9.6, 2.6, 7.2, 4.1, 7.7, 5.0), rt = (6, 1, 4, 2, 5, 3), δy = (0, 1, 1, 1, 0, 1).
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The vector of parameters of interest defined by the censoring patterns as per (16) is
given as π = (π1,3,π2,1,π3,2,π5,6,π6,4,π6,6). The goal is to maximize the likelihood

L = π1,3π2,1π3,2π5,6π6,4
(
π5,6 + π6,6

)

subject to the simplex constraints from (19), (20) and (21), respectively, and given as:

1. π1,3 + π2,1 + π3,2 + π5,6 + π6,4 + π6,6 = 1,
2. π1,3 = 1/6,π2,1 = 1/6,π3,2 = 1/6,π5,6 = 1/4,π6,4 + π6,6 = 1/4,
3. π2,1 = 1/6,π3,2 = 1/6,π1,3 = 1/6,π6,4 = 1/6,π5,6 + π6,6 = 1/3.

We can see that in this small sample setting that estimates for π =
(π1,3,π2,1,π3,2,π5,6,π6,4,π6,6) in this case are determined solely by the marginal con-
straints. In general, for moderate to large sample sizes this will not be the case.
The estimates given the constraints are provided in Table 1. In this specific case no

maximization of the likelihood was needed. Note that the estimators of the marginal
survivor functions Ŝx(x) and Ŝy(y) from (12) and (15), respectively, and based on the
parameter estimates in Table 1 are exactly those corresponding to the product-limit esti-
mator. The plot of the bivariate survival function Ŝ(x, y) from (24) is given in Fig. 1, which
is clearly monotone decreasing in both dimensions for increasing values of data with
positive support.

Example 2. For n = 6 we have the following data:

s = (8.9, 2.6, 3.7, 5.9, 7.9, 1.2), rs = (6, 2, 3, 4, 5, 1), δx = (0, 0, 1, 1, 1, 1),

t = (6.3, 9.6, 6.8, 0.1, 0.7, 4.2), rt = (4, 6, 5, 1, 3, 2), δy = (0, 0, 1, 1, 1, 1).

The vector of parameters of interest defined by the censoring patterns as per (16) is
given as π = (π1,3,π3,5,π3,6,π4,1,π4,6,π5,2,π5,6,π6,5,π6,6), which is of a slightly higher
dimension as compared to Example 1. The goal is to maximize the likelihood

L = π1,3π3,5π4,1π5,2
(
π3,6 + π4,6 + π5,6 + π6,6

) (
π6,5 + π6,6

)

subject to the simplex constraints from (19), (20) and (21), respectively, and given as:

1. π1,3 + π3,5 + π3,6 + π4,1 + π4,6 + π5,2 + π5,6 + π6,5 + π6,6 = 1
2. π1,3 = 1/6,π3,5 + π3,6 = 5/24,π4,1 + π4,6 = 5/24,π5,2 + π5,6 =

5/24,π6,5 + π6,6 = 5/24
3. π4,1 = 1/6,π5,2 = 1/6,π1,3 = 1/6,π3,5+π6,5 = 1/4,π3,6+π4,6+π5,6+π6,6 = 1/4

The results of the maximum likelihood estimates derived from (18) are provided in
Table 2. In this case note that π̂3,6 was at the boundary of the feasible region and set equal

Table 1 Bivariate estimates for π̂i,j , i = 1, 2, · · · , 6, j = 1, 2, · · · , 6, corresponding to example 1
i/j rt = 1 rt = 2 rt = 3 rt = 4 rt = 5 rt = 6 π̂i,. δxrsi

rs = 1 0 0 1/6 0 0 0 1/6 1

rs = 2 1/6 0 0 0 0 0 1/6 1

rs = 3 0 1/6 0 0 0 0 1/6 1

rs = 4 0 0 0 0 0 0 0 0

rs = 5 0 0 0 0 0 1/4 1/4 1

rs = 6 0 0 0 1/6 0 1/12 1/4 1

π̂.,j 1/6 1/6 1/6 1/6 0 1/3 1

δ
y
rtj

1 1 1 1 0 1
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Fig. 1 Estimate of Ŝ(x, y) for example 1 data

to 0. The plot of the bivariate survival function Ŝ(x, y) from (24) is given in Fig. 2, which
as before is clearly monotone decreasing in both dimensions for increasing values of the
data with positive support.

Example 3. For n = 6 we have the following data:

s = (6.4, 7.0, 7.2, 8.1, 6.2, 7.4), rs = (2, 3, 4, 6, 1, 5), δx = (0, 1, 0, 0, 1, 0),

t = (8.6, 7.5, 8.0, 4.8, 0.8, 4.0), rt = (6, 4, 5, 3, 1, 2), δy = (0, 1, 0, 0, 1, 0).

