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1 Introduction

Furtherance to the work by Eugene et al. (2002), who proposed and defined the beta-
generated class of distributions for a continuous random variable, derived from the
logit of the beta random variable, many statistical distributions have been proposed
and studied by numerous authors. According to Eugene et al. (2002), suppose X is a
random variable with cumulative distribution function (CDF) F(x), the CDF for the
beta-generated family is obtained by applying the inverse probability transformation to
the beta density function. The CDF for the beta-generated family of distributions is
given by

1

G = B(u,v)

F(x)
/ A1 ="l de 0 < uv < 00, (1)
0

where B(u,v) = T'(w)['(v)/I'(u + v). The corresponding probability density function
(PDF) is given by

d
gx) = [F@)“ 7 [1-Fx)]t [dF(x)] . 2)
X

1
B(u,v)
A closely related generalized distribution similar to using the beta random variable as
the baseline distribution as defined in Egs. (1) and (2), is the work due to Cordeiro and
de Castro (2011), where the authors combined the works of Eugene et al. (2002) and Jones
(2009) by replacing the baseline distribution with the Kumaraswamy (Kw) distribution to

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-017-0065-4&domain=pdf
http://orcid.org/0000-0002-2059-4323
mailto: akinsete@marshall.edu
http://creativecommons.org/licenses/by/4.0/

Chhetri et al. Journal of Statistical Distributions and Applications (2017) 4:11 Page 2 of 24

construct a new class of Kw-G distributions. See also Bourguignon et al. (2013), Cordeiro
et al. (2010), and Elbatal (2013). The work by Shams (2013) also introduced and studied
another type of generalization of the Kumaraswamy distribution.

A new approach of constructing and generalizing statistical distributions was proposed
by Shaw and Buckley (2007,2009). Their concept is defined by transmutation maps that
are functional composition of the cumulative distribution function of one distribution
with the quantile function of another distribution. One of the maps is referred to as the
Quadratic Rank Transmutation Map (QRTM). Specifically, given two distributions with
a common sample space with CDFs F; and F,, we can define a pair of general rank
transmutation map

Gri @) = F (F' @), Gry @) = F1 (F3' @),

where the pair of maps {Gg,,(#), Gg,, (4)} takes the unit interval /[o1] into itself, and
under suitable assumptions are mutual inverses, satisfying the conditions G;(0) =0
and G;(1) =1. A useful additional condition requires that the rank transmutation
maps are monotone and continuously differentiable, otherwise transmuted density may
be discontinuous.

In this paper, we use the transmutation map approach outlined in Shaw and Buckley
(2007), and also defined in Shaw and Buckley (2009). This approach considered for
Al =1,

Gpy, () = u+ Au(l — u).
The consequence of the above results in the relationship
Fy(x) = (1 + )F1(x) — A1 (%)°,
which on differentiation yields,
L@ =A@[A+ 1) —20Fx)],
where fij(x) and f5(x) are the corresponding PDFs associated with Fj(x) and Fy(x)
respectively.

We will use the above formulation for a pair of distributions F(x) and G(x), where
G(x) is a submodel or the baseline distribution of F(x). By a formal definition, a random
variable X is said to have a transmuted probability distribution with CDF F(x) if

Fx) = 1+ 1Gw) — 2G> A <1 (3)
The corresponding PDF of the transmuted probability distribution is

fx) =g@x) A+ 1 — 221G (x)).

Note that when A = 0, the above relation reduces to the distribution (G(x)) of the
baseline random variable.
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Following the work by Aryal and Tsokos (2009) on the transmuted extreme value
distribution, a number of transmuted family of distributions have been proposed
and discussed by many authors in the literature. A few of them are the work by
Aryal and Tsokos (2011): transmuted Weibull distribution; Khan and King (2013):
transmuted modified Weibull distribution; Ashour and Eltehiwy (2013): transmuted
Lomax distribution; Hady and Ebraheim (2014): exponentiated transmuted Weibull
distribution; Hussian (2014): transmuted exponentiated gamma distribution; Merovci
and Puka (2014): transmuted Pareto distribution; Owokolo et al. (2015): transmuted
exponential distribution, and Khan et al. (2016): transmuted Kumaraswamy distribu-
tion; Afify et al. (2014): transmuted complementary Weibull geometric distribution;
Yousof et al. (2015): the transmuted exponentiated generalized-G family of distribu-
tions, and a host of many others. Tahir and Cordeiro (2016) provided a comprehensive
list of contributed works on transmuted distributions. This paper is outlined as fol-
lows. In Section 2, we introduce the Kumaraswamy transmuted Pareto distribution.
Some of its mathematical properties are discussed in Sections 3, 4, 5, 6, 7, 8 and 9.
Section 10 discusses the estimation of the parameters of the distribution by the method
of maximum likelihood. We provide the application of the distribution to two real
life data in Section 11. In Section 12 we have simulation, and concluding remarks in
Section 13.

2 The Kumaraswamy transmuted Pareto (KwTP) distribution

Following the transmutation map by Shaw and Buckley (2007) as defined in Eq. (3),
we combine the Kumaraswamy distribution and the transmuted Pareto to form what
we refer to as the Kumaraswamy transmuted Pareto (KwTP) distribution. Without
loss of generality, we give a brief description of these component distributions in
what follows.

