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Abstract
Erlang renewal models, also called chi-squared models, provide a tractable model for
genetic recombination that exhibits positive interference. Closed form expressions for
multilocus probabilities are derived for the crossover process when it is a renewal
process with the distance between crossovers modeled by a Erlang distribution. These
expressions yield explicit formulas for the map functions, coincidence functions and
distributions of the identity-by-descent process, giving exact results for a class of
models that better model observed biological data.
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1 Introduction
During the process of meiosis, germ cells are produced from the genetic material an
organism has inherited from its parents. The top of Fig. 1 shows a simple case where
genetic material from each parent is unchanged. However, with some regularity, the
strands of genetic material from the parents cross-over and recombine as in the bottom of
Fig. 1, with a mixture of genes from different parents in the final gametes. This mixing of
genetic material allows children to have different traits than their parents. Recombination
can be used to locate disease genes and other traits on the chromosomes.
Multilocus probabilities are the basic quantities that are used to build genetic maps

and to compute linkage scores. Suppose there are n + 1 markers M1, . . . ,Mn+1 along a
chromosome. For each of the inter-marker intervals, let

ij =
{
1 if a recombination has occurred betweenMj andMj+1
0 otherwise.

A sequence (i1, . . . , in) of 0’s and 1’s is called a recombination pattern and themultilocus
probabilities are:

p(i1, . . . , in) = probability of the recombination pattern (i1, . . . , in). (1)

These multilocus probabilities depend on inter-marker distances d1, . . . , dn, where dj=
distance between markers Mj and Mj+1. (Throughout this paper, distances will be
expressed in Morgans, e.g. genetic units, not physical units.) Just as important, the mul-
tilocus probabilities depend on the model used to describe the way crossovers occur.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-017-0064-5&domain=pdf
http://orcid.org/0000-0002-9669-382X
mailto: jpnolan@american.edu
http://creativecommons.org/licenses/by/4.0/


Nolan Journal of Statistical Distributions and Applications  (2017) 4:10 Page 2 of 17

Fig. 1 Recombination during meiosis in diploid organisms. The white regions represent maternal genetic
material and the black regions shows paternal genetic material. In one phase of meiosis, a pair of
chromosomes splits apart and are replicated, resulting in four chromatids shown on the left. The top half of
the figure shows no recombination - each of the final strands on the right are identical to the ones on the left.
The bottom half illustrates recombination, where genetic material is exchanged when gametes are formed.
There can be more than one crossover on a strand

The standard model is a Poisson process which is used because it was a reasonable first
approximation and it is mathematically tractable. Its use in genetics was introduced by
Haldane (1919), who knew it assumes no crossover interference.
It is widely accepted that there is positive crossover interference - a crossover at a

point apparently inhibits crossovers at nearby points, see Kwiatkowski et al. (1993),
Harushima et al. (1998), and Broman and Weber (2000). Various models have been
proposed to represent that interference. A map function is a relation r = r(d) that
expresses the recombination fraction r between two locations on a chromosome to the
genetic distance d between them. Several authors have attempted to express multilo-
cus probabilities in terms of map functions, e. g. Geiringer (1944); Karlin and Liberman
(1994, 1979); Liberman and Karlin (1984); Risch and Lange (1983); Schnell (1961); Weeks
et al. (1993). However, as Zhao and Speed (1996) point out, such efforts cannot accu-
rately describe general multilocus probabilities because different models can yield the
samemap function. The root of the problem is that a map function can only describe what
happens among loci and a multilocus probability requires more information. The “adja-
cent interval” coincidence coefficient (Muller (1916); Sturtevant (1915)) provides some
information, and the “nonadjacent interval” coincidence coefficient of Foss et al. (1993)
appears to provide more, but neither can fully characterize interference in general. The
approach here is to specify a model for recombination and derive multilocus probabilities
directly from that model. Expressions for map functions and coincidence functions follow
from the multilocus probabilities.
The main results of this paper are closed form expressions for multilocus probabilities

when the inter-event distribution is Erlang. These results in Section 2 are based on Zhao
et al. (1995), where infinite series expressions for multilocus probabilities are given for
the chiasma model on the four strand bundle. We show that the (infinite series) matrix
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functions they consider can also be used to specify the multilocus probabilities for the
crossover process as well, and we give closed form expressions for both the crossover
process and the four strand chiasma process. The next section derives closed form expres-
sions for map functions and coincidence functions for Erlang models of recombination,
filling in some gaps in the work of Cobbs (1978) and Foss et al. (1993). The description of
the identity by descent process and the effect on genome wide thresholds are contained in
the following section. Section 5 reviews our findings and makes some general comments
about the plausibility of renewal models for recombination.
Since we hope that these results will be used by geneticists, we have attempted to make

them more accessible by stating them without the standard lemma/theorem format and
separating the proofs to Section 6. The interesting mathematical ideas are that one can
explicitly write down the finite dimensional distributions of a counting renewal process
with Erlang inter-arrival distances. The crossover process is a then an alternating renewal
process that toggles between two states (recombination/no recombination), and its finite
dimensional distributions are given in closed form. The result is a new class of probability
distributions that are based on a novel use of generalized hyperbolic functions. These
results can be used in other applications where a system alternates between an on-state
and an off-state; some examples are mentioned at the end of the last section.