The vector of parameters of interest defined by the censoring patterns as per (16) is
given as π = (π1,1,π3,4,π3,6π6,4,π6,6). The goal is to maximize the likelihood

L = π1,1π3,4π6,6
(
π3,6 + π6,6

) (
π6,4 + π6,6

)2

subject to the simplex constraints from (19), (20) and (21), respectively, and given as:

1. π1,1 + π3,4 + π3,6 + π6,4 + π6,6 = 1
2. π1,1 = 1/6,π3,4 + π3,6 = 5/24,π6,4 + π6,6 = 5/8
3. π1,1 = 1/6,π3,4 + π6,4 = 5/18,π3,6 + π6,6 = 5/9

In this example case we have heavy censoring relative to the total number of observa-
tions. Similar to example 2, π̂3,6 was at the boundary of the feasible region and set equal
to 0. The results of the maximum likelihood estimates derived from (18) are provided
in Table 3. The plot of the bivariate survival function Ŝ(x, y) from (24) is given in Fig. 3,

Table 2 Bivariate estimates for π̂i,j , i = 1, 2, · · · , 6, j = 1, 2, · · · , 6, corresponding to example 2

i/j rt = 1 rt = 2 rt = 3 rt = 4 rt = 5 rt = 6 π̂i,. δxrsi

rs = 1 0 0 1/6 0 0 0 1/6 1

rs = 2 0 0 0 0 0 0 0 0

rs = 3 0 0 0 0 5/24 0 5/24 1

rs = 4 1/6 0 0 0 0 1/24 5/24 1

rs = 5 0 1/6 0 0 0 1/24 5/24 1

rs = 6 0 0 0 0 1/24 1/6 5/24 1

π̂.,j 1/6 1/6 1/6 0 1/4 1/4 1

δ
y
rtj

1 1 1 0 1 1
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Fig. 2 Estimate of Ŝ(x, y) for example 2 data

which as before is clearly monotone decreasing in both dimensions for increasing values
of data with positive support.
Note that if there was no censoring within examples 1–3 then the respective values

for π̂rsi ,rti , i = 1, 2, · · · , n, would be simply 1/n, which corresponds to the maximum
likelihood estimates for the classic empirical joint density function.

3.2 Real data examples

In this section we re-analyze two sets of real data utilized to demonstrate other
approaches to bivarate survival function estimation (Akritas and Van Keilegom 2003;
Wang and Wells 1997), see the references contained within relative to the source of the
original data.

Survival days of skin grafts in burn patients (Wang and Wells 1997). For this data
set we have n = 11 paired survival times and censoring indicators for skin grafts in burn
patients given as:

s = (37, 19, 57, 93, 16, 22, 20, 18, 63, 29, 60),

t = (29, 13, 15, 26, 11, 17, 26, 21, 43, 15, 40),

δx = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0),

δy = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Table 3 Bivariate estimates for π̂i,j , i = 1, 2, · · · , 6, j = 1, 2, · · · , 6, corresponding to example 3

i/j rt = 1 rt = 2 rt = 3 rt = 4 rt = 5 rt = 6 π̂i,. δxrsi

rs = 1 1/6 0 0 0 0 0 1/6 1

rs = 2 0 0 0 0 0 0 0 0

rs = 3 0 0 0 5/24 0 0 5/24 1

rs = 4 0 0 0 0 0 0 0 0

rs = 5 0 0 0 0 0 0 0 0

rs = 6 0 0 0 5/72 0 5/9 5/8 1

π̂.,j 1/6 0 0 5/18 0 5/9 1

δ
y
rtj

1 0 0 1 0 1
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Fig. 3 Estimate of Ŝ(x, y) for example 3 data

As you can see there is no censoring in the y component and only a moderate amount
of censoring in the x component. Hence in most instances the π̂rsi ,rtj ’s will be equal to
1/n. In this case the vector of parameters with the corresponding maximum likelihood
estimates are given as:

(
π̂1,1 = 1

11 , π̂2,8 = 1
11 , π̂3,2 = 1

11 , π̂4,6 = 1
11 , π̂5,5 = 1

11 , π̂6,4 =
1
11 , π̂7,9 = 1

11 , π̂10,3 = 3
64 , π̂10,10 = 31

704 , π̂10,11 = 1
11 , π̂11,3 = 31

704 , π̂11,7 = 1
11 , π̂11,10 = 3

64
)
.