2.1 Component distributions

2.1.1 The Kumaraswamy-Kw distribution

Kumaraswamy (1980) proposed and discussed a probability distribution for handling
double-bounded random processes with varied hydrological applications. Let T be a
random variable with the Kumaraswamy’s distribution. The PDF and CDF are defined,

respectively, as
frt) =abt* 11—t 0<t<1,
and
Frit)=1-(1—-t"", 0<t<1, (4)

where both 4 > 0 and b > 0 are shape parameters. A generalized form of
this distribution is obtained when ¢ is replaced by the CDF G(¢) of another ran-
dom variable, to have what is referred to as the Kumaraswamy-G (Kw-G) distribu-
tion. The beta and Kumaraswamy distributions share similar properties. For example,
the Kumaraswamy distribution, also referred to as the minimax distribution, is uni-
modal, uniantimodal, increasing, decreasing or constant depending on the values of its
parameters. A more detailed description, background, genesis, and properties of
Kumaraswamy distribution are outlined in Jones (2009), where the author highlighted
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several advantages of the Kumaraswamy distribution over the beta distribution, namely;
its simple normalizing constant, simple explicit formulas for the distribution and quan-
tile functions, and simple random variate generation procedure. There have been many
contributions to the theory and applications of the Kumaraswamy distribution in the
literature. See for example the works by Cordeiro et al. (2010): Kumaraswamy Weibull;
Cordeiro et al. (2012): Kumaraswamy Gumbel; Pascoa et al. (2011): Kumaraswamy gen-
eralized gamma; Saulo (2012): Kumaraswamy Birnbaum-Saunders; Akinsete et al. (2014):
Kumaraswamy geometric, and a host of many others.

2.1.2 The Pareto and the transmuted Pareto (TP) distributions

The Pareto distribution was named after a sociologist Vilfredo Pareto. It is used in mod-
elling the distribution of incomes and other financial variables, and in the description of
social and other phenomena. Many distributions have been derived using the Pareto dis-
tribution. A few examples are the gamma-Pareto distribution by Alzaatreh et al. (2012),
the beta exponentiated Pareto distribution by Zea et al. (2012), and the beta-Pareto
distribution by Akinsete et al. (2008).

The PDF and CDF of the Pareto distribution are given respectively by

kok

r(x) = —,
xk+1

and
Rx)=1—(0/x)~, k>0, 6 >0, x>6.

Using the quadratic rank transmutation map, Merovci and Puka (2014) generalized
the Pareto distribution to obtain what the authors called the transmuted Pareto distri-
bution. They provided a comprehensive description of the mathematical properties of
the distribution and its application in modeling real life data. Formally, a random vari-
able X is said to have the transmuted Pareto distribution with scale parameter 6 > 0,
shape parameter « > 0, and the transmuted parameter A (|A| < 1), if its PDF is
given by

af® 0\*
g(x;(x,e,)\):w 1—)\."1‘2)\. ; N

where 6 is the (necessarily positive) minimum possible value of X. The corresponding
CDF of the transmuted Pareto distribution is given by

Ay Ay

The distribution in Eq. (5) becomes the Pareto when A = 0.

2.2 The KwTP distribution
By substituting Eq. (5) into Eq. (4), the cumulative distribution function of the five-
parameter Kumaraswamy transmuted Pareto (KwTP) distribution is given by

1-[1 - G(x;a, 6,040

@I

F(x;a,0,A,a,b)



Chhetri et al. Journal of Statistical Distributions and Applications (2017) 4:11

where x > 6, ¢ > 0,a > 0, and b > 0 are shape parameters, 6 > 0 is the scale param-
eter, while |A| < 1 is the transmuted parameter. The corresponding probability density
function of the KwTP distribution may be expressed as

f@e,0,0,a,b) = abg(x)Gx) [ 1 — Gx)“)"™!
=l e (D) W= (2) [+ () "
o xetl x x x
0 o a 0 o vayb—1
S C NI ONN ”
x x
Figure 1 shows the graphs of the PDF of KwTP distribution for selected values of the
parameters. The graphs indicate that KwTP is unimodal, and may be used in modeling

different phenomena exhibited by real world data. Figure 2 also shows the graphs of the
CDF for various values of the parameters.

3 Special cases of KwTP
Some special submodels may be obtained from KwTP by varying the values of the
parameters. Here is a list of few these submodels.

e When A = 0, KwTP reduces to KwP distribution by Bourguignon et al. (2013) with

PDF
abab® o\ 7%} 0\* 741571
swanan = - () [} -0 ]
e Whena = b =1, KwTP reduces to the transmuted Pareto distribution by Merovci
and Puka (2014) with PDF

af® 0\*

a=1,=-1,a=3, b=3, 6=0.1

=1, =-1,a=3,b=3, 6=0.1
0=2, k=-0.5,a=2,b=0.8, 6=0.1 .
0=1.5, =0, a=2,b=0.8, 6=0.1
0=2, 1=0.5,=0.5,b=0.5, 6=0.1
0=05, =1, 2=2,b=0.5, 6=0.1
9 ——  0=05,1=0.8,a=2,b=1, 6=0.1

x)

T T T T
00 05 10 15

Fig. 1 PDF of KwTP distribution for selected values of the parameters
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a=1, k=-1,2=3,b=3, 6=0.1
a=15,1=0.1,2=0.5,b=2, 6=0.1
=05, 1=0.8, a=2,b=2, 6=0.1
=2, h=-0.5,2=2,b=2, 6=0.1
a=1,1=-0.2, a=2,b=4, 6=0.1

F(x)
F(x)

