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Abstract

We introduce and study general mathematical properties of a new generator of
continuous distributions with three extra parameters called the odd log-logistic
logarithmic generated family of distributions. We present some special models and
investigate the asymptotes and shapes. The new density function can be expressed as a
linear combination of exponentiated densities based on the same baseline distribution.
Explicit expressions for the ordinary and incomplete moments, quantile and generating
functions, Shannon and Rényi entropies and order statistics, which hold for any
baseline model, are determined. We discuss the estimation of the model parameters by
maximum likelihood. Further, we introduce the new family in long-term survival
models. We illustrate the potentiality of the proposed models by means of four
applications to real data.
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1 Introduction
Statistical distributions are very useful in describing and predicting real world phenom-
ena. Numerous extended distributions have been extensively used over the last decades
for modeling data in several areas. Recent developments focus on defining new families
that extend well-known distributions and at the same time provide greater flexibility in
modeling data in practice. Hence, several classes to generate new distributions by adding
one ormore parameters have been proposed in the statistical literature. Some well-known
generators are the Marshall-Olkin generated (MO-G) by Marshall and Olkin (1997),
beta-G by Eugene et al. (2002), Kumaraswamy-G (Kw-G) by Cordeiro and de Castro
(2011),Weibull-G by Bourguignon et al. (2014), exponentiated half-logistic-G by Cordeiro
et al. (2014a), Lomax-G by Cordeiro et al. (2014b), among others.
Let G(x; ξ) be a baseline cumulative distribution function (cdf) and ξ be the vector of

associated parameters. Recently, Gleaton and Lynch (2004, 2006, 2010) defined the cdf of
the odd log-logistic family with one extra shape parameter α > 0 by

H(x) = G(x; ξ)α

G(x; ξ)α + Ḡ(x; ξ)α
, (1)
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where Ḡ(x; ξ) = 1 − G(x; ξ). More precisely, they showed the following facts:

• The set of generalized log-logistic (GLL) transformations form an Abelian group with
the binary operation of composition;

• The transformation group partitions the set of all lifetime distributions into
equivalence classes, so that any two distributions in an equivalence class are related
through a GLL transformation;

• Either every distribution in an equivalence class has a moment generating function
(mgf), or none does;

• Every distribution in an equivalence class has the same number of moments;
• Each equivalence class is linearly ordered according to the transformation parameter,

with larger values of this parameter corresponding to smaller dispersion of the
distribution about the common median class; and

• Within an equivalence class, the Kullback-Leibler information is an increasing
function of the ratio of the transformation parameters.

In addition, Gleaton and Rahman (2010, 2014) obtained asymptotic results for the max-
imum likelihood estimates (MLEs) of the parameters of these two distributions. They
proved that for distributions generated from either a two-parameter Weibull or a two-
parameter inverse Gaussian distributions by a GLL transformation, the joint MLEs of
the parameters are asymptotically normal and efficient, provided the GLL transformation
parameter exceeds three.
We define the cdf of the odd log-logistic logarithmic-G (OLLL-G) family by

F(x) =
log
[
1 − βG(x,ξ)α

G(x,ξ)α+G(x,ξ)α

]

log(1 − β)
, (2)

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0 and 0 <

β < 1 are two additional shape parameters. It includes the odd log-logistic-G (OLL-G)
family (Gleaton and Lynch 2004, 2006) and the logarithmic-G family. Some special models
are given in Table 1.
This paper is organized as follows. In Section 2, we provide a physical interpretation

of the OLLL-G family and define two special cases. In Section 3, two useful linear rep-
resentations are derived. In Section 4, we obtain explicit expressions for the moments
and generating function. In Section 5, general expressions for the Rényi and Shannon
entropies and order statistics are presented. Estimation of the model parameters by maxi-
mum likelihood is investigated in Section 6.We also present the performance of theMLEs
through a simulation study. In Section 7, the OLLL-G model is modified for possible
presence of long-term survivors in the data. Four applications to real data illustrate the
performance of the proposed models in Section 8. The paper is concluded in Section 9.

Table 1 Some special models

α β G(x) Reduced distribution

- ↑ 1 G(x) OLL-G family [Gleaton and Lynch (2004, 2006)]

1 - G(x) Logarithmic-G family baseline distribution

1 ↑ 1 G(x) G(x)
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2 Motivation and special cases
The density function corresponding to (2) is given by

f (x;α,β , ξ) = αβg(x, ξ)G(x, ξ)α−1Ḡ(x, ξ)α−1

− [G(x, ξ)α + Ḡ(x, ξ)α
] [

(1 − β)G(x, ξ)α + Ḡ(x, ξ)α
]
log(1 − β)

, (3)

where g(x; ξ) is the baseline pdf. Hereafter, a random variable X with density function (3)
is denoted by X ∼ OLLL-G(α,β , ξ). Further, we can omit sometimes the dependence on
the vector ξ of the parameters and write simply G(x) = G(x; ξ).
A motivation of this family can be explained as follows. Suppose that a parallel system

is made up of N components and the lifetimes of the components are independent and
identically distributed (iid) random variables, denoted by Z1, · · · ,ZN , with common cdf
(1). Then, the system fails as soon as the last component fails, namely the lifetime of the
whole system is represented by X = max{Z1, · · · ,ZN }. In many survival parallel systems,
it is almost impossible to have a fixed number of components because some of them get
lost or censored for various reasons. Therefore wemay assume thatN is a discrete random
variable. Suppose that N has the logarithmic distribution with probability mass function
given by

P(N = n) = −1
log(1 − β)

βn

n
, n = 1, 2, . . . , 0 < β < 1.

Then, the cdf of the life length of the whole system, X, is obtained as

F(x) =
∞∑
n=1

P(X ≤ x|N = n)P(N = n)

=
∞∑
n=1

[
G(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

]n −1
log(1 − β)

βn

n
=

− log
[
1 − βG(x,ξ)α

G(x,ξ)α+Ḡ(x,ξ)α

]

− log(1 − β)

which is identical to (2).
The hazard rate function (hrf ) of X becomes

h(x;α,β , ξ) = −αβg(x, ξ)G(x, ξ)α−1Ḡ(x, ξ)α−1 [G(x, ξ)α + Ḡ(x, ξ)α
]−1

[
(1 − β)G(x, ξ)α + Ḡ(x, ξ)α

]
{
log
[

1−β

1− β G(x,ξ)α

G(x,ξ)α+Ḡ(x,ξ)α
)

]} . (4)

The OLLL-G family of distributions is easily simulated by inverting (2) as follows: if U
has a uniform U(0, 1) distribution, then

Q(U) = QG

⎛
⎝

[
1 − (1 − β)U

] 1
α

[
1 − (1 − β)U

] 1
α + [

(1 − β)U − (1 − β)
] 1

α

⎞
⎠ , (5)

has the density function (3), where QG(u) = G−1(u) is the quantile function (qf ) of the
baseline G.

Remark 1 Although, we have stated that β ∈ (0, 1), Eq. (2) is still a cdf if β < 0. Hence,
we can consider the OLLL-G family defined for any β ∈ (−∞, 0) ∪ (0, 1).