2 Erlang renewal models
Renewal process models for genetic recombination have a long history in genetics,
see Bailey (1961); Cobbs (1978); Fisher et al. (1947); Lange (1997); Owen (1949) and
Stam (1979). In these models, the distance between crossovers is modeled by a random
variable with some distribution. Once a crossover has occurred, the distance until the
next crossover is an independent random variable with the same distribution. The choice
of that distribution completely determines the properties of the crossover process, and
hence the multilocus probabilities (Section 1). The mathematical complexity of these
models comes from the fact that, except when an exponential distribution is used, the
process is non-Markov.
There has been renewed interest in using an Erlang renewal process to model distances

between crossovers. Foss et al. (1993) suggested such models on biological grounds.
McPeek and Speed (1995) fit various data sets to different models of interference, and
found that the Erlang models do as good a job fitting the data as any of the others. An
Erlang distribution is described by a shape parameter m, a positive integer, and a scale
parameter λ > 0, with density f (x) = λmxm−1e−λx/(m − 1)! , x > 0, see Fig. 2. The name
chi-squared model is used by the above paper, by Zhao et al. (1995), and by Armstrong
et al. (2006), though they always assume an even number of degrees of freedom. Since it is
essential that the shape parameter is an integer for the work below and Erlang laws have a
long history in queueing theory, it seems appropriate to call these Erlang models. Erlang
distributions include the exponential distribution as a special case (m = 1), and are in
turn a subclass of the gamma distributions (as are the chi-squared distributions).
For our purposes it is convenient to parameterize the Erlang distributions in the form

Erlang(m, λm), where m is a positive integer and λ is a positive number. In Lin and
Speed (1996) and Zhao et al. (1995), values of m = 4 for Drosophila, m = 2 for
Neurospora, and m = 3 for humans give the best fit. (For notational simplicity, our m
is their m + 1; in the notation of Foss, et al. (1993), we are using a Cx(Co)m−1 model).
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Fig. 2 The top plot shows the densities of a Erlang(m, λm) random variable, withm = 1, 2, 3, 4, 5 and λ = 1.0.
This is the distribution of the distance between recombination events for the crossover (two strand) process.
The bottom plot shows the distribution of the distances between recombination events for the chiasma (four
strand) process with NCI

Figure 2 of Harushima, et al. (1998) shows a plot of distances between 555 recombinations
for a rice data set. It is poorly described by the Haldane model (m = 1), but well described
by an Erlang distribution with m = 2. Likewise Figure 2 of Broman and Weber (2000)
shows clear evidence of positive interference, with close recombinations visibly depleted.
Broman et al. (2002) discusses the fit to mouse data.
The main point of biological interest in using an Erlang distribution is that as m

increases, it is less likely to see two crossovers close to each other. The distance to the next
crossover gets more concentrated around the mean, which has the same value, 1/λ, for all
Erlang(m, λm) distributions. There is an opposing shift in the probabilities for large dis-
tances, but that doesn’t appear to be significant until the genetic length of a chromosome
exceeds 2/λ Morgans.

2.1 The crossover process

The renewal crossover process is a model for recombination in diploid individuals that
involves two strands - maternal and paternal haploids. Crossovers occur between these
two strands according to a renewal process, leading to the exchange of genetic material.
These models do not appear to take into account the fact that diploid meiosis involves
four strands. Lemma 2 shows that a chiasma model for all four strands is equivalent to
a crossover model with a different inter-event distribution. In particular, Eq. (9) below
gives an formula for the inter-event distribution for a crossover model that yields the same
multilocus probabilities as the Erlang chiasma model considered below.
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The formula for multilocus probabilities for a crossover renewal process with an
Erlang(m, λm) inter-event distribution is given by:

p(i1, . . . , in) = 1
m
1

⎛
⎝ n∏

j=1
Mcross

ij (λmdj)

⎞
⎠ 1T . (2)

where 1 = (1, . . . , 1) is a row vector of m 1’s, and the m × m matrix functions Mcross
0 (u)

andMcross
1 (u) are given by

Mcross
0 (u) = e−u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0,2m(u) f1,2m(u) f2,2m(u) · · · fm−1,2m(u)

f2m−1,2m(u) f0,2m(u) f1,2m(u) · · · fm−2,2m(u)

f2m−2,2m(u) f2m−1,2m(u) f0,2m(u) · · · fm−3,2m(u)

...
...

... · · · ...
fm+2,2m(u) fm+3,2m(u) fm+4,2m(u) · · · f1,2m(u)

fm+1,2m(u) fm+2,2m(u) fm+3,2m(u) · · · f0,2m(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

and

Mcross
1 (u) = e−u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fm,2m(u) fm+1,2m(u) fm+2,2m(u) · · · f2m−1,2m(u)

fm−1,2m(u) fm,2m(u) fm+1,2m(u) · · · f2m−2,2m(u)

fm−2,2m(u) fm−1,2m(u) fm,2m(u) · · · f2m−3,2m(u)

...
...