——

0=1,}=-1,a=3,b=3, 6=0.1
=15, 1=0.1,2=0.5,b=2, 0=0.2

a=2, 4=-0.5,a=2,b=2, 6=0.4
a=1,1=-0.2,a=2,b=4, 6=0.5

Fig. 2 CDF of KwTP distribution for selected values of the parameters

® By setting b = 1 and A = 0, the KwTP reduces to the exponentiated Pareto
distribution, defined by Nadarajah (2005), with PDF

aof® o\* 114!
Nt

e Whena =1 = band A = 0, KwTP reduces to the classical Pareto distribution

with PDF

af?
f(x;oz,@) = W

4 Mixture representation

In this section, we provide alternative and useful expressions for the PDF and the CDF of

KwTP distribution. Let X be a random variable having the KwTP density (7).
For any b > O real non-integer and |z| < 1, consider the power series

1 = (=D )
(1-201 = Z ) _k)zk.

k=0

As mentioned by Afify et al. (2016), applying the power series (8) to Eq. (7), we can write
the PDF as a mixture of exponentiated-transmuted Pareto with the power parameter

(k4 1)a as

@) =) uig®Gx) ke,

k=0
where
_ (=Dkabr) (b-1 o
=TT B — k) _“b< k )( v

and g(x) and G(x) are the PDF and CDF of the transmuted Pareto distribution

respectively.

Page 6 of 24
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The PDF (9) can be expressed as a mixture of exp-G densities
o0
f@ =) wming@G™ (10)
k=0

where w;, = (kiikl)a’ and yx = (k + 1)a. By integrating (10), we get a similar mixture
representation for the CDF

F(x) =) wiG) e, (11)
k=0

where G(x) is the CDF of the transmuted Pareto distribution with power parameter
(k + 1)a. Using the binomial expansions of the expressions

[—@0—@/0)0+r60/x9"", (-9 and (14 r0/0%) P,

the PDF of the KwTP distribution can be expressed as
s =S 1o () |- O T )T
xotl x x x
0\% 14 o\ %1% b—1
-G O]
x x

aba@“ b— 1 X 6 o
=Z P . DM 1—a+20( =
k=0 x < X
o\¢% (k+1)a—1 0\¢ (k+1a—1
-G )]
x x
ad abab® (b —1 X 0 o
=Z arl D1 —r+2x( -
X k x
k=0
X ((k+1)a—1)\[(k+Da—1 0\
e () e (B)

i=0 j=0
wherea > 0,a > 0,b > 0,0 > 0,|A| < landx > 6. Let
k+1a—1 k+1a—1 .
ij _ <((+ ?a )<(<+ ?a )(_1),)\]'
! J
m m—i
By settingi+j = m,and w;, = 3 wk = 3 3" wk, we can further express the

)
ijitiem | iZ0j=0 "

PDF of the KwTP in the form

abab® 0\ — 6\ "
f(x):xaﬂlil—)n-f—2)u<x) :|Zum<x> , (12)

m=0
where
o0
b—1
Uy = Zw;m( ' )(—1)". (13)
k=0

In particular,

— b—1 0 0—i
Uy = Z Wlt,o( k )(—l)k, where W/t,o = Z Z w{j
k=0

i=0 j=0
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Thatis,m =0 = i=0,j = 0. From w, = (k#be- 1)((k+1)“ N(-D'¥andi=0,j=
o
0, we have wo = 1. Thus, wi ; = 1, and hence, up = }_ ( X )(—l)k.

Similarly, using (11) we can express F(x) as

[ 0\ (k+1)a 0\ (k+1)a
=) ] e (0)]
X X

00 a(i+))
55 a0 ) (5 (07
i=0

=0 j=0 ]

Let V ((k+1)“) ((k+1)“)( 1)i3/, where in particular véo =1.

m m—i
Settingi +j =m, v, = ). V =) ZV,,fV—(;) »and
’ ijiitj=m i=0 j=0
o0
P =D VemWo (14)

we can express the CDF of the KwTP as,

F(x) = Z Zv};mwk (i)

m=0 k=0

00 0 am
= Z - Pm
m=0 x

00
= Z pmvm» (15)
m=0

where pp may be expressed as

o S o0
po = ZV]?()Wk = Z "Iéowk = Z Wik
k=0 k=0 k=0

v % N ()
_ga(k—l—l) _Z( b a(k+1)

—Dk (b
_bzk+1< ) (16)

k=0

5 Quantile function

The quantile function of a distribution is the real solution of F(x;) = gfor0 < g < 1.
It is defined as the inverse function of the CDF of a random variable X. Using Eq. (6), the
quantiles (x,) of KWTP distribution may be expressed in the form

A—l—l—\/(1+A)2—4A([1—(1—q)z1;]‘1’>

2

xg=F g =9

Page 8 of 24



Chhetri et al. Journal of Statistical Distributions and Applications (2017) 4:11

For specified values of parameters «,6,1,a and b, and a set of random number
u € (0,1), we can generate a random variable X having the KwTP distribution (6),
and satisfying

x—1+\/(1+x)2—4,\ ({1—(1—u)i}‘1‘> B

21 17

X=Qu=F'u)=0

In general, the quantile function enables one to find the relationship between one random
variable and another random variable. For example, if Y is a random variable with CDF
G(), we can show that X ~ KwTP(x|«, 0, A, a, b) if

2A
A-1 +\/(1+x>2 — 4 ({1 - (G@))i}“)