In Appendix 1, we present the asymptotes and shapes of the OLLL-G model.
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2.1 Special OLLL-G distributions

The OLLL-G density function (3) allows for greater flexibility of its tails and can be widely
applied in many areas of engineering and biology. It will be most tractable when G(x; ξ)

and g(x; ξ) have simple analytic expressions. We now present and discuss some special
cases of this family because it extends several widely-known distributions in the literature.

2.1.1 Odd log-logistic logarithmicWeibull (OLLL-W)model

LetG(x; ξ) = 1−e−(b x)a theWeibull cdf, with scale parameter b > 0 and shape parameter
a > 0, where ξ = (a, b). The OLLL-W density function (for x > 0) is given by

f (x; a, b,α,β) = aα β ba e−α(b x)a [1 − e−(b x)a]α−1

− {e−α(b x)a + [
1 − e−(b x)a]α} {e−α(b x)a + (1 − β)

[
1 − e−(b x)a]α} log(1 − β)

.

Figures 1 and 2 display some shapes of the OLLL-W density and hazard functions,
respectively. The plots in Fig. 1 indicate that this density function can be decreasing,
unimodal and bimodal. Moreover, Fig. 2 reveals that the hrf of the OLLL-W model can
be decreasing, increasing, increasing-decreasing-increasing, bathtub shaped and upside
bathtub shaped.

2.1.2 Odd log-logistic logarithmic normal (OLLLN)model

Consider the normal model with location parameter μ ∈ R and scale parameter σ > 0,
whose pdf and cdf (for x ∈ R) are given by

g(x; ξ) = 1
σ

φ

(
x − μ

σ

)
and G(x; ξ) = �

(
x − μ

σ

)
,

respectively, where ξ = (μ, σ)T . Inserting these expressions in (3), the OLLLN pdf is
given by

f (x;μ, σ, a, b) = α β φ
( x−μ

σ

)
�
( x−μ

σ

)α−1 [1 − �
( x−μ

σ

)]α−1 [ log(1 − β)]−1

−σ
{
�
( x−μ

σ

)α + [
1 − �

( x−μ
σ

)]α}{
(1 − β)�

( x−μ
σ

)α + [
1 − �

( x−μ
σ

)]α} ,

where x ∈ R, μ ∈ R is a location parameter, σ > 0 is a scale parameter, α and β are the
shape and scale parameters, and φ(·) and �(·) are the pdf and cdf of the standard normal
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Fig. 1 Plots of the OLLL-W density for a = 3.5 and b = 1 (left) and for a = 0.5 and b = 1 (right)
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Fig. 2 Plots of the OLLL-W hrf for a = 3.5 and b = 1 (left) and for a = 0.5 and b = 1 (right)

distribution, respectively. For μ = 0 and σ = 1, we obtain the OLLL-standard normal
(OLLL-SN) distribution. Plots of the OLLL-SN density function for selected parameter
values are displayed in Fig. 3.We note that thismodel is suitable for unimodal and bimodal
data sets.

3 Linear representations
Let A(u) = uα

uα+(1−u)α
be the cdf of the odd log-logistic uniform (Gleaton and Lynch 2004,

2006, 2010) distribution. For β ∈ (0, 1), we have 0 < βA(u) < 1. Then, we can apply the
power series reported in Appendix 2 by taking u = G(x)α , since they are always conver-
gent in the interval (0, 1), i.e., the power series are valid in the support of X. Henceforth,
we consider that 0 < β < 1, which is not a restrictive assumption since it is in agreement
with the logarithm distribution defined for compounding the OLLL-G family.
Based on the power series − log(1 − u) = ∑∞

i=1
ui
i (which converges for |u| < 1), the

OLLL-G family cdf can be expanded as

F(x) = −1
log(1 − β)

∞∑
i=1

β i

i

[
G(x)α

G(x)α + [1 − G(x)]α

]i
.
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Fig. 3 Plots of the OLLL-SN density for selected values of α and β



Alizadeh et al. Journal of Statistical Distributions and Applications  (2017) 4:6 Page 6 of 25

By using Eq. (24) given in Appendix 2, we obtain

F(x) = −1
log(1 − β)

∞∑
i=1

β i

i

∞∑
k=0

h∗
k(α, i)G(x)k ,

where the coefficients h∗
k(α, i) can be determined from the recursive formula given

after (24).
Further, we define the exponentiated-G (“Exp-G”) distribution for an arbitrary parent

distribution G, sayW ∼ ExpcG, ifW has cdf and pdf given byHc(x) = G(x)c and hc(x) =
c g(x)G(x)c−1, respectively. This transformed model is also called the Lehmann type I
distribution, say Expc(G).
Then, we can rewrite F(x) as

F(x) =
∞∑
k=0

dk Hk(x), (6)

where dk = ∑∞
i=1

−β ih∗
k(α,i)

i log(1−β)
and Hk(x) is the Exp-G cdf with power parameter k.

By differentiating (6), the pdf of X follows as

f (x) =
∞∑
k=0

dk+1 hk+1(x), (7)

where hk+1(x) = (k + 1)G(x)k g(x) is the Exp-G density function with power
parameter (k + 1).
Equation (7) reveals that the OLLL-G density function is a linear combination of Exp-G

densities. Some structural properties of the new family such as the ordinary and incom-
plete moments and generating function can be determined from well-established prop-
erties of the Exp-G distribution. The properties of Exp-G distributions have been studied
by many authors in recent years, see Mudholkar and Srivastava (1993) and Mudholkar
et al. (1995) for exponentiated Weibull, Gupta and Kundu (1999) for exponentiated
exponential and Nadarajah (2006) for exponentiated Gumbel, among others. The linear
representations (6) and (7) are the main results of this section.

4 Moments and generating function
Let Yk be a exp-G random variable with power parameter k + 1, i.e., having density
hk+1(x). The nth ordinary moment of X ∼ OLLL-G follows from (7) as

E(Xn) =
∞∑
k=0

dk+1 E(Yn
k ) =

∞∑
k=0

(k + 1) dk+1 τ(n, k), (8)

where τ(n, k) = ∫∞
−∞ xn G(x)k g(x)dx = ∫ 1

0 QG(u)n ukdu. In fact, it is possible to exchange
the infinite sum and the integral using the dominated convergence theorem for series.
Expressions for moments of several exp-G distributions are given by Nadarajah and

Kotz (2006), which can be used to obtain E(Xn). Cordeiro and Nadarajah (2011) deter-
mined τ(n, k) for some well-known distributions such as the normal, beta, gamma and
Weibull distributions.
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The variance, skewness and kurtosis measures are given by

Var(X) = E(X2)−[E(X)]2 ,

Skewness(X) = E(X3) − 3E(X)E(X2) + 2[E(X)]3

[Var(X)]
3
2

,

Kurtosis(X) = E(X4) − 4E(X)E(X3) + 6E(X2)[E(X)]2 −3[E(X)]4

[Var(X)]2
.