... · · · ...
f2,2m(u) f3,2m(u) f4,2m(u) · · · fm+1,2m(u)

f1,2m(u) f2,2m(u) f3,2m(u) · · · fm,2m(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

and the generalized hyperbolic functions fr,q are given by

fr,q(u) = 1
q

q−1∑
j=0

eaju cos(bju − (2πrj/q)), (5)

where q is a positive integer, r = 0, . . . , q − 1, aj = aj(q) = cos(2π j/q) and bj = bj(q) =
sin(2π j/q).
These matrices are given in Bailey (1961, pg. 203), in infinite series form. The deriva-

tion is given in Section 6, where a transition matrix interpretation is given for the above
matrices. Note that whenm = 1, (2) simplifies to the Haldane no interference model.

2.2 The chiasma process

In the biological process ofmeiosis in diploid organisms, each haploid replicates itself, and
a four stranded bundle is formed. In a renewal chiasma process, crossovers occur among
these four strands according to a renewal process, and the bundle pulls apart to form four
gametes. The crucial difference between this model and the crossover process is that a
crossover among sister chromatids does not result in a genetically observable exchange
of material, although it does interfere with the location of nearby chiasma. Karlin and
Libermann (1984) and Speed (1999) discuss a mathematical model for this, based on
work of Mather (1936, 1937) and others. This approach allows one to model more con-
cretely what goes on in the biological process of recombination. First we will focus on a
multilocus probabilities for a single gamete produced by an individual; then tetrad multi-
locus probabilities will be derived. In what follows, we assume no chromatid interference
(NCI), that is, which chromatids crossover at a given point are not dependent on which
chromatids crossover at other points.
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If the distance between successive crossovers are Erlang(m, λm), then with the NCI
model, there are an average of λ/2 genetically observable crossovers in a distance of one
Morgan. Hence to keep this model comparable to the crossover process, which has an
average of λ crossovers per Morgan, an Erlang(m, 2λm) inter-event distribution should be
used. For a gamete formed by a renewal chiasma process with Erlang(m, 2λm) inter-event
distribution, the multilocus probabilities are given by

p(i1, . . . , in) = 1
m
1

⎛
⎝ n∏

j=1
MNCI

ij (2λmdj)

⎞
⎠ 1T , (6)

where

MNCI
0 (u) = 1

2
(D∞(u) + D0(u)) and MNCI

1 (u) = 1
2
(D∞(u) − D0(u)).

Them × mmatrix functions D∞ and D0 are

D∞(u) = e−u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0,m(u) f1,m(u) f2,m(u) · · · fm−1,m(u)

fm−1,m(u) f0,m(u) f1,m(u) · · · fm−2,m(u)

fm−2,m(u) fm−1,m(u) f0,m(u) · · · fm−3,m(u)

...
...

... · · · ...
f2,m(u) f3,m(u) f4,m(u) · · · f1,m(u)

f1,m(u) f2,m(u) f3,m(u) · · · f0,m(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

and

D0(u) = e−u

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 u u2/2 u3/3! · · · um−1/(m − 1)!
0 1 u u2/2 · · · um−2/(m − 2)!
0 0 1 u · · · um−3/(m − 3)!
...
...

...
... · · · ...

0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

The matrices MNCI
0 and MNCI

1 are called N and R respectively in Zhao et al. (1995),
where they are given as infinite series. Lin and Speed (1996) have implemented a
numerical approximation to these matrices.
The effective distance between genetically observable crossovers is shown to be

h(u) = exp(−2λmu)

21−1/mλm
fm−1,m

(
2(1−1/m)λmu

)
, (9)

in Section 6. Graphs of this distribution are shown in the bottom plot of Fig. 2.

2.3 The tetrad case

Simple organisms like yeast produce tetrads, where all four strands remain together,
instead of separating into four distinct gametes as discussed above. For tetrad data,
there are three possible tetrad patterns between each pair of markers and therefore
there are now 3n recombination patterns for n + 1 markers, each represented by a pat-
tern (i1, . . . , in), where ij ∈ {0, 1, 2}. The same notation can be used as before, with the
multilocus probabilities for tetrads, assuming NCI, given by
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p(i1, . . . , in) = 1
m
1

⎛
⎝ n∏

j=1
Mtetrad

ij (2λmdj)

⎞
⎠ 1T ,

where

Mtetrad
0 (u) = e−u

2

(
D∞(u) − D0(u) − Mtetrad

1 (u)
)
,

Mtetrad
1 (u) = e−u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm,m(u) hm+1,m(u) hm+2,m(u) · · · h2m−1,m(u)

hm−1,m(u) hm,m(u) hm+1,m(u) · · · h2m−2,m(u)

hm−2,m(u) hm−1,m(u) hm,m(u) · · · h2m−3,m(u)

...
...

... · · · ...
h2,m(u) h3,m(u) h4,m(u) · · · hm+1,m(u)

h1,m(u) h2,m(u) h3,m(u) · · · hm,m(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mtetrad
2 (u) = e−u

2

(
D∞(u) + D0(u) − Mtetrad

1 (u)
)
.

The functions hr,m, r = 0, 1, . . . , 2m − 1 are given by

hr,m(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
3 fr,m(u) + (−1)rcm,r,me−αu

+2
∑m−1

j=1 cj,r,meαa
′
ju cos(αb′

ju − rjπ/m) r < m
2
3 fr−m,m(u) − 2 ur−m

(r−m)! + (−1)rcm,r,me−αu

+2
∑m−1

j=1 cj,r,meαa
′
ju cos(αb′

ju − rjπ/m) r ≥ m,

(10)

where α = (1/2)1/m, a′
j = aj(2m) = cos(π j/m), b′

j = bj(2m) = sin(π j/m) and

cj,r,m =
{
0 j even
−2/(3mαr) j odd.