6 Moment functions
We define in this section, various moment expressions for the KwTP distribution. These

X=0

consist of the raw moments and their related functions, e.g., skewness and kurtosis, and
the moment generating function. By definition, the r-moment of the KwTP random

variable is defined by

EQX) = 1,0, a,b) = / f(x)dx
0

e’ 00 00
= abab® [(1 =)D wb”" f XTI £ 20N U
0

m=0 m=0

oo
% / xr—1—2a—amdx
0

S xI—a—am
= aba@“{(l -0y umea’"[}

r—o—oam
m=0

|

o]

0

o N xr—2a—am
+ 2A U0 -
Z " r—2a —oam

m=0
> u > u
= (1 — Aabad” — " 4 2%abab” _
( Jabo Zam+a—r+ e Zam—i—Za—r
m=0 m=0
oo
1—-A 2)
= abab” , . 18
v V;)Mm[a+am—r+2a+am—ri| T (18)

In particular if A = 0,4 = b = 1, we have the Pareto distribution. In this case, we must

have m = 0, up = 1, so that the moment expression becomes

r

, 0
EX") = 11.(@,6,0,1,1) = —

, T <a.
It is interesting to note that the mean of X is

’ 0{9
EX) =pqy(e,0,0,1,1) = P a > 1.
o

Page 9 of 24
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By similar procedure, the moment generating function is defined as follows:
oo
Mx(t) = / e f (x)dx
[4

00 00 00
= aba6® |:(1 —A) Z ume"m/ a1 g 4 2 Z U, 0% Tem
0

m=0 m=0

00
x / etxx—ozm—Zoz—ldx
0

= aba[(l =0 )t (—t0)* T (—a — o, —t0)

m=0

o0
+ 21 Z Uy (—20) 24T (200 — amm, —t@)],

m=0

=aba Y uu(—t0)* " [(1 = M (—a — am, —t6)

m=0

+ 2 (—10)*T (=20 — am, —10)], t <0,

where T'(,,.) denotes the upper incomplete gamma function. That is, I'(s,0) =
f o ety
o .

The variance, skewness and kurtosis of the KwTP distribution can be calculated from

(18) using the relations given below.

Variance(X) = EX?)—[EX)]?, a > 2
E(X?) — 3BE(X)E(X?) 4+ 2E3(X)

Skewness(X) = Vard 2 (X) , o >3
E(X*) — 4E(X)E(X?) + 6E(X*)E*(X) — 3E*(X
Kurtosis(X) = @ OEAT) + 6EXTE(X) ( ),oe>4.
Var?(X)

We provide in Table 1, the numerical measures of the median, mean, variance, skewness
and kurtosis of the KwTP distribution for selected values of the parameters, to illustrate
the effects of the parameters on these measures. We had arbitrarily fixed the value of
parameter 6 at 0.5.

The values of the statistics; mean, median, variance, skewness and kurtosis increase
or decrease according to the changes in parameter values. For example, these statistics
decrease as « or b increases, while other parameters are held constant. We also observe
that each statistic in the set consisting of the mean, median and variance increases by
increasing the value of parameter a, while each statistic in the set decreases as A increases.
On the other hand, the skewness and kurtosis both decrease for increasing value of 4,
while the values in this set both increase, and then decrease, for increasing value of .
The effects of parameters a and b on the mean, variance, skewness and kurtosis for given
values of A, 6 and « are displayed in Figs. 3 and 4 respectively.

In addition to the traditional measures of skewness and kurtosis, we also obtain the
Bowley’s measure of skewness, introduced by Bowley (1920), and the Moors’ measure
of kurtosis, introduced by Moors (1988). These measures are quartile alternatives to the
traditional skewness and kurtosis, and are more robust estimation of these measures, see
Kenney and Keeping (1962).
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Table 1 Median, mean, variance, skewness, kurtosis for selected values of the parameters

o A a b Median Mean Variance Skewness Kurtosis
5 02 1 1 0.5636 06111 0.0224 49196 81.8250
6 0.2 1 1 0.5525 0.5891 0.0130 4.0458 429488
7 0.2 1 1 0.5446 0.5744 0.0084 3.5980 30.9806
8 0.2 1 1 0.5388 0.5638 0.0059 3.3243 25.2955
10 02 1 1 0.5309 0.5497 0.0034 3.0056 19.8668
5 -1 1 1 0.6392 0.6944 0.0386 41113 60.5271
5 -0.5 1 1 0.6061 0.6997 0.0335 4.2366 63.3030
5 0.1 1 1 0.5688 06181 0.0243 4.7743 774267
5 0.5 1 1 0.5505 0.5903 0.0162 54825 101.8249
5 08 1 1 0.5408 0.5694 0.0091 6.0430 135.7943
5 1 1 1 0.5359 0.5556 0.0039 28111 17.8286
5 05 1 1 0.5505 0.5903 0.0162 54825 101.8249
5 05 2 1 0.5964 0.6422 0.0249 4.7467 786519
5 0.5 3 1 0.6304 0.6802 0.0313 44534 70.3107
5 05 4 1 0.6578 0.7106 0.0366 4.2881 65.8432
5 0.5 5 1 0.6810 0.7362 0.0411 4.1793 63.0006
5 02 1 1 0.5636 06111 0.0224 49196 81.8250
5 0.2 1 2 0.5303 0.5480 0.0031 3.0122 20.2613
5 0.2 1 3 0.5199 0.5305 0.0011 2.6351 15.2360
5 02 1 4 0.5150 0.5224 0.0006 24635 133142
5 0.2 1 5 05118 05176 0.0003 2.3646 12.2905