Plots of the skewness and kurtosis of the OLLL-W distribution as functions of α and β

for a = 2 and b = 1 are displayed in Fig. 4.
For empirical purposes, the shape of many distributions can be usefully described by

what we call the incomplete moments. These types of moments play an important role for
measuring inequality, for example, income quantiles and Lorenz and Bonferroni curves,
which depend upon the incomplete moments of a distribution. The nth incomplete
moment of X is calculated as

mn(y) =
∫ y

−∞
xn f (x)dx =

∞∑
k=0

(k + 1) dk+1

∫ G(y)

0
QG(u)n ukdu. (9)

The last integral can be determined analytically or numerically for most baseline distri-
butions. Equation (9) can be used to determine conditional moments, mean deviations
and Bonferroni and Lorentz curves of X.
LetM(t) = E(et X) be the mgf of X. We can obtainM(t) from (7) as

M(t) =
∞∑
k=0

dk+1Mk(t) =
∞∑
i=0

(k + 1) dk+1 ρ(t, k), (10)

where Mk(t) is the mgf of Yk and ρ(t, k) = ∫∞
−∞ et x G(x)k g(x)dx = ∫ 1

0
exp[ t QG(u)] ukdu.
We can determine the mgfs for several OLLL-G distributions directly from Eq. (10).
We present some mathematical properties of the odd log-logistic logarithmic exponen-

tial (OLLL-E) distribution in Appendix 3 to illustrate the applicability of the previous
results.
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5 Other properties
We hardly need to emphasize the necessity and importance of entropies and order
statistics in any statistical analysis especially in applied work.

5.1 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon 1951; Rényi 1961). The
Rényi entropy of a random variable with pdf f (x) is defined by

IR(γ ) = 1
1 − γ

log
(∫ ∞

0
f γ (x)dx

)
,

for γ > 0 and γ 	= 1. The Shannon entropy of a random variable X is defined by
E
{− log

[
f (X)

]}
. It is the special case of the Rényi entropy when γ ↑ 1. Direct calculation

gives

E
{− log

[
f (X)

]} = − log
[

αβ

− log(1 − β)

]
− E

{
log
[
g(X; ξ)

]}+ (1 − α)E
{
log [G(X; ξ)]

}

+(1 − α)E
{
log
[
Ḡ(X; ξ)

]}+ 2E
{
log
[
G(X; ξ)α + Ḡ(X; ξ)α

]}

+E
{
log
[
1 − βG(X, ξ)α

G(X, ξ)α + Ḡ(X, ξ)α

]}
.

First, we define

A(a1, a2, a3, a4;α,β) =
∫ 1

0

ua1(1 − u)a2

[uα + (1 − u)α]a3
[
1 − βuα

uα+(1−u)α

]a4 du.

By using the binomial expansion, we have

A(a1, a2, a3, a4;α,β) =
∞∑

i,j=0
(−1)i+j

(−a4
i

)(
a2
j

)∫ 1

0

β iua1+α i+j

[uα + (1 − u)α]a3+i du.

Second, we have the power series from Eq. (28) given in Appendix 2
[

1
uα + (1 − u)α

]a3+i
=

∞∑
k=0

s∗k(α, a3 + i, 0)uk ,

where s∗k(α, a3 + i, 0) is defined there. Then,

A(a1, a2, a3, a4;α,β) =
∞∑

i,j,k=0

(−1)i+jβ i
(−a4

i

)(
a2
j

)
s∗k(α, a3 + i, 0)

k + 1 + a1 + α i + j
.

After some algebraic manipulations, we can write

E
{
log [G(X)]

} = αβ

− log(1 − β)

∂

∂t
A(α + t − 1,α − 1, 2, 1;α,β)

∣∣∣
t=0

,

E
{
log
[
Ḡ(X)

]} = αβ

− log(1 − β)

∂

∂t
A(α − 1,α + t − 1, 2, 1;α,β)

∣∣∣
t=0

,

E
{
log
{
G(X; ξ)α + Ḡ(X; ξ)α

}} = αβ

− log(1 − β)

∂

∂t
A(α − 1,α − 1, 2 − t, 1;α,β)

∣∣∣
t=0

,

E
{
log
[
1 − βG(X, ξ)α

G(X, ξ)α + Ḡ(X, ξ)α

]}
= αβ

− log(1 − β)

∂

∂t
A(α − 1,α − 1, 2, 1 − t;α,β)

∣∣∣
t=0

.
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Then, the Shannon entropy of X reduces to

E
{− log[ f (X)]

} = − log
[

αβ

− log(1 − β)

]
− E

{
log
[
g(X; ξ)

]}

−α(1 − α)β

log(1 − β)

∂

∂t
A(α + t − 1,α − 1, 2, 1;α,β)

∣∣∣
t=0

−α(1 − α)β

log(1 − β)

∂

∂t
A(α − 1,α + t − 1, 2, 1;α,β)

∣∣∣
t=0

− 2αβ

log(1 − β)

∂

∂t
A(α − 1,α − 1, 2 − t, 1;α,β)

∣∣∣
t=0

− αβ

log(1 − β)

∂

∂t
A(α − 1,α − 1, 2, 1 − t;α,β)

∣∣∣
t=0

.

For the Rényi entropy, after some algebraic developments, we obtain

IR(γ ) = γ
1−γ

log
[

αβ
− log(1−β)

]
+ 1

1−γ
log [B(α,β , γ )] ,

where

B(α,β , γ ) =
∫ 1

0

gγ−1 (G−1(u)
)
uγ (α−1)(1 − u)γ (α−1)

[uα + (1 − u)α]2γ
[
1 − β uα

uα+(1−u)α

]γ du.

By using the generalized binomial expansion, we have

B(α,β , γ ) =
∞∑

i,j=0
(−1)i+jβ i

(−γ

i

)(
γ (α − 1)

j

)∫ 1

0

gγ−1 (G−1(u)
)
uγ (α−1)+α i+j

[uα + (1 − u)α]2γ+i du.

Further, we can write from Eq. (28)

u−γ

[uα + (1 − u)α]2γ+i =
∞∑
k=0

s∗k(α, 2γ + i, γ )uk ,

where s∗k(α, 2γ + i, γ ) is defined there. Finally,

B(α,β , γ ) =
∞∑

i,j,k=0

(−1)i+jβ i

k + 1 + α (γ + i) + j

(−γ

i

)(
γ (α − 1)

j

)
s∗k(α, 2γ + i, γ )EYk

{
gγ−1 (G−1(Y )

)}
,

where Yk ∼ Beta(k + 1 + α (γ + i) + j, 1). Figure 5 displays plots of the Rényi entropy
versus γ for a = 3.5, b = 1 and selected values of α and β .

5.2 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose that X1, · · · ,Xn is a random sample from the OLLL-G distribution. Let Xi:n
denote the ith order statistic. From Eqs. (6) and (7), the pdf of Xi:n can be written as

fi:n(x) = K
n−i∑
j=0

(−1)j
(
n − i
j

) [ ∞∑
r=0

dr+1 (r + 1)G(x)r g(x)
][ ∞∑

k=0
dk G(x)k

]j+i−1

,

whereK = n! /[ (i−1)! (n−i)! ]. By using a result of Gradshteyn and Ryzhik (2000, Section
0.314) for a power series raised to a positive integer number, we obtain

[ ∞∑
k=0

dk G(x)k
]j+i−1

=
∞∑
k=0

ej+i−1,k G(x)k ,
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Fig. 5 Plots of Rényi entropy of the OLLL-W distribution versus γ for a = 3.5, b = 1 and selected values of α
and β

where ej+i−1,0 = dj+i−1
0 and, for k ≥ 1,

ej+i−1,k = (k d0)−1
k∑

q=1
[ q(j + i) − k] dq ej+i−1,k−q.