The matrices Mtetrad
0 , Mtetrad

1 and Mtetrad
2 correspond to the matrices P, T and N

respectively in Zhao et al. (1995).

3 Map functions and coincidence functions
As we noted in the introduction, the map function gives only partial information about
multilocus probabilities. Still, it is of interest to know what the map function is for the
Erlang renewal models, and we will use it below to describe the identity-by-descent pro-
cess. If d is the genetic distance between two loci, then for a crossover renewal process
with Erlang(m, λm) inter-event distribution, the recombination fraction between them is

rcrossm (d) = 1
m
1Mcross

1 (λmd)1T = e−λdmfm,2m(λmd)

+e−λdm

m

m−1∑
j=1

(m − j)
[
fm+j,2m(λmd) + fm−j,2m(λmd)

]
.
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For a chiasma renewal process with NCI and Erlang(m, 2λm) inter-event distribution,
the recombination fraction is,

rNCIm (d) = 1
m
1MNCI

1 (2λmd)1T

= e−2λdm

2

m−1∑
j=0

(
fj,m(2λmd) −

(
m − j
m

)
(2λmd)j

j!

)

= 1
2

⎛
⎝1 − e−2λdm 1

m

m−1∑
j=0

(m − j)
(2λmd)j

j!

⎞
⎠ , (11)

where the last equality uses (15) in Section 6. This last result is Eq. (30) of Cobbs (1978),
and Eq. (7) of Foss et al. (1993).
Figure 3 shows graphs of the map functions for various values of m. As expected, the

functions start from the no interference model (Haldane distance, m = 1) and get closer
and closer to the complete interference model θ = d. Note that recombination fractions
for the crossover models exceed the level r = 1/2 when m > 1. In fact, for the crossover
model, the recombination fraction oscillates around 1/2 as d → ∞. In contrast, under the
chiasmamodel with NCI,Mather’s formula shows that the recombination fraction cannot
exceed 1/2. In our case, this follows from (11) because the sum in the last term is always
less than e2λmd, and thus the term in parentheses is less than 1. While not shown here, the
graphs of the other commonly used map functions (Kosambi, Binomial with N = 2, Sturt
with any L > 0.79) generally lie between the crossover m = 1 and the crossover m = 2
curves shown. (One can get above them = 2 curve by taking L small enough in the Sturt

Fig. 3 Map functions for the crossover process (left) and chiasma process (right) with Erlang interference
models for various values ofm and λ = 1.0. The lowest curve ism = 1, where the crossover and chiasma
model coincide. Above that curve,m increases from 2 to 5
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map function, or bymakingN large enough in Binomial map function.) Furthermore both
recombination fractions are approximately linear for small distances. This is because (13)
shows fr,q(u) = ur/r!+o(ur) as u → 0 and therefore the dominant terms in rcrossm (·) and
rNCIm (·) are of order λd + o(d) as d → 0.
In describing the coincidence functions, it is convenient to allow the symbol “*” in a

multilocus probability to denote either a 0 or a 1. So p(1, ∗) = p(1, 0) + p(1, 1), etc. The
classical “adjacent interval” coincidence coefficient is defined by taking three markers,
separated by inter-marker distances d1 and d2:

C3(d1, d2) = p(1, 1)
p(1, ∗)p(∗, 1) = r(d1) + r(d2) − r(d1 + d2)

2r(d1)r(d2)
.

The discussion on page 307 of Lange et al. (1997) shows all Erlang renewal models
have positive interference. The “nonadjacent interval” coincidence coefficient is defined
by taking four markers, with inter-marker distances d1, d2 and d3:

C4(d1, d2, d3) = p(1, ∗, 1)
p(1, ∗, ∗)p(∗, ∗, 1) = p(1, ∗, 1)

r(d1)r(d3)
.

With these definitions, S3 and S4 of Foss et al. (1993) are given by

S3(d) = C3(d, d) =[ r(d) − (1/2)r(2d)] /[ r(d)]2

S4(d) = lim
d1↓0

lim
d3↓0

C4(d1, d, d3).

These equations are general, they depend only on valid multilocus probabilities. When
Erlang interference is assumed, S3 can be computed using the formulas for map functions
above. For S4, Section 6 shows that

Scross4 (d) = me−λmdfm−1,m(λmd)

SNCI4 (d) = me−2λmdfm−1,m(2λmd) = Scross4 (2d).

Figure 4 shows plots of S3 and S4 for both models. We note that the last equation above
is a closed form expression for Eq. (8) of Foss et al. (1993).

4 Identity-by-descent process
One goal of genetic linkage studies is to localize genes for disease (or other traits) by
determining where affected relative pairs have segments of their chromosome identical-
by-descent (IBD), i.e. inherited from the same ancestor. The IBD process X(t) is a model
for these shared segments. For simplicity, consider two half-sibs and compare the chro-
mosomes that they inherited from their common parent. Let t denote position along the
chromosome and define

X(t) =
{
1 if the DNA at t came from the same grandparent
0 otherwise.