e Bowley skewness (Bg): By definition, the Bowley’s measure of skewness is expressed as

lgsk =

e Moors kurtosis My, This is defined as

_ B+ Q1-2Q _ Qozs —2Qos5 + Qoas
Q—-Q Qozs — Qo2s

My, =
kur Ec — Ey

(E7 — E5) + (E3 — E1) _ Qo.875 — Qo625 + Qo.375 — Qo.125
Qo.75 — Qo.25

0.18

ueaM

5 1.0

Fig. 3 Plots of mean and variance of KwTP distribution

variance

Page 11 of 24
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skewness

Fig. 4 Plots of skewness and kurtosis of KwTP distribution

kurtosis

the i octile.

7 Mean deviation

with A = 0.2, = 2 and § = 0.1, are shown in Fig. 5. The graphs show that both Bowley

skewness and Moors kurtosis depend on the choice of the parameters.

Bowley Skewness

where Q; is the ith quartile for i = 1,2,3, and E; = F7Yi/8), i =1,2,---,7 represents

The graphs of the Bowley skewness and Moors kurtosis for different values of 2 and b,

The deviation from the mean, in the case of symmetric distributions, or deviation
from the median, in the case of skewed distributions, can be used as a measure of

s\SO\“‘y‘ ~
o

kS

w

aand b

Fig. 5 Bowley skewness (left) and Moors kurtosis (right) for KwTP distribution as a function of the parameters

Moors kurtosis

5 5
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spread in a population. Given that the random variable X has the KwTP distribution.
Let u = E(X) be the mean and M be the median of X. The mean deviation about
the mean D(u) and the mean deviation about the median D(M) can be expressed
respectively as

o0 nw )
D(p) = /9 lx — plf (x)dx = /9 (n — x)f (x)dx + / (x — wf (x)dx
"

= 2uF(u) — 2/ (w), (19)

and

00 M 00
DM) = / lx — M|f (x)dx = / (M — x)f (x)dx + / (x — M)f (x)dx
0 0 M

= —2/(M), (20)

where F(.) is the CDF of the KwTP distribution, and J (¢) = [, gt xf (x)dx.
We compute J(¢) as follows:

¢
J(®) =‘/9 xf (x)dx

o t o0
= aba6® |:(1 —A) Z qu"‘m/ x4+ 2 Z Uy 0% T

t
X / x_zo‘_“”’dx:|
0

St t—a—am—H e—ot—otm—i-l
= abot|:(1 —-2) Z Uy, 00T ( + )
m

= l—-a—am o+am—1

S ot t72a7am+l 972a7(xm+1
+2) Uy, @M +
Z " 1—20—am 20+am—1

m=0
o] o 204+am
a-nt 0 1-x1e 21t 0
= ab —_— | = "
aar;)um[l—a—am(t) +a+am—1+1—2a—am<t)
216
=7 . 21
+2a+am—1] -

Using Eq. (21), we can write appropriate expressions for /() and J(M). Combining
these with the expression for F(u), it is easy to obtain the expressions for D(u) and D(M)
in Egs. (19) and (20) respectively.

8 Reliability

According to Ashour and Eltehiwy (2013), the reliability function, also called the survival
function, is the characteristic of an explanatory variable that maps a set of events, usu-
ally associated with mortality or failure of some system onto time. In other words, the
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reliability function R(¢) is the probability of an item not failing prior to some time ¢, and
is defined by R(t) = 1 — F(¢). The reliability function of the KwTP distribution is

R(t) =1—F(b)

o\% 1% 9\ 14 b
p-[= () [l T
t t
The other characteristic of interest of a random variable is the hazard rate function

h(t) which is also known as instantaneous failure rate. The hazard function of a random
variable X with PDF f(x) and associated CDF F(x) is defined as

t
1-F@)
Substituting the PDF and CDF for the KwTP distribution into the above expression,
we have
t
h(t) — f(i)
1-F@®)

_apo [ n @[] rea @]
et fi=[1= (] 1429}

The flexibility of KwTP distribution to model reliability data is illustrated by varying

shapes of the hazard rate function in Fig. 6.
The following lemma shows the limiting behavior of the hazard function:

Lemma 1 If h(t) is the hazard function of the Kumaraswamy transmuted Pareto
distribution, then

0, a>1
lim h(t) = L“%H‘), a=1
t—6
00, a<l,
© 4
———  0=1,)=-1,a=3,b=2, 6=0.1
———  0=2,)=-05,a=2,b=0.8, 6=0.2
———  0=45,1=0,a=2,b=0.8,6=03
o ———  0=2,)=05,3=05,b=05,6=04
0=15,1=0.2, a=2, b=5,6=0.5
———  0=05,1=0.8,a=0.2, b=1, =1
BN
~ A —
o
T T T T T T
0 1 2 3 4 5
t
Fig. 6 Hazard rate function of KWTP for selected values of «, 6, A, a and b
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and
lim h(t) = 0.
t—0o0

Proof First note that

lim G(¢) = lim [1 - (9”[1 o (9)] o,
t—06 t—06 t t

b O\*T  a(l+A)
li H)=lim ——|1—A+21| - = —
tl—%g( ) 1 (o1 |: + (t) ] 0

and

Then we have

f® i abg(t)G(t)*!

lim A(t) = lim im

t—0 t-0 1 —F(@) t—»6 1—G()~*
0, ifa>1

— aba%+k), ifa=1

00, ifa <1.