The likelihood for this example has the form

L = π1,1π2,8π3,2π4,6π5,5π6,4π7,9π10,11
(
π10,3 + π11,3

)
π11,7

(
π10,10 + π11,10

)
(25)

with simplex constraints from (19), (20) and (21), respectively, given as:

1. π1,1 + π2,8 + π3,2 + π4,6 + π5,5 + π6,4 + π7,9 + π10,3 + π10,10 + π10,11 + π11,3 +
π11,7 + π11,10 = 1,

2. π1,1 = 1/11,π2,8 = 1/11,π3,2 = 1/11,π4,6 = 1/11,π5,5 = 1/11,π6,4 =
1/11,π7,9 = 1/11,π10,3 + π10,10 + π10,11 = 2/11,π11,3 + π11,7 + π11,10 = 2/11

3. π1,1 = 1/11,π3,2 = 1/11,π10,3 + π11,3 = 1/11,π6,4 = 1/11,π5,5 = 1/11,π4,6 =
1/11, π11,7 = 1/11,π2,8 = 1/11,π7,9 = 1/11,π10,10+π11,10 = 1/11,π10,11 = 1/11.

Again, we see the most of the parameters in the likelihood are determined via the
marginal constraints, which should be obvious given the low percentage of censored

Table 4 Estimated bivariate survival probabilites for skin graft data evaluated at themarginal quartiles

ux uy Q̂x(ux) Q̂y(uy) Ŝ
(
Q̂x(ux), Q̂y(uy)

)

0.25 0.25 19.25 15.0 0.82

0.25 0.5 19.25 21.0 0.82

0.25 0.75 19.25 28.25 0.73

0.5 0.25 29. 15.0 0.73

0.5 0.5 29. 21.0 0.55

0.5 0.75 29. 28.25 0.45

0.75 0.25 59.25 15.0 0.73

0.75 0.5 59.25 21.0 0.55

0.75 0.75 59.25 28.25 0.45
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Fig. 4 Estimate of Ŝ(x, y) for survival days of skin grafts

observations. The estimated bivariate survival probabilities Ŝ(Q̂x(ux), Q̂y(uy)) evaluated
at the marginal quartiles are provided in Table 4. The joint bivariate survival function is
plotted in Fig. 4. We see that our estimates provide a valid estimator of the joint survival
function that is monotone decreasing in both dimensions.

Recurrence times to infection at the point of insertion of a catheter for kidney
patients using portable dialysis equipment (Akritas and Van Keilegom 2003). For
this data set we have n = 38 paired survival times corresponding to infections times at
two points along with paired censoring indicators. The data given below yields 487 πi,j
parameters to be estimated. The constraints from (19), (20) and (21) and likelihood are not
presented for this problem. Essentially the problem is a basic symbolic linear program-
ming problem, which in our case was readily handled within Mathematica(Mathematica
8.0 for Linux, Wolfram Research Inc.,Champaign, IL). The number of independent free
parameters to be estimated after considering the constraints was 248.

s = (8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7, 141, 96, 149, 536, 17, 185, 292, 22, 15, 152, 402,

13, 39, 12, 113, 132, 34, 2, 130, 27, 5, 152, 190, 119, 54, 6, 63),

Table 5 Estimated bivariate survival probabilities for recurrence times to infection at the point of
insertion of a catheter for kidney patients at the marginal quantiles

ux uy Q̂x(ux) Q̂y(uy) Ŝ(Q̂x(ux), Q̂y(uy))

0.25 0.25 15 16 0.95

0.25 0.5 15 39 0.92

0.25 0.75 15 154 0.81

0.5 0.25 46 16 0.91

0.5 0.5 46 39 0.85

0.5 0.75 46 154 0.68

0.75 0.25 149 16 0.90

0.75 0.5 149 39 0.77

0.75 0.75 149 154 0.58
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Fig. 5 Estimate of Ŝ(x, y) for survival days for recurrence times to infection

t = (16, 13, 28, 318, 12, 245, 9, 30, 196, 154, 333, 8, 38, 70, 25, 4, 177, 114, 159, 108, 562, 24,

66, 46, 40, 201, 156, 30, 25, 26, 58, 43, 30, 5, 8, 16, 78, 8),

δx = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1),

δy = (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0).

Due to the size of the problemwe only present the estimated bivariate survival probabil-
ities Ŝ(Q̂x(ux), Q̂y(uy)) evaluated at themarginal quartiles as provided in Table 5. The joint
bivariate survival function is plotted in Fig. 5. We see that our estimates provide a valid
estimator of the joint survival function that is monotone decreasing in both dimensions.
It is straightforward to evaluate all potential survival probabilities and any estimators one
wishes to derive from these given the sophistication of current software packages.

4 Conclusions
In this note we provide the only method for estimating a bivariate survival function such
that the marginal estimators correspond exactly to the Kaplan-Meier product limit esti-
mators such that there is a relative consistency between the marginal estimates derived
via univariate or bivariate methods. Unlike other methods developed in the literature,
our approach is generalizable to higher dimensions and different censoring mecha-
nisms(interval and left censoring). Our methodology also opens up an alternative path for
kernel smoothing of both the bivariate density, distribution function and survival function
via use of the estimated πi,j’s over the multinomial grid of non-zero mass. Using real data
we illustrated the computational approach and feasibility of this new method of simplex
constraint based maximum likelihood estimation as applied to right censored data.
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