Setting d∗
r = (r + 1)dr+1 and using a result of Gradshteyn and Ryzhik (2000, Section

0.316) for multiplying two power series, we have

fi:n(x) = K
n−i∑
j=0

(−1)j
(
n − i
j

)
g(x)

[ ∞∑
r=0

d∗
r G(x)r

][ ∞∑
k=0

ej+i−1,k G(x)k
]

= K
n−i∑
j=0

(−1)j
(
n − i
j

)
g(x)

∞∑
k=0

e∗k G(x)k ,

where e∗k = ∑k
q=0 ej+i−1,q d∗

k−q. Hence, we can write

fi:n(x) =
∞∑
k=0

sk hk+1(x), (11)

where (for k ≥ 0)

sk = k
k + 1

n−i∑
j=0

(−1)j
(
n − i
j

)
e∗k .

Equation (11) is the main result of this section. It reveals that the pdf of the OLLL-G
order statistics is a linear combination of Exp-G densities. So, several mathematical quan-
tities of the OLLL-G order statistics such as ordinary, incomplete and factorial moments,
mgf, mean deviations, among others, can be obtained from those quantities of the Exp-G
distribution.

6 Estimation
In this section, we determine the MLEs of the model parameters of the new family from
complete samples. Let x1, · · · , xn be the observed values from the OLLL-G distribution
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with parameters α,β and ξ . Let θ = (α,β , ξ)� be the parameter vector. The total log-
likelihood function for θ is given by

�n = �n(θ) = n log
[

αβ

− log(1 − β)

]
+

n∑
i=1

log
[
g(xi; ξ)

]+ (α − 1)
n∑

i=1
log
[
G(xi; ξ)Ḡ(xi; ξ)

]

−
n∑

i=1
log
[
G(xi; ξ)α + Ḡ(xi; ξ)α

]−
n∑

i=1
log
[
(1 − β)G(xi; ξ)α + Ḡ(xi; ξ)α

]
. (12)

The log-likelihood function can be maximized either directly or by solving the nonlin-
ear likelihood equations obtained by differentiating (12).We use the goodness.fit function
in R (R Development Core Team 2013) and NLMixed procedure in SAS to obtain the
MLEs. The components of the score function Un(θ) = (∂�n/∂α, ∂�n/∂β , ∂�n/∂ξ)� are

∂�n
∂α

= n
α

+
n∑

i=1
log
[
G(xi; ξ)Ḡ(xi; ξ)

]

−
n∑

i=1

G(xi; ξ)α log [G(xi; ξ)] + Ḡ(xi; ξ)α log
[
Ḡ(xi; ξ)

]

G(xi; ξ)α + Ḡ(xi; ξ)α

−
n∑

i=1

(1 − β)G(xi; ξ)α log [G(xi; ξ)] + Ḡ(xi; ξ)α log
[
Ḡ(xi; ξ)

]

(1 − β)G(xi; ξ)α + Ḡ(xi; ξ)α
,

∂�n
∂β

= n
β

+ n
(1 − β) log(1 − β)

+
n∑

i=1

G(xi; ξ)α

(1 − β)G(xi; ξ)α + Ḡ(xi; ξ)α

and

∂�n
∂ξ

=
n∑

i=1

g(ξ)(xi, ξ)

g(xi, ξ)
+ (α − 1)

n∑
i=1

G(ξ)(xi, ξ)

G(xi, ξ)
+ (1 − α)

n∑
i=1

G(ξ)(xi, ξ)

Ḡ(xi, ξ)

−α

n∑
i=1

G(ξ)(xi, ξ)
[
G(xi; ξ)α−1 − Ḡ(xi; ξ)α−1]

G(xi; ξ)α + Ḡ(xi; ξ)α

−α

n∑
i=1

G(ξ)(xi, ξ)
[
(1 − β)G(xi; ξ)α−1 − Ḡ(xi; ξ)α−1]

(1 − β)G(xi; ξ)α + Ḡ(xi; ξ)α
,

where h(ξ)(·) means the derivative of the function h with respect to ξ .

6.1 Simulation study

We simulate the OLLL-SN distribution (with μ = 0, σ = 1,α = 0.2, 0.5,β = −0.5, 0.7)
from Eq. (5) by using a random variable U having a uniform distribution in (0, 1). We
simulate n= 50, 150 and 300 variates and, for each replication, we evaluate the MLEs μ̂,
σ̂ , α̂ and β̂ . We repeat this process 2000 times and determine the average estimates (AEs),
biases and means squared errors (MSEs). The results are reported in Table 2.
The figures in Table 2 indicate that the MSEs and the AEs of the estimates of μ, σ , α

and β decay toward zero when the sample size increases, as expected under first-order
asymptotic theory. As n increases, the AEs of the parameters tend to be closer to the true
parameter values. This fact supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the MLEs.
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Table 2 The AEs, biases and MSEs of the OLLLN distribution for μ=0, σ=1, α = 0.2, 0.5 and
β = −0.5, 0.7 varying n