The places where X(t) changes value are precisely the points where a crossover has
occurred.
If we have the multilocus probabilities (1), then the multilocus IBD probabilities are

given by:

P(X(t1) = i1,X(t2) = i2, . . . ,X(tn+1) = in+1)

= P(X(t1) = i1,X(t2) − X(t1) = |i2 − i1|, . . . ,X(tn+1) − X(tn) = |in+1 − in|)
= 1

2
p(|i2 − i1|, |i3 − i2|, . . . , |in+1 − in|).
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Fig. 4 Coincidence functions S3 and S4 for the crossover process (left) andchiasma process (right) with Erlang
interference models for various values ofm and λ = 1.0. The horizontal lines at height 1 correspond tom = 1
(no interference). Values ofm increase fromm = 2 tom = 5 from left to right

Note that this equality always holds, regardless of what model is used (crossover, chi-
asma, NCI or chromatid interference, etc.). The awkward looking absolute value signs are
explained by the fact that |ij+1−ij| = 1 or 0, depending onwhether or not a recombination
has or has not occurred in the jth interval.

4.1 Thresholds for dense markers

Lander and Kruglyak (1995) used the no interference model to derive appropriate thresh-
olds for an infinitely dense scan of the genome. We show that the thresholds don’t change
when the Erlang renewal processes described above are used instead of the Haldane
model.
The basic IBD process is a stationary 0–1 valued process with mean and covariance

E X(t) = P(X(t) = 1) = 1/2

Cov(X(t + d),X(t)) = P(X(t) = 1,X(t + d) = 1) − P(X(t) = 1)P(X(t + d) = 1)

= 1
2
(1 − r(d)) − 1

2
· 1
2

= 1
4

− 1
2
r(d), (12)

where r(d) is the recombination fraction. Given a sample of n relative pairs, sum over all
pairs and normalize to get Z(t) = 2

√
n
∑(

Xj(t) − 1
2
)
. When n is large, this is approxi-

mately a (stationary) Gaussian process. When X is based on the no interference model,
the large sample limit is an Ornstein-Uhlenbeck process; but when m > 1 the crossover
and chiasma models considered above do not have an Ornstein-Uhlenbeck process as the
limit.
The main technical result used in deriving the thresholds is a large deviation result,

e.g. Theorem 12.2.9 of Leadbetter et al. (1983). That result shows that the threshold for
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a dense set of markers depends on the rate at which Cov(Z(t),Z(t + d)) → 1 as d → 0.
Using (12),

Cov(Z(0),Z(d)) = 4nCov
(

(1/n)
∑
i

(
Xi(0) − 1

2

)
, (1/n)

∑
i

(
Xi(d) − 1

2

))

= 4Cov(Xi(0),Xi(d)) = 1 − 2r(d).

As we noted above, all Erlang renewal processes have r(d) = λd + o(d) (for any m) as
d → 0, so Cov(Z(t),Z(t + d)) = 1− 2λd + o(d) as d → 0. In fact, any plausible model of
recombination will have the map function approximately linear near the origin, so it will
yield the same thresholds as the no interference model for a dense map.
When a finite set of markers are used, there is a change in the threshold. The reason is

that with positive interference, nearby markers are less dependent, and the multiple com-
parison problem is heightened. Quantifying this difference precisely depends on being
able to accurately compute cumulative probabilities for multivariate normal distributions
with dependence given by (12).

5 Discussion
We have used Erlang renewal processes to model both the crossover process and the chi-
asma process with NCI. Closed form expressions are given for multilocus probabilities in
both cases, completing the work of Bailey (1961); Cobbs (1978); Owen (1949); Stam (1979)
and Zhao et al. (1995). These formulas lead to expressions for map functions, coinci-
dence functions, IBD probabilities as well as closed form expressions for tetradmultilocus
probabilities.
The fact that crossover models withm > 1 yield recombination fractions above 1/2may

be desirable in certain cases. This apparently can happen in prokaryotes, so these models
may be directly applicable there. In fact, the observance of recombination fractions above
1/2 in mouse data, e.g. Falconer (1947) and Wright (1947), was seen as a deficiency of
the Haldane, Kosambi, etc. map functions. The second cited source is a careful study
involving 453 offspring in a balanced block design. Convinced that r > 1/2 was possible,
Bailey (1961); Fisher et al. (1947) and Owen (1949) specifically tried to develop models
that had this property. We do not know whether such fractions have been seen in other
data sets or whether other factors, e.g. differential viability of the organisms, may have
caused the observed values of r > 1/2 in those older studies.
There is a mathematical explanation for r > 1/2 in terms of the underlying renewal

process. When m > 1, the Erlang densities are concentrated around the mean of 1/λ,
which means a recombination is most likely to occur approximately 1/λ Morgans away
from the first crossover. Equivalently, for the associated IBD process, (12) shows that the
covariance becomes negative when r > 1/2, so that the process is most likely to be in
opposite states at that distance. This is not restricted to Erlang models; any renewal pro-
cess model for the crossover process whose inter-event distribution has a strong enough
peak will have r > 1/2.
Crossover models are all that are strictly necessary in mammalian genetics (excluding