For the second part, we already know that lim G(¢) = 1, lim g(¢) =0, lim F(¢) =1,
t—00 t—00 t—00

and tlim f (@) = 0. Then using the L'Hospital’s rule, we have
—00

a—1
lim A(t) = lim “2EOCO
t—00 t—oo 1 — G(t)*

abg(t)

im —————————

t—=o00 G(H)1=% — G(t)

— lim abg'(¢)

t—oo (1 —a)G()~4g(¢) — g(®)

= lim ab x lim 40
t=oo [(1 —a)G()™% —1]  t—oo g(t)
— b lim &%
t—00 g(t)

=0.

9 Order statistics

Let X1,Xo,...... , X, be a simple random sample from KwTP (x; @, 6, A, a, b) with CDF (6)
and PDF (7). Also let X(1), X(2),... ... , X(ny denote the order statistics from this sample.
The PDF f{;.y (x) of the i-th order statistics is given by

" _ ; i—1 _ n—i
Jin(x) = B(i,n—i—i—l)[F(x)] [1-F@®)]"" fx), (22)

and the CDF is given by
- n k n—k F® 1 i—1 n—id
Fin(x) ZZ(k>[F(x)] [1—Fx)] ZA mt 1-9v L.

k=i
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Using Egs. (12), (13), (14), (15) and binomial expansions, Eq. (22) becomes

(i
= ! abot” [ o () 5w (2)
T B(hn—i+1) \ xofl x p N\ %

n—i . ) i+s—1
x Z(—1)S<" ) ’) x (Z pmvm> . 23)
s=0 m=0

From Gradshteyn and Ryzhik (2000, sec. 0.314), for any positive integer r,

00 r 00
( Z pmvm> = Z dr,me,
m=0 m=0

where the coefficients d,,,, for m = 1,2,3,...., can be determined from the recurrence

. _ 1 — 1) n—i i+s—1
) = G ) 2 1)( ) )F(x)

ok

Il
o

equation

m
Arm = (WZ,OO)_1 Z{Q(V +1) - m}pqdr,m—q
q=1
and d,o = (py)"
We can obtain d,,, from d, o, ---, d;,—1 and, therefore, from pg, p1, -+, Pm-

Hence (23) becomes

fi:n (%) =

abat® (1—A+2Av)§: ;
up
Bl —i+1) = !

X nif(—l)s<n S_ i) X ( Z di+sl,me>
s=0 m=0

o0

_abaf” (1 — A+ 2v) Z
T oatB(n—i+1)

o0
ulvl Z ci(m)v™
=0 m=0

abaf® (1 — X + 21V) o= L
T xtBGn—i+1) IZ(;W;WC’(M)V ’

0\“ i fn—i
y = <x) , ci(m) = ;(—1) < s >di+s—1:m’

m
dits—1,m = (WZPO)_I Z [Q(l +s) — m]pqdi+s—1,m—q
q=1

and d;15_10 = (po) ™71, where py is defined in Eq. (16).

10 Parameter estimation
In this section we estimate the parameters of the Kumaraswamy transmuted Pareto
distribution by the method of maximum likelihood estimation.

Let X1,X5,...... , X, be a random sample from the Kumaraswamy transmuted Pareto
distribution with observed values x1, x5, ...... ,x%mand y = (a, 0, A, a, b)T be the vector of
the model parameters. The log-likelihood function for y can be written as
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L(y)

log L(x;,6, A, a, b)

n
= nloga+ nlogh+ nloga + nalogd — (a + 1) Zlog(xi)

;mg <1 —A+22 <Z>a)
+a-1) [Zlg <1 - (")) T Zlg (1 i (9))}
+ (b—l)glog{l—[l— (i)ar[lﬂ(i)a]a}. (24)

Since x € (0, 00), the maximum likelihood estimator of 6 is the first order statistic
Xq). Following the normal routine of parameter estimation for the maximum likelihood

estimation of ¢, A, a and b, we differentiate Eq. (24) with respect to «, A, a and b to obtain

T
al al 9dl al
the score vector (@, 35 307 %> . The elements of score vectors are

al

7 = ”+nlog9—Zlog(xl)+Z(l_k+2A<g) )

—(a—-1 - 7(%) :
“CONLIEN) B

Gafl(xi;a’g,)\,) <x> |:1_)\.+2
_ —1 ’
a(b ); 1— G*(x;50,6, 1)

o _gs 2@ ot 6

92 i:ll—)»+2)\< ) L11+A(

g LTl

1—G%x;0,0,)0)

al +[Zlog(l—<> ) Zl"g(HA(e) ﬂ

“m() s A(9)1“()3) 25)

>
—

R‘q;

)

aqa—1
)] 06

’

R

G*(xi;,0, 1) x log{G*(x;; 0,0, 1)}
b—1 , 27
= ( ) Z 1—G%x;0,0,A) 27)
and
o E+Zl [1-G*xsa,6,0)}), (28)
A og Xis oL,

where G(x;; o, 0, 1) is the PDF of the transmuted Pareto distribution.
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The maximum likelihood estimates a, )AL, &,I; of the unknown parameters «, A, a,b
respectively, can be obtained by setting Egs. (25) - (28) equal zero and solving for the
parameters. We can use numerical methods such as the quasi-Newton algorithm to
numerically optimize the log-likelihood function given in Eq. (24), to get the maximum
likelihood estimates of the parameters «, A, a, b. To compute the standard error and the
asymptotic confidence interval, we use the usual large sample approximation in which the
maximum likelihood estimators for y can be treated as being approximately normal. This
will require the computations of the second order derivatives of Eq. (24) with respect to
the vector of parameters.