α = 0.2 β = −0.5 α = 0.5 β = −0.5

n Parameter AE Bias MSE Parameter AE Bias MSE

50 μ -0.0499 -0.0499 0.3033 μ -0.0602 -0.0602 0.2529

σ 0.9025 -0.0975 0.2581 σ 1.1766 0.1766 42.5479

α 0.1926 -0.0074 0.0358 α 0.6543 0.1543 20.1315

β -0.7939 -0.2939 1.6520 β -1.0228 -0.5228 3.4332

150 μ -0.0518 -0.0518 0.2303 μ -0.0003 -0.0003 0.1117

σ 0.8911 -0.1089 0.1107 σ 0.9765 -0.0235 0.1005

α 0.1771 -0.0229 0.0137 α 0.4934 -0.0066 0.0487

β -0.5812 -0.0812 0.4428 β -0.9119 -0.4119 2.1433

300 μ -0.0395 -0.0395 0.1105 μ 0.0037 0.0037 0.0551

σ 0.8787 -0.1213 0.0772 σ 0.9877 -0.0123 0.0452

α 0.1737 -0.0263 0.0099 α 0.4973 -0.0027 0.0211

β -0.5532 -0.0532 0.1873 β -0.7216 -0.2216 0.9713

α = 0.2 β = 0.7 α = 0.5 β = 0.7

n Parameter AE Bias MSE Parameter AE Bias MSE

50 μ 0.0436 0.0436 0.3052 μ 0.0792 0.0792 0.2650

σ 0.9008 -0.0992 0.1778 σ 1.1175 0.1175 83.1835

α 0.1933 -0.0067 0.0251 α 0.6144 0.1144 42.5964

β 0.5943 -0.1057 0.1579 β 0.4014 -0.2986 0.8603

150 μ -0.0064 -0.0064 0.2759 μ 0.0152 0.0152 0.1170

σ 0.8930 -0.1070 0.1148 σ 0.9899 -0.0101 0.0938

α 0.1864 -0.0136 0.0151 α 0.5029 0.0029 0.0474

β 0.6668 -0.0332 0.0500 β 0.6043 -0.0957 0.1170

300 μ 0.0624 0.0624 0.1436 μ -0.0038 -0.0038 0.0616

σ 0.8393 -0.1607 0.0897 σ 0.9916 -0.0084 0.0460

α 0.1713 -0.0287 0.0117 α 0.5012 0.0012 0.0227

β 0.6797 -0.0203 0.0310 β 0.6603 -0.0397 0.0356

7 The OLLL-G family with long-term survival
Models for survival analysis typically consider that every subject in the population under
study is susceptible to the event of interest and will eventually experience such event if
follow-up is sufficiently long. However, there are situations when a fraction of individuals
are not expected to experience the event of interest, that is, those individuals are cured
or not susceptible. Cure rate models for survival data have been used to model time-to-
event data for various types of cancers, including breast cancer, non-Hodgkins lymphoma,
leukemia, prostate cancer and melanoma. These models have become very popular due
to significant progress in treatment therapies leading to enhanced cure rates.
Models to accommodate a cured fraction have been widely developed. Perhaps the

most popular type of cure rate models are the mixture models (MMs) developed by
Boag (1949), Berkson and Gage (1952) and Farewell (1982). Some proposals have been
made recently in the literature by more long term survival to model lifetimes with covari-
ates. For example, Ortega et al. (2012) considered the problem of assessing local influence
in the negative binomial beta Weibull regression model to predict the cure of prostate
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cancer, Hashimoto et al. (2013) derived curvature quantities under various perturba-
tion schemes in Neyman type A beta-Weibull model for long-term survivors, Fachini
et al. (2014) adapted local influence methods to a bivariate regression model with cure
fraction and, recently, Ortega et al. (2015) used local influence methods to the power
series beta-Weibull regression model for predicting breast carcinoma. The MMs allow
simultaneously estimating whether the event of interest will occur, which is called inci-
dence, and when it will occur, given that it can occur, which is called latency. Let Ni (for
i = 1, . . . , n) be the indicator denoting that the ith individual is susceptible (Ni = 1) or
non-susceptible (Ni = 0), i.e., the population is divided into two sub-populations so that
an individual either is cured with probability 0 < p < 1, or has a proper survival function
S(x) with probability (1 − p). In this work, we do not consider the regression structure,
although future research using covariates on the probability p may be investigated. The
MM can be represented by

Spop(xi) = p + (
1 − p

)
S(xi|Ni = 1), (13)

where Spop(xi) is the unconditional survival function of xi for the entire population,
S(xi|Ni = 1) = 1 − F(xi|Ni = 1) is the survival function for the susceptible individuals
and p = P(Ni = 0) is the probability of cure of an individual. The pdf corresponding to
(13) is given by

fpop(xi) = −d Spop(xi)
dt

= (
1 − p

)
f (xi|Ni = 1), (14)

where f (xi|Ni = 1) is the baseline pdf (see Section 2.1) for the susceptible individuals.
Equations (13) and (14) are improper functions, since Spop(x) is not a proper survival
function. We can omit sometimes the dependence on the indicator Ni and write simply
S(xi|Ni = 1) = S(x), f (xi|Ni = 1) = f (x), etc.
Inserting (3) in (14) and (2) in (13), the pdf and survival function of the OLLL-G cure

rate family are given, respectively, by

fpop(x;α,β , ξ , p) = (1 − p) αβg(x, ξ)G(x, ξ)α−1Ḡ(x, ξ)α−1

− [G(x, ξ)α + Ḡ(x, ξ)α
] [

(1 − β)G(x, ξ)α + Ḡ(x, ξ)α
]
log(1 − β)

(15)

and

Spop(xi) = p +
(
1 − p

)

log(1 − β)

[
log(1 − β) − log

(
1 − βG(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

)]
. (16)

A random variable having density (15) is denoted by X ∼ OLLGcr(α,β , ξ , p). The hrf
of the OLLGcr model is given by hpop(t) = fpop(t)/Spop(t).

7.1 Estimation

We consider the situation when the time-to-event is not completely observed and is sub-
ject to right censoring. Let ci denote the censoring time. We observe xi = min{xi, ci}
and δi = I(xi ≤ ci), where δi = 1 if xi is a time-to-event and δi = 0 if xi
is right censored (for i = 1, . . . , n). From n pairs of times and censoring indicators
(x1, δ1), · · · , (xn, δn), the log-likelihood function under non-informative censoring is given
by �n(θ) = ∑

i∈F log fpop(xi; θ) +∑
i∈C log Spop(xi; θ), where θ = (α,β , ξ , p)T denotes the

parameter vector and F and C denote the uncensored and censored sets of observations,
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respectively. Replacing fpop(xi; θ) and Spop(x; θ) by (15) and (16), respectively, the log-
likelihood reduces to

�n(θ) = r log
[

(1 − p) αβ

− log(1 − β)

]
+
∑
i∈F

log
[
g(xi; ξ)

]+ (α − 1)
∑
i∈F

log
[
G(xi; ξ)Ḡ(xi; ξ)

]

−
∑
i∈F

log
[
G(xi; ξ)α + Ḡ(xi; ξ)α

]−
∑
i∈F

log
[
(1 − β)G(xi; ξ)α + Ḡ(xi; ξ)α

]

+
∑
i∈C

log
{
p +

(
1 − p

)

log(1 − β)

[
log(1 − β) − log

(
1 − βG(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

)]}
, (17)

where r is the number of failures (uncensored observations). We can obtain the MLE θ̂

of θ by maximizing the log-likelihood (17) either directly in R using the optim function,
in SAS using the NLMixed procedure and in other statistical software or by solving the
nonlinear likelihood equations obtained by differentiating (17).

8 Applications
In this section, we provide four applications to real data. In the first three applications,
we present some results by fitting special models defined in Section 2.1. In the fourth
application, we present an application using the long-term survival model defined in
Section 7.
For the first three applications, the goodness-of-fit statistics including the Cramér-von

Mises (W ∗) and Anderson-Darling (A∗) test statistics are used to compare the fitted mod-
els; see Chen and Balakrishnan (1995) for more details. The smaller the values of A∗ and
W ∗, the better the fit to the data. We also consider the Kolmogrov-Smirnov (K-S) statis-
tic (and its corresponding p-value) and minus the maximized log-likelihood (�̂n) for the
sake of comparison. For the fourth application (censored data), we adopt the AIC and BIC
statistics to compare the fitted models since the A∗ and W ∗ statistics are not suitable for
censored data.
For the next three applications, we consider the OLLLN distribution and, for the

purpose of comparison, we fit the following models to the data sets described below:

• The normal distribution.
• The exponentiated normal (EN) distribution.
• The logarithmic normal (LN) distribution, the special case of the OLLLN distribution

when α = 1.
• The beta normal (BN) distribution (Eugene et al. 2002) with density

fBN (x) = 1
σB(α,β)

[
�

(
x − μ

σ

)]α−1 [
1 − �

(
x − μ

σ

)]β−1
φ

(
x − μ

σ

)
.