oocyte mapping), because we only observe the single gamete that was used at conception.
For example, the renewal chiasma model with NCI described above is a crossover pro-
cess with inter-event distribution given by (9). In general, any chiasma renewal process is
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equivalent to a crossover renewal process with inter-event distribution that is a geometric
mixture of the chiasma inter-event distribution.
It is an open question whether or not a renewal process is an appropriate model for

recombination. First we address some technical issues, then make a general comment.
One criticism of renewal processes is that they are not generally “multilocus feasible” in

the sense of Liberman and Karlin (1984). On this issue, we agree with Speed (1999), where
it is pointed out that Liberman and Karlin define what might be called “nonadjacent inter-
val multilocus feasibility”. While mathematically elegant, their definition puts conditions
on recombinations in intervals separated by an arbitrary distance, which does not agree
with the basic intuition of interference being a local phenomenon. Zhao and Speed (1996)
show that most of the common map functions can arise from renewal processes, even
though some are not “nonadjacent interval multilocus feasible.”
Another criticism of the use of renewal processes is that multiple chiasma apparently

can occur simultaneously, making a serial renewal process inappropriate. As Bailey (1961,
pg. 178) points out, we do not necessarily need a serial explanation for using Erlang inter-
event distributions - they may just describe what’s going on in the spatial point process
(ignoring the temporal dimension). Molecular interactions may act spatially, not tem-
porarly, inhibiting nearby crossovers. The counting model of Foss et al. (foss1) assumes
intermediates (C’s) being distributed according to a Poisson point process, and then some
of these convert to crossovers. They focus on a fixed number (m − 1 in our notation) of
non-crossover events (Co’s) between crossovers (Cx’s), but also mention a variable num-
ber of Co’s. Lange et al. (1997) and Lange (1997) analyze this “random-skip” process and
give infinite series for multilocus probabilities and derived quantities for that model.
In the end, experimentation will have to resolve whether Erlang (or any) renewal process

realistically models recombination. A more relevant question is whether these models,
which incorporate positive interference, do a better job than the commonly used Haldane
model. The results of Foss et al. (1993), e. g. Figure 4, Copenhaver et al. (2002); Housworth
and Stahl (2003) and McPeek and Speed (1995), indicate that that they do. A maximum
likelihood fit to Figure 2 of Harushima et al. (1998) shows that an Erlang distribution with
m = 2, λ = 1/2 fits rice data well. Better models for recombination, even if not exactly
correct, may help detect disease or trait loci and build genetic maps.

6 Mathematical proofs
We will work with three processes:

N∗(t) = Poisson counting process with Exponential (λ) inter-arrival distances

N(t) = counting process with Erlang (m, λm) inter-arrival distances

X(t) = alternating renewal process with Erlang (m, λm) inter-arrival distances

The key idea in what follows is the observation that N(t) d= 
N∗(t)/m� = the integer
part of N∗(t)/m, i. e. the Erlang renewal process N(t) increases by 1 every timem events
have occurred for the Poisson process N∗(t). The Markov nature of N∗(t) then allows an
analysis of N(t). The phrase “N(t) is in phase i” will be used as shorthand for N∗(t) =
i (modm) . In the terminology of Foss, et al. (1993), this means that i Co events have
occurred since the last Cx event. Another key idea is that X(t) d= N(t) (mod 2), i.e. the
alternating renewal process switches state every time N(t) increases.
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We follow the reasoning of Zhao et al. (1995). The matrix D0(u) was defined in (8) (the
zeros below the main diagonal correct a misprint there). For k = 1, 2, 3, . . ., define the
sequence ofm×mmatrix functionsDk(u)with (i, j)th entry e−uumk+j−i/(mk+ j− i)!. The
Dk(·) matrices have an interpretation as transition matrices: for k > 0, the (i, j)th entry of
Dk(u) is

P(N(u) − N(0) = k,N(u) is in phase j|N(0) is in phase i)

= P(N∗(u) − N∗(0) = (m − i) + m(k − 1) + j)

= P(N∗(u) − N∗(0) = mk + j − i)

= e−uumk+j−1/(mk + j − i)!

A similar argument gives D0. If p0 is the distribution of the phase of N(0), then p0Dk(u)

is the distribution of the phase of N(u) given that k renewal events occurred in [ 0,u]. In
particular, for an Erlang renewal process with N(0) having initial distribution p0,

P(N(t1) = n1,N(t2) = n2, . . . ,N(tk) = nk) =
p0Dn1(λt1)Dn2−n1(λ(t2 − t1)) · · ·Dnk−nk−1(λ(tk − tk−1))1T .

This gives a closed form expression for the finite dimensional distributions of a count-
ing process with Erlang inter-arrival distances. The memoryless property of N∗(t) is
what makes the multiplication of matrices give the correct probabilities for N(t). The
choice p0 = (1/m)1 = (1/m, . . . , 1/m) used in the formulas for multilocus probabili-
ties represents the equiprobable initial distribution for the phase ofN(0) in the stationary
case.
For the crossover process, a recombination is seen precisely when there is an odd

number of crossovers. This leads to the formulas:

Mcross
0 (u) =

∞∑
k=0

D2k(u) and Mcross
1 (u) =

∞∑
k=0

D2k+1(u),

i.e.M0 takes into account all possibilities with an even number of crossovers, whereasM1
takes into account all possibilities with an odd number of crossovers. Like theDk matrices
above, the entries of these matrices have a transition matrix interpretation. For example,
the i, jth entry ofM0(u) is the probability of starting in phase i, having an even number of
crossovers in distance u, and ending in phase j.
Using these sums and the definitions of Dk , some algebra shows that M0 and M1 have

the form claimed in (3) and (4) respectively, where

fr,q(u) =
∞∑
k=0

uqk+r/(qk + r)! r = 0, . . . , q − 1. (13)

A closed form expression for these follows from the next lemma.