This procedure will result in

A~

Va(x Vaa ‘A/aa Vab

o o

A A Vie Vix Via Vip
| ~ Normal B NN
a a Vae Var Vaa Vap
b b Ve Vor Vea Vob

with V,, = V(W))| )= ()’ and the asymptotic variance-covariance matrix of the

MLEs is,
N A A oA -1
Vaa Votk Vom Vozh Vozoc Vak Vaa Vab
Vie Via Via Vie | _ _p| Vie Via Vaa Vip
me Vak Vaa Vab Vﬂa VaA Vzm Vab
Vioa Vs Voa Vb Ve Vir Voa Vb

where entries are obtained from

y K v 9% Vo 9% v 9%l
= 52’ = aan “ = Sada’ b= 5aob
Vi 9%l 9% v 9% 0%
e = onoa’ MO a2 M= onda’ Y= nob
o 921 v 321 9 Vo 921
“ = Hada’ = Ban’ “ = 5q2’ @ = Saob
N v = 9% 0%
b = Sboa’ b= bar’ ba = Sboa’ bb = Gp2

and [ is the log-likelihood function given in (24). Approximate 100(1 — ¢)% two sided

confidence intervals for «, A, a and b are, respectively, given by

a+zoy Voo > X:I:ZQ\/\A/M, atzoVaa and I;iZQ\/\A/bb,
2 2 2 2

where z is the upper ¢—th percentile of the standard normal distribution.
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Table 2 Descriptive statistics for the Wheaton river data
Min. Q1 Median Mean Q3 Max. Skewness Kurtosis
0.100 2125 9.500 12.200 20.12 64.00 14725 5.8895

11 Applications of KwTP
In this section we apply the KwTP to two data sets. These are exceedances of flood
peaks (in 73 /s) of the Wheaton River near Carcross in Yukon Territory, Canada, and the

Norwegian fire insurance claims data.

11.1 The exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in
Yukon Territory, Canada

The data are the exceedances of flood peaks (in 723 /s) of the Wheaton River near Carcross
in Yukon Territory, Canada. The data consists of 72 exceedances for the years 1958-1984.
These data have been analyzed by many authors including Choulakian and Stephens
(2001), Nadarajah (2005), Akinsete et al. (2008), Bourguignon et al. (2013), Merovci and
Puka (2014), and Chbhetri et al. (2017), among others. A summary of the descriptive
statistics of the data set is given in Table 2. The analysis of these data with the KwTP
is comapared with the results from few commmonly used distributions in the literature.
All required computations are carried out using the AdequacyModel script of R-package
(Marinho et al. (2016)). In particular we compare the KwTP with the Kumaraswamy
Pareto distribution (KwP), the transmuted Pareto distribution (TP), exponentiated Pareto
distribution (EP), beta transmuted Pareto distribution (BTP), beta Pareto distribution
(BP), and the Pareto distribution (P). Using the method of maximum likelihood estima-
tion, we estimate the distribution parameters. The goodness of fit measures, including the
log-likelihood function (—£), Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Consistent Akaike Information Criterion (CAIC), and Hannan-Quinn
Information Criteria (HQIC) are obtained for the fitted models.

Table 3 lists the values the MLEs and their standard errors, whereas the values
of —¢, AIC, CAIC, HQIC, BIC and Kolmogorov (K-S) statistic are given in Table 4.
From Table 4, it is noted that the KwTP distribution has the lowest values for

Table 3 Estimated parameters and their standard errors for the Wheaton river data

Model a b A & 6
KwTP 42684 17.0139 -0.3687 0.2003 0.1
(1.5669) (12.6727) (0.5308) (0.0609) -
KwP 2.8553 85.8468 - 0.0528 0.1
(0.3371) (60.4213) - (0.0185) -
BTP 39118 17.3874 -0.8518 0.1159 0.1
(18159) (11.7365) (0.2588) (0.0509) -
BP 3.1473 85.7508 - 0.0088 0.1
(0.4993) (0.0001) - (0.0015) -
TP 1 1 0952 0.3490 0.1
- - (0.089) (0.072) -
EP 2.8797 1 - 04241 0.1
(0.4911) - - (0.0463) -
P 1 1 - 0.2438 0.1

- - - (0.0287) -
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Table 4 The AIC, CAIC, BIC, HQIC and K-S test statistic of the Wheaton river data
Model Statistics

—0(,%) AIC CAIC BIC HQIC KS
KwTP 254017 516.034 516641 525.085 510.634 0.147
BTP 256.577 521.154 521.760 530.204 524753 0.160
KwP 271200 548400 548.753 555230 551.119 0.170
BP 283.700 573400 573.753 580230 576119 0.175
P 286.201 576402 576575 580.954 578214 0287
EP 287300 578.600 578.774 583.153 580413 0.199
P 303.100 608.200 608.257 610477 609.106 0332

the —¢, AIC, CAIC, HQIC, BIC, and K-S statistic. One can employ the likelihood
ratio statistic to test the superiority of the KwTP distribution over the other dis-
tributions. The plots comparing the KwTP distribution with other distributions are
given in Figs. 7, 8 and 9. The values in Table 4, and the plots, all indicate that the
KwTP distribution is more superior and fits the data more adequately than the other
comparative distributions.