• The gamma normal (GN) distribution (Alzaatreh et al. 2014) with density

fGN (x) = βα

σ�(α)

[
− log

{
1 − �

(
x − μ

σ

)}]α−1 [
1 − �

(
x − μ

σ

)]β−1
φ

(
x − μ

σ

)
.

• The Kumaraswamy normal (KN) distribution (Cordeiro and de Castro 2011) with
density

fKN (x) = αβ

σ

{
�

[(
x − μ

σ

)]}α−1 {
1 −

[
�

(
x − μ

σ

)]α}β−1
φ

(
x − μ

σ

)
.
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• The odd log-logistic normal (OLL-N) distribution (special case of OLLLN
distribution when β → 1) with density (Braga et al. 2016)

fOLL−N (x) = α φ
( x−μ

σ

)
[�
( x−μ

σ

)
]α−1 [ 1 − �

( x−μ
σ

)
]α−1

σ {[ 1 − �
( x−μ

σ

)
]α +[�

( x−μ
σ

)
]α }2 ,

where x ∈ R, μ ∈ R, α > 0, β > 0 and σ > 0.

8.1 Application 1

First, we consider the data set representing the failure times of a particular windshield
device. These data were also studied by Blischke and Murthy (2000) and Murthy et al.
(2004). The data, referred as D1, are: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467,
0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914,
2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035,
1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135,
2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376,
1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.
The MLEs of the parameters and the standard errors (SEs) in parentheses and the

goodness-of-fit statistics for D1 are listed in Table 3. We note that the OLLLN model
outperforms all the fitted competitive models under these statistics.
The histogram of the data D1 and fitted densities are displayed in Fig. 6. We note

that the fitted OLLLN distribution best captures the empirical histogram. Based on
the equations given in Section 4, we give some measures based on the moments of the
OLLLN distribution. The expected value and the variance of the failure times of wind-
shield devices are: E(X) = 2.58 and Var(X) = 1.24., respectively. Also, the skewness

Table 3 The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics for D1

Model μ σ α β �̂n W∗ A∗ K-S p-value

OLLLN 2.887 0.532 0.379 -1.639 126.178 0.035 0.331 0.053 0.963

(0.212) (0.180) (0.192) (1.947)

Normal 2.557 1.112 128.119 0.092 0.608 0.092 0.445

(0.121) (0.086)

EN 1.832 1.337 1.939 128.064 0.075 0.522 0.085 0.557

(2.366) (0.708) (3.878)

BN 0.808 2.443 7.113 2.469 128.085 0.074 0.520 0.084 0.562

( 7.151) (8.162 ) (48.582 ) (14.619 )

GN 2.805 0.541 0.290 0.197 127.757 0.058 0.438 0.075 0.7105

(1.059) (0.265) (0.382) (0.216)

KN 1.654 0.748 0.920 0.320 127.848 0.063 0.469 0.079 0.642

(1.067) (0.539) (1.017) (0.524)

LN 3.172 1.079 -7.091 127.570 0.048 0.391 0.066 0.828

(0.562) (0.094) (16.134)

OLL-N 2.626 0.603 0.452 127.062 0.076 0.523 0.095 0.408

(0.126) (0.218) (0.232)
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Fig. 6 For D1 data, the histogram and the fitted densities for: a OLLLN model and sub-models and
b competitive models

and kurtosis measures are given by Skewness(X) = 0.23 and Kurtosis(X) = 2.42, thus
indicating that the tail on the right side is longer and then it is a platykurtic distribution.

8.2 Application 2

The second data set D2 consists of lifetimes of 43 blood cancer patients (in days) from
one of the Health Hospitals in Saudi Arabia (Abouammoh and Abdulghani 1994). These
data are: 115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1025, 1062,
1063, 1165, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1519, 1578,
1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815 ,1852, 1899, 1925, 1965.
The MLEs of the parameters and SEs (in parentheses) and the goodness-of-fit statistics

for D2 are listed in Table 4. We conclude that the KN model has the smallest �̂n and the
OLLLN has the third smallest �̂n, the BN model has the smallest W ∗ and the OLLLN
and KN models have the second smallest W ∗’s. The OLLLN and BN models have the
smallestA∗’s. The OLLLN and GNmodels have the smallest K-S statistics. The GNmodel
has the largest p-value and the OLLLN and KN models have the second largest p-values.
Therefore, we can conclude that the OLLLN model has either the best fit or is very close
to the best fit with respect to the current criterions. The histogram of D2 and the fitted
densities are displayed in Fig. 7.

8.3 Application 3

The third data set D3 includes the lower discharge of at least seven consecutive days and
return period (time) of ten years of the Cuiabá River, Cuiabá, Mato Grosso, Brazil. These
data have also been studied by Cordeiro et al. (2012). The MLEs of the parameters and
SEs (in parentheses) and the goodness-of-fit statistics for D3 are listed in Table 5.We note
that the OLLLN model outperforms all other fitted models.
The fitted densities for the models listed in Table 5 are displayed in Fig. 8. We verify

that the fitted OLLLN distribution best captures the histogram of these data.
In summary, we conclude that the OLLLN distribution outperforms all the fitted com-

petitive models under the selected criterion for D1, D2 and D3. For all three data sets, we
verify that the fitted OLLLN distribution best captures the three histograms, especially
for the third data set, which indicates the outstanding performance of this distribution.
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Table 4 The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics for D2

Model μ σ α β �̂n W∗ A∗ K-S p-value

OLLLN 930.893 215.288 0.323 0.854 325.684 0.018 0.157 0.057 0.997

(151.780) (93.152) (0.224) (0.202)

Normal 1191.628 500.709 328.303 0.068 0.489 0.083 0.901

(76.357) (53.993)

EN 2083.910 52.5006 0.005 325.847 0.020 0.174 0.076 0.9485

(81.898) (14.640) (0.003)

BN 2153.003 173.89 0.0496 4.139 325.680 0.017 0.157 0.059 0.996

(313.548) (512.195) (0.268) (6.681)

GN 2138.76 251.154 0.101 2.607 326.237 0.020 0.183 0.057 0.998

(0.036) (0.036) (0.016) (1.319)

KN 1825.282 71.445 0.0097 0.529 325.4645 0.018 0.162 0.058 0.997

(288.596) (65.481) (0.019) (0.319)

LN 748.777 472.416 0.974 326.628 0.026 0.221 0.064 0.991

(275.414) (71.311) (0.070)

OLL-N 1131.115 223.172 0.338 327.292 0.058 0.415 0.125 0.473

(75.566) (99.640) (0.231)