Lemma 1 fr,q(u) defined by (13) can be written as (5).

Proof Differentiating fr,q with respect to u q times shows that f (q)
r,q (u) = fr,q(u). The

initial conditions for this qth order differential equation are g(i)
r,q(0) = 1 if i = r; and = 0

otherwise. After solving this equation, we discovered that these differential equations are
known in the mathematical literature. The solutions are
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fr,q(u) = 1
q

q−1∑
j=0

ω−jreω
ju,

where ω = exp(2π i/q) is a qth root of unity. This is given in Erdélyi et al. (1955, pg.
212), where fr,q are called generalized hyperbolic functions of order q. A survey of these
functions is given in Muldoon and Ungar (1996). To eliminate the complex terms in this
expression, set � = 2π/q, then the constants from (5) are aj = cos(j�) and bj = sin(j�).
Since ω = exp(i�), ωj = aj + ibj and

ω−jr exp(ωju) = exp(i(−jr�) + (aj + ibj)u)

= eaju(cos(bju − rj�) + i sin(bju − rj�))

Thus

fr,q(u) = 1
q

q−1∑
j=0

eaju cos(bju − rj�) + i
1
q

q−1∑
j=0

eaju sin(bju − rj�). (14)

It remains to be shown that the imaginary term above is zero. When q is odd, say q =
2m+1, then the j = 0 term is zero because b0 = 0. For j = 1, . . . ,m, aq−j = aj, bq−j = −bj,
and sin(bq−ju − r(q − j)�) = sin(−bju − 2πr + rj�) = − sin(bju − rj�). Hence the
imaginary term is zero. When q is even, say q = 2m, then the j = 0 and j = m terms in
the sum are zero, and the jth and (q − j)th terms will cancel as above.

If we sum (13) over r = 0, 1, . . . , q − 1, all powers appear in the series, leading to

q−1∑
r=0

fr,q(u) =
∞∑
j=0

uj/j!= eu. (15)

We next consider the chiasma process on the four strand bundle. Theorem 1 of Zhao
et al. (1995) gives an infinite series expression for (1) for the single gamete case:MNCI

i =
(1 − i)D0+ (1/2)

∑∞
k=1 Dk = (1/2)

(∑∞
k=0 Dk + (−1)i+1D0

)
. Straightforward algebra

shows that D∞(u) = ∑∞
k=0 Dk(u) has the form claimed in (7).

Next the derivation of (9) is given. A p-thinning of a point process is when successive
points are retained with probability p or eliminated with probability 1− p, with indepen-
dent decisions being made at each point. The effective inter-arrival distribution when an
Erlang point process is thinned is given in the following lemma. As mentioned above, the
chiasma model is obtained by a (1/2)-thinning of a crossover model with rate μ = 2λm,
which yields (9).

Lemma 2 A p-thinning of an Erlang(m,μ) point process is a point process with inter-
arrival density

h(x) = pe−μx

μ(1 − p)1+1/m fm−1,m
(
(1 − p)1/mμx

)
.



Nolan Journal of Statistical Distributions and Applications  (2017) 4:10 Page 15 of 17

Proof Set q = 1 − p and � = μq1/m, then the density is

h(x) =
∞∑
j=1

qj−1p
μjmxjm−1e−μx

(jm − 1)!
= pe−μx

q

∞∑
j=1

qj
μjmxjm−1

(jm − 1)!

= pe−μx

q�

∞∑
j=1

(�x)jm−1

(jm − 1)!
= pe−μx

q�
fm−1,m(�x),

where the last equality uses (13).

The derivation of multilocus probabilities in the tetrad case requires a more involved
argument.

Lemma 3 The matrices Mtetrad
0 , Mtetrad

1 and Mtetrad
2 are given by (10).

Proof For the tetrad case, Zhao et al. (1995) give the following series representations for
M0,M1 andM2:

M0 = D0 +
∞∑
k=2

p(k)
0 Dk , M1 = D1 +

∞∑
k=2

p(k)
1 Dk , M2 =

∞∑
k=2

p(k)
2 Dk ,

where p(k)
0 = p(k)

2 = 1
3

(
1
2 + (− 1

2
)k) , p(k)

1 = 2
3

(
1 − (− 1

2
)k) . Note that M0 = D0 + M2

and since p(k)
0 +p(k)

1 +p(k)
2 = 1,M0+M1+M2 = D0+D1+∑∞

k=2

[
p(k)
0 + p(k)

1 + p(k)
2

]
Dk =

D∞. ThereforeM0+M1+M2 = (M2+D0)+M1+M2 = D∞, soM2 = 1
2 [D∞−D0−M1]

andM0 = 1
2 [D∞ + D0 − M1].