11.2 The Norwegian fire insurance data (in kr)

We apply the KwTP to the Norwegian fire insurance claims data for the years 1988 and
1990. Several authors have analyzed these data. See for example, Mdziniso and Cooray
(2017) and related references in the paper. The 1988 Norwegian fire claims data consist
of 827 fire insurance losses in thousand Norwegian krones, ranging from 500 to 465,365
thousand Norwegian krones. The 1990 Norwegian fire data consist of 628 fire insurance
losses in thousand Norwegian krones, ranging from 500 to 78,537 thousand Norwegian
krones. Data for both years are highly positively skewed. Using these data, Mdziniso and

1.0
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BP Distribution
—— TP Distribution
S EP Distribution
—— P Distribution
2
o

T T T T T T T
0 10 20 30 40 50 60

Flood Peaks Exceedance

Fig. 7 Fitted CDF of the Wheaton river data
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Cooray (2017) compared the performances of the Pareto (P), the 3-paramater general-
ized Pareto (GP), the odd-Pareto (OP) and its extension (OP*), the 3-parameter Burr, the
exponentiated Pareto (EP), the exponentiated odd Pareto (EOP) and the odd generalized
Pareto (OGP) distributions.

We provide in Table 5, the parameter estimation of the insurance data for both
1988 and 1990. Comparing the performance of KwTP with the distributions listed in
Table 4 of Mdziniso and Cooray (2017) for the 1988 data, we see from the values of
the AIC, A-D, and K-S, that KwTP displays superiority over the P, GP, OP, OP*, Burr,
and EP distributions. It also performs better than the OGP judging from their K-S val-
ues. The same pattern of performances of KwTP and the distributions listed in Table 5
of the paper are observed in the case for the 1990 data. With the exception of the
exponentiated odd Pareto (EOP) distribution, the KwTP is a better fit for these sets
of data.

12 Simulation study

In this section we perform some simulation study to assess the reliability of the MLEs.
An ideal technique for simulating random numbers from the KwTP distribution is
the inversion method. For fixed selected combinations of «, A, a and b in Eq. (17), we
generate samples of sizes n = 5,10, 20, 50, 100, 200,500 and 1000 from the KwTP dis-
tribution. We repeated the simulations N = 1,000 times and calculated the mean
estimates, the root mean square errors (RMSEs) and the mean absolute errors (MAEs).
The empirical results obtained using R are given in Table 6. Observe that RMSEs decay
as the sample size increases, while the maximum likelihood estimates get closer to their

true values.

13 Conclusion

We have proposed in this article, a new distribution that is being referred to as the
Kumaraswamy transmuted Pareto (KwTP). The transmuted Pareto distribution is used
as a baseline distribution in the Kumaraswamy distribution to construct the KwTP dis-
tribution. Many mathematical and statistical properties and special cases of the KwTP
are obtained. The estimation of the model parameters is performed by the maximum
likelihood method. We compare the distribution with few other distributions in mod-
eling two real datasets. Various statistics indicate that KwTP better fits the Wheaton
river data set than other comparative distributions, and majority of its competitive
distributions for the Norwegian insurance claims data. We conducted a simulation

Table 5 Norwegian fire insurance claims: Estimated values for KwTP

Parameters —L AlC BIC A-D K-S p-value
(Year =1988,n = 827)

@ i a b

1.0197 -0.7034 0.9698 1.2808 6751.24 1351049 1352929 046 003 062

(0.4104) (0.2148) (0.1609) (0.6186)

(Year=1990,n = 628)
a ) a b
0.6310 -0.7285 0873 3.1417 5039.91 10087.82 10105.57 0.96 0.04 040

1
(0.2739) (0.1873) (0.1669) (1.8428)
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Table 6 Simulation from KwTP of the MLE foree = 2,A = 0.1,a=3,and b =25

Sample size Parameter Estimate RMSE MAE

(n)

5 & 2.0490 07727 0.6466

N -0.1342 0.6446 0.5640

a 2.7096 1.0869 0.8522

b 24806 1.1296 0.9987

10 & 20722 0.6983 0.5810

A -0.1046 0.6089 0.5274

a 27421 0.9994 0.7871

b 25427 10715 0.9389

20 & 2.0429 06157 0.5030

A -0.0228 05786 0.5022

a 28104 0.9036 0.7274

b 25201 0.9400 0.8048

50 & 2.0078 0.5674 04486

A 0.0330 0.5507 04692

a 2.8363 0.8251 0.6755

b 24863 0.8682 0.7382

100 & 1.9644 0.5361 04302

A 0.0590 0.5288 04445

a 28337 0.7392 0.5914

b 24907 0.7856 06617

200 & 19783 0.5214 04246

A 0.0628 0.5082 04210

a 2.8550 0.6567 05191

b 25186 0.7352 06141

500 & 1.9691 05515 04607

A 0.0846 04972 04057

a 2.8452 0.6056 04562

b 25001 0.7121 0.5980

1000 & 1.9802 0.5694 04841

A 0.1073 04818 0.3830

a 2.8629 0.5301 0.3895

b 24704 06748 0.5693

study to assess the performance of the maximum likelihood estimation procedure for

estimating the parameters of the KwTP distribution. It is expected that the KwTP dis-

tribution will serve as a better alternative in modeling data sets exhibiting the extreme

value properties.
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