8.4 Application 4: OLLL-G long-term survival models

These data consist of n = 493 lifetimes (ti in months) of patients diagnosed with breast
cancer. The steps to construct these data can be found in Gendoo et al. (2015). In
many applications there is qualitative information about the hazard shape, which can
help for selecting a particular polyhazard model. In this context, a device called the
total time on test (TTT) plot is useful. The TTT plot is obtained by plotting G(r/n) =[(∑r

i=1 Ti:n
)+ (n − r)Tr:n

]
/
(∑n

i=1 Ti:n
)
, where r = 1, . . . , n, and Ti:n (for i = 1, . . . , n)

are the order statistics of the sample, against r/n. It is a straight diagonal for constant
hazards leading to an exponential model. It is convex for decreasing hazards and concave
for increasing hazards leading to a single-Weibull model. It is first convex and then con-
cave if the hazard is bathtub-shaped leading to a bi-Weibull model. It is first concave and
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Fig. 7 For D2 data, the histogram and the fitted density for: a OLLLN model and sub-models and b
competitive models
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Table 5 The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics for D3

Model μ σ α β �̂n W∗ A∗ K-S p-value

OLLLN 102.050 7.879 0.100 0.521 188.193 0.024 0.206 0.076 0.9705

(5.611) (5.275) (0.119) (0.381)

Normal 110.214 37.873 192.021 0.109 0.671 0.144 0.378

(6.144) (4.344)

EN 169.145 13.261 0.062 191.360 0.074 0.491 0.113 0.674

(26.432) (13.067) (0.142)

BN 172.325 18.326 0.109 1.785 191.273 0.068 0.465 0.105 0.759

(22.216) (14.485) (0.160) (2.635)

GN 172.393 17.696 0.102 1.340 191.263 0.068 0.465 0.106 0.752

(20.263) (15.038) (0.159) (2.564)

KN 129.188 13.163 0.082 0.361 191.071 0.065 0.450 0.111 0.695

(30.610) (5.980) (0.104) (0.297)

LN 62.065 33.056 0.997 190.819 0.059 0.417 0.109 0.717

(23.996) (6.044) (0.011)

OLL-N 105.546 7.830 0.098 188.655 0.034 0.271 0.110 0.7025

(4.163) (4.921) (0.110)

then convex if the hazard is bimodal-shaped leading to a log-logistic model. For multi-
modal hazards, the TTT plot contains several concave and convex regions. The TTT plot
in Fig. 10a indicates an increasing-decreasing-increasing hrf. So, the OLLLW distribution
would be a good option to model these data.
Next, we compare the results by fitting the OLLLWcrmodel and some of its sub-models

such as: the odd log-logistic Weibull cure rate (OLL-Wcr) model (OLLLNcr distribution
when β → 1), the logarithmic Weibull cure rate (LWcr) model (OLLLNcr distribution
when α = 1) and Weibull cure rate model (OLLLNcr distribution when α = 1 and
β → 1). Table 6 provides the MLEs (and the corresponding SEs in parentheses) of the
model parameters and the values of the AIC and BIC statistics. The results indicate that
the OLLLWcr model has the lowest values of these statistics among those values of the
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Fig. 8 Histogram and density plots for D3. a Plots for sub-models b Plots for the other models
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Table 6MLEs, SEs in parentheses and goodness-of-fit statistics for breast cancer data

Model μ σ α β p AIC BIC

OLLLWcr 5.933 0.006 0.317 -9.131 0.575 1878.15 1899.15

(0.079) (0.001) (0.084) (4.319) (0.061)

OLL-Wcr 0.778 0.036 1.788 - 0.569 1886.37 1903.17

(0.085) (0.009) (0.426) - (0.059)

LWcr 1.581 0.007 - -1.334 0.597 1885.27 1902.07

(0.188) (0.001) - (1.712) (0.044)

Weibull cure rate 1.027 0.040 - - 0.550 1900.03 1912.63

(0.082) (0.008) - - (0.064)

fitted models, and therefore it could be chosen as the best model. On the other hand, the
proportion of cured individuals obtained by the Kaplan-Meier estimator is 0.577. Thus,
we can conclude based on the figures in Table 6 that the OLLLNcr model gives a more
accurate estimate for the proportion of cured individuals.
The adequacy of the fitted models can also be noted in Fig. 9, which presents the empir-

ical and estimated survival functions. Based on these plots, we can conclude that the
OLLLWcr model provides a good fit for the breast cancer data. In additional, the empir-
ical scaled TTT transform can be used to identify the shape of the hazard function. The
fitted hazard function for the OLLLWcr model is displayed in Fig. 10b, which we observe
bimodal shapes, thus indicating a good fit.

9 Conclusions
We study some mathematical properties of the odd log-logistic logarithmic-G family
of distributions with two extra shape parameters α > 0 and β ∈ (0, 1). We provide
some special models, a very useful linear representation for the density function in terms
of exponentiated densities, explicit expressions for the moments, generating function,
entropies and order statistics. Themodel parameters are estimated by themethod ofmax-
imum likelihood. We perform a simulation study to verify the adequacy of the estimators.
We also introduce a long-term survival model based on the new family. The importance
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Fig. 10 For breast cancer data, the a TTT plot and b estimated hazard function for the OLLLWcr model

of the proposed models is illustrated by means of four real life data sets. The new models
provide consistently better fits than other competitive models for the current data.

Appendix 1: Asymptotes and shapes
Corollary 1 Let a = inf{x|F(x) > 0}. The asymptotics of Eqs. (2), (3) and (4) when

x → a are given by

F(x) ∼ βG(x)α

− log(1 − β)
as x → a,

f (x) ∼ αβ g(x)G(x)α−1

− log(1 − β)
as x → a,

h(x) ∼ αβ g(x)G(x)α−1

− log(1 − β)
as x → a.

Corollary 2 The asymptotics of Eqs. (2), (3) and (4) when x → ∞ are given by

1 − F(x) ∼ 1 − log [1 − β G(x)α]
log(1 − β)

as x → ∞,

f (x) ∼ α β g(x)G(x)−1

−(1 − β) log(1 − β)
as x → ∞,

h(x) ∼ α β g(x)G(x)−1

−(1 − β) log
[

1−β
1−β G(x)α

] as x → ∞.

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the OLLL-G density function are the roots of the equation:

g′(x)
g(x)

+ (α − 1)
g(x)
G(x)

+ (1 − α)
g(x)
Ḡ(x)

− α g(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

−α g(x)
(1 − β)G(x)α−1 − Ḡ(x)α−1

(1 − β)G(x)α + Ḡ(x)α
= 0. (18)
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There may be more than one root to (18). Let λ(x) = d2 log[f (x)]
dx2 . We have

λ(x) = g′′(x)g(x) − g′(x)2

g(x)2
+ (α − 1)

g′(x)G(x) − g(x)2

G(x)2
+ (1 − α)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

−α g′(x) G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
− α(α − 1) g(x)2

G(x)α−2 + Ḡ(x)α−2

G(x)α + Ḡ(x)α

+
{

α g(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

}2

− α g′(x) (1 − β)G(x)α−1 − Ḡ(x)α−1

(1 − β)G(x)α + Ḡ(x)α

−α(α − 1) g(x)2
(1 − β)G(x)α−2 + Ḡ(x)α−2

(1 − β)G(x)α + Ḡ(x)α

+
{

α g(x)
(1 − β)G(x)α−1 − Ḡ(x)α−1

(1 − β)G(x)α + Ḡ(x)α

}2

.