It remains to show that M1 has form (10). Noting that p(1)
1 = 1 is consistent with the

definition of p(k)
1 , we have M1 = ∑∞

k=1 p
(k)
1 Dk has the claimed form, where hr,m(u) =∑∞

k=1 p
(k)
1 umk+r/(mk + r)!, r = 0, . . . , 2m − 1. Differentiating hr,m 2m times gives

h(2m)
r,m (u) =

{ 1
2
ur
r! +∑∞

k=1 p
(k+2)
1 umk+r/(mk + r)! r < m

ur−m

(r−m)! + 1
2
ur
r! +∑∞

k=1 p
(k+2)
1 umk+r/(mk + r)! r ≥ m

.

Luckily, p(k+2)
1 = 1

2 + 1
4p

(k)
1 , so using (13)

∞∑
k=1

p(k+2)
1 umk+r/(mk + r)! = 1

2

∞∑
k=1

umk+r/(mk + r)!+1
4

∞∑
k=1

p(k)
1 umk+r/(mk + r)!

=
⎧⎨
⎩

1
2

[
fr,m(u) − ur

r!

]
+ 1

4hr,m(u) r < m
1
2

[
fr−m,m(u) − ur

r! − ur−m

(r−m)!

]
+ 1

4hr,m(u) r ≥ m.

Substituting this in the above equation shows that hr,m satisfies the (2m)th order
differential equation

h(2m)
r,m (u) =

{
1
2 fr,m(u) + 1

4hr,m(u) r < m
1
2 fr−m,m(u) + 1

2
ur−m

(r−m)! + 1
4hr,m(u) r ≥ m.

The initial conditions are h(j)
r,m(0) = 1 if j = m + r and = 0 otherwise. The general

solution to these equations is

hr,m(u) =
⎧⎨
⎩
∑2m−1

j=0 γj,r,meαωju + 2
3 fr,m(u) r < m∑2m−1

j=0 γj,r,meαωju + 2
3 fr−m,m(u) − 2 ur−m

(r−m)! r ≥ m,
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where ω = ω(2m) = exp(iπ/m): the summation gives the solution of the homogeneous
equation and the remaining terms give a particular solution. Laborious calculations with
the initial conditions show that γj,r,m = cj,r,mω−jr . More algebra shows that the above
simplifies to (10).

Next we derive formulas for the coincidence function S4. For the crossover process,
Scross4 (d) = (1/m)v(Mcross

0 (λd) + Mcross
1 (λd))vT , where v = 1(limd↓0 M1(λd)/rcross(d)).

Now r(d) = λd + o(d) and fr,q(λd) = (λd)r + o(dr) as r ↓ 0, so the limiting matrix
of M1(λd)/r(d) is all zero, except for the lower left element which is the constant m.
Hence v = (0, . . . , 0,m), with only one non-zero entry. Now (Mcross

0 (λd) + Mcross
1 (λd))

has (m,m)th entry fm−1,2m(λd) + f2m+1,2m(λd) = fm−1,m(λd), where the last identity
is obtained by adding two series of form (13). Hence Scross4 (d) = (1/m)m2 exp(−λd)

fm−1,m(λd).
The argument is similar for the NCI chiasma model: SNCI4 (d) = (1/m)v

(MNCI
0 (2λd) + MNCI

1 (2λd))vT = (1/m)vD∞(2λd)vT , where v is the same as above. The
(m,m)th entry of D∞ is exp(−2λd) fm−1,m(2λd), giving the formula for SNCI4 .
We close with a few miscellaneous comments. The functions and matrices used above

are rich in mathematical structure. The matrixD∞(u) is called the 1-hyperbolic matrix in
Muldoon and Ungar (1996). It is a circulant matrix, is related the fast Fourier transform,
always has determinant 1, and D∞(u)D∞(v) = D∞(u + v). The matrices Mcross

0 (u) and
Mcross

1 (u) are blocks of D∞(u; 2m), i.e.

D∞(u; 2m) =
[
Mcross

0 (u;m) Mcross
1 (u;m)

Mcross
1 (u;m) Mcross

0 (u;m)

]
.

This structure may be useful in compressing formulas or speeding up computations of
multilocus probabilities.
The computational effort needed to evaluate Erlang multilocus probabilities need not

be an obstacle to using them in a genetic linkage study. One can precompute many of the
terms needed in the formulas and the remaining computations are small compared to the
total computation time used in linkage programs.
In mathematical terms, the crossover process is an alternating renewal process, with

state alternating between 0 and 1 and the multilocus probabilities are essentially the finite
dimensional distributions of the process. While we focused on the genetic application
of these results, the results may be of interest in other fields, e.g. telecommunication
networks and queues, where they can be used to model the busy/non-busy state of a sys-
tem with buffers. They may describe busy or non-busy status in a queueing system that
buffers exponential arrivals. Examples include a shuttle bus that waits for m passengers
before leaving, a computer system that buffersm bytes before initiating an input or output
operation, and communication networks that relay packets throughm nodes.
When m = 1, i.e. the inter-event distances are exponential, the alternating renewal

process is called a random telegraph process and is used in the study of defects in semi-
conductors, see Simoen and Claeys (2016). Using m > 1 gives a generalized random
telegraph process; such processes may be useful in semiconductor models.
R programs for computations of map distances, multilocus probabilities and coinci-

dence functions for Erlang renewal models are available from the author.
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