If x = x0 is a root of (18) then it corresponds to a local maximum (minimum) if λ(x0) <

0 (λ(x0) > 0). It refers to a point of inflexion if λ(x0) = 0.
The critical point of h(x) are obtained from the equation

g′(x)
g(x)

+ (α − 1)
g(x)
G(x)

+ (1 − α)
g(x)
Ḡ(x)

− α g(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
−

α g(x)
(1 − β)G(x)α−1 − Ḡ(x)α−1

(1 − β)G(x)α + Ḡ(x)α
−

αβg(x)G(x)α−1Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

] [
(1 − β)G(x)α + Ḡ(x)α

]
{
log
[

1−β

1− β G(x)α
G(x)α+Ḡ(x)α )

]} = 0. (19)

There may be more than one root to (19).

Appendix 2: Useful power series
The power series derived in this appendix are required for the proofs of the linear rep-
resentations in Section 3. All power series given below are convergent for |u| ≤ 1.
In Sections 3 and 5.1, they can be applied for the support of X since the quantity
βG(x, ξ)α/[G(x, ξ)α + Ḡ(x, ξ)α] does belong to the interval (0, 1) when β ∈ (0, 1).
First, for a > 0, we have the generalized binomial expansion

(1 − u)a =
∞∑
j=0

(−1)j
(
a
j

)
uj, (20)

which holds for |u| ≤ 1.
Second, we obtain an expression for

[
uα

uα+(1−u)α

]m
, where α > 0 is a real number,m is a

natural number and |u| ≤ 1. We can write

uα =
∞∑
k=0

ak(α)uk , (21)

where

ak(α) =
∞∑
j=k

(−1)k+j
(

α

j

)(
j
k

)
.
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The power series (20) and (21) and the others derived from them converge everywhere.
For any real α > 0, the power series follows from (20) and (21)

uα + (1 − u)α =
∞∑
k=0

bk(α)uk , (22)

where bk(α) = ak(α)+ (−1)k
(
α
k
)
. Combining (21) and (22), we have (see Gradshteyn and

Ryzhik 2000, Section 0.313)

uα

uα + (1 − u)α
=
∑∞

k=0 ak(α)uk∑∞
k=0 bk(α)uk

=
∞∑
k=0

ck(α)uk , (23)

where c0(α) = a0(α)/b0(α) and the ck(α)’s (for k ≥ 1) are determined from the
recurrence equation

ck(α) = 1
b0(α)

⎡
⎣ak(α) − 1

b0(α)

k∑
r=1

br ck−r(α)

⎤
⎦ .

Third, based on (23) and using a result of Gradshteyn and Ryzhik (2000 Section 0.314)
for a power series raised to a positive integer number, we obtain

[
uα

uα + (1 − u)α

]m
=
( ∞∑
k=0

ck(α)uk
)m

=
∞∑
k=0

h∗
k(α,m)uk , (24)

where h∗
0(α,m) = c0(α)m and, for k ≥ 1,

h∗
k(α,m) = 1

kc0(α)

k∑
q=1

[ (m + 1)q − k] cq(α) h∗
k−q(α,m).

Fourth, we obtain a power series for u−γ

[uα+(1−u)α]w , which is applied in Section 5.1, where
w and α are positive real numbers, γ > 0 and 0 < u < 1. We have

u−γ

[uα + (1 − u)α]w
= u−αw−γ

[
uα

uα + (1 − u)α

]w
. (25)

The second term in (25) can be expanded as
[

uα

uα + (1 − u)α

]w
=

∞∑
i=0

ai(w)

[
uα

uα + (1 − u)α

]i
,

where ai(w) =
∞∑
j=i

(−1)i+j (w
j
) (j

i
)
. Now, from (24), we have

[
uα

uα + (1 − u)α

]w
=

∞∑
k=0

s∗1,k(α,w)uk , (26)

where

s∗1,k(α,w) =
∞∑
i=0

ai(w)h∗
k(α, i).

The first term u−αw−γ in (25) can be expanded as

u−αw−γ =
∞∑
k=0

s∗2,k(α,w, γ )uk , (27)
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where s∗2,k(α,w, γ ) =
∞∑
i=k

(−1)i+k (−αw−γ
i
) ( i

k
)
. Finally, from (25), (26), (27) and using a

result of Gradshteyn and Ryzhik (2000 Section 0.316) for multiplication of two power
series, we obtain

u−γ

[uα + (1 − u)α]w
=
( ∞∑
k=0

s∗1,k(α,w)uk
)( ∞∑

k=0
s∗2,k(α,w, γ )uk

)
=

∞∑
k=0

s∗k(α,w, γ )uk , (28)

where s∗k(α,w, γ ) =
k∑

j=0
s∗1,j(α,w) s∗2,k−j(α,w, γ ). Equation (28) is the main result to obtain

the Rényi entropy in Section 5.1.

Appendix 3: Properties for a special model
The OLLL-E distribution is defined by inserting G(x) = 1 − e−λ x and g(x) = λ e−λ x in
Eq. (3), where x > 0 and λ > 0. Let X be the random variable representing this distribu-
tion. We derive some statistical measures of X from the asymptotics in Appendix 1 and
the general results in Sections 4 and 5.2

Corollary 3 The asymptotics of Eqs. (2), (3) and (4) for the OLLL-E distribution when
x → 0 are given by

F(x) ∼ β(λ x)α

− log(1 − β)
as x → 0,

f (x) ∼ αβ λα xα−1

− log(1 − β)
as x → 0,

h(x) ∼ αβ λα xα−1

− log(1 − β)
as x → 0.

Corollary 4 The asymptotics of Eqs. (2), (3) and (4) for the OLLL-E distribution when
x → ∞ are given by

1 − F(x) ∼ 1 − log
[
1 − β (1 − e−λ x)α

]

log(1 − β)
as x → ∞,

f (x) ∼ α β λe−λ x (1 − e−λ x)−1

−(1 − β) log(1 − β)
as x → ∞,

h(x) ∼ α β λe−λ x (1 − e−λ x)−1

−(1 − β) log
[

1−β
1−β G(x)α

] as x → ∞.

These equations can provide the effects of the parameters on the tails of the OLLL-E
distribution.
We provide some statistical measures of X. Its nth ordinary moment follows from (8) as

E(Xn) = λ n!
∞∑
k=0

k∑
m=0

(−1)m (k + 1) dk+1
[ (m + 1)λ]n+1

(
k
m

)
,

where dk is defined in Eq. (6).
Further, the nth incomplete moment of the OLLL-E distribution is obtained from (9) as

mn(y) = λ

∞∑
k=0

k∑
m=0

(−1)m (k + 1) dk+1 γ (n + 1, y)
[ (m + 1)λ]n+1

(
k
m

)
,

where γ (a, z) = ∫ z
0 ta−1 e−t dt denotes the incomplete gamma function.
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The mgf of X comes immediately from (10)

M(t) = λ

∞∑
k=0

k∑
m=0

(−1)m (k + 1) dk+1
(m + 1)λ − t

(
k
m

)
.

Finally, the rth ordinary moment of the ith OLLL-E order statistic reduces to

E
(
Xr
i:n
) = λ r!

∞∑
k=0

k∑
m=0

(−1)m (k + 1) sk
[ (m + 1)λ]r+1

(
k
m

)
,

where sk is given by (11).
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