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Abstract

The economic researcher is sometimes confronted with panel datasets that come from
a population made of a finite number of subpopulations. Within each subpopulation
the individuals may also be heterogenous according to some unobserved
characteristics. A good understanding of the behavior of the observed individuals may
then require the ability to identify the groups to which they belong and to study their
behavior across groups and within groups. This may not be a complicated exercise
when a group indicator variable is available in the dataset. However, such a variable
may not be included in the dataset; and as a result, the econometrician is forced to
work with the marginal distribution of the observed response variable, which takes the
form of a mixture distribution.
One can model a given response variable with a variety of mixture distributions. In this
paper, I present several related mixture models. The most flexible one is an extension of
the model by Kim et al. (2008) to the panel data setting.
I have reviewed the estimation of some of these models by the
Expectation-Maximization (EM) algorithm. The intent is to exploit the nice convergence
properties of this algorithm when it is difficult to find good starting values for a
Newton-type algorithm. I have also discussed how to compare these models and
ultimately identify the one that provides the best fit to the data set under investigation.
As an application I examine the investment behavior of U.S. manufacturing firms.

Keywords: Panel data, Mixture of distributions, Hidden Markov models, Heterogeneity

Introduction
To model the heterogeneity of economic agents I present a series of panel data mix-
ture models of increasing degree of flexibility and complexity and show how they can be
used to handle at least two types of heterogeneity: heterogeneity with respect to group
membership, and heterogeneity with respect to within group differences in individual
characteristics. I have also reviewed the methods of estimation of some of these models
via the Expectation-Maximization algorithm. The objective is to take advantage of the
nice convergence properties of this algorithm when it is difficult to find good starting val-
ues for a newton-type algorithm. I have also reviewed some statistical tests that can be
used to choose the best models among those discussed in this paper.
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Heterogeneity is an important problem faced by the statistician or the econometri-
cian trying to infer the behavior of economic agents from available data sets. Economic
decison makers are heterogeneous in their characteristics and they usually operate in
heterogeneous (different) environments. As a result, their behavior generate data whose
distributions are sometimes difficult to approximate with the traditional single com-
ponent econometric models. To deal with this problem, often economists divide their
sample into groups using observed variables such as time (in time series) or other indi-
vidual characteristics (in time series and longitudinal data). The groups obtained this way
are usually static andmay differ from alternative groups obtained using different observed
variables.
While this strategy may allow the researchers to draw some useful conclusions, it is

less attractive than the approach that uses multiple characteristics for determining group
membership. It is also less flexible than the approach that allows for the possibility that an
individual changes group membership depending on the evolution of his characteristics
and of the conditions that he is facing. Lastly, it is much less flexible than the approach
that offers a unified way (one step method) to make inference about both group mem-
bership and behavior. Mixture of distribution models offer such flexibility. These models
are justified not only in theory, because they offer a nice way to model heterogeneity,
but also in practice since they can be used to provide a semi-parametric approxima-
tion to the non-standard distributions of some economic variables at a reasonable cost
(McLachlan and Peel 2000). Mixture of distributions are in fact at the crossroad between
parametric and non parametric families of distributions. They are parametric because
each component distribution usually belongs to a parametric family of distributions, and
they are non-parametric because it is possible to provide a very good approximation to
the distribution of some variables by increasing the number of components of the mixture
(Fink 2007).
Among economic variables whose study can benefit from the applications of mixture

distributions one can cite firms’ investment, households consumption, money demand,
household use of healthcare, etc. Finite mixture distributions are commonly used in
Econometrics, mainly in cross-sectional and time series analyses. Following Hamilton
(1988), some versions of the hidden Markov models have been extensively used in
macroeconometrics to model business cycle fluctuations under the name of Markov
Switching regression models. Nevertheless, applications of mixture of distributions in
the panel data setting appear to be limited. In many cases the panel data set is treated
almost the same way as a cross section. In some rare cases, as in Deb and Trivedi
(2013) the dependence of the observations within each unit is modeled using individ-
ual specific effects. However, if the panel data set is viewed as a collection of time
series it is not difficult to extend the hidden Markov models used in time series anal-
ysis to the panel data setting. This is the point of view adopted in this paper and also
by Asea and Blomberg (1998) as well as Atman (2007) and Maruotti (2007). The most
flexible models presented in this paper extends the times series model by Kim et al.
(2008). I allow the Markov chains to be time-inhomogeneous and non-stationary and I
introduce within group heterogeneity in the component distributions using the specifi-
cation by Mundlak (1978). The models are closer to the models by Atman (2007) and
Maruotti (2007). A related set of models applied to Panel Count data can also be found in
Trivedi and Hyppolite (2012).
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Themodels
Several alternative mixture distributions can be used to model the bivariate process con-
stituted by an economic agent’s decision and its group membership. In the following
sections, nine such models are described going from the simplest to the most compli-
cated. All of the models are assumed to be made of two components, but extension to
more than two components is not difficult.
The models can be used to study several different economic phenomena such as

households consumption under financial constraints, firms investment under financial
constraints, households demand for money, household use of healthcare, etc. In what fol-
lows I will use the example of investment choices under financial constraints to motivate
the specifications.

A finite mixture model with constant mixing proportions (M1)

Consider the vector of random variables (Yit ,Wit)′ where Yit represents agent i’s decision
at time t (; t = 1, . . . ,Ti; i = 1, . . . n) whileWit is a discrete random variable

wit =
{
1 if agent i belongs to group 1 at time t
2 otherwise

In a model about firms’ investment decisions under financing constraints, Yit would rep-
resent firm i’s investment rate at time t, while Wit would be the firm’s financial status at
that time. Yit and Wit are assumed to be dependent in the sense that the agent’s decision
depends on the group he belongs to; more precisely I assume that

f
(
yit|wit = 1;β1, σ1

) = φ
(
yit ; xitβ1, σ1

)
f
(
yit|wit = 2;β2, σ2

) = φ
(
yit ; xitβ2, σ2

)
,

σ1 > 0, σ2 > 0,

where φ(.) is the density function of a univariate normal distribution and xit is a row vec-
tor of covariates including individual characteristics that influence the agent’s decisions,
and β1 and β2 are column vectors of parameters. The joint density of (yit ,wit)

′ is given by

f
(
yit ,wit ;βv, σv

) = p(wit = v)φ
(
yit ; xitβv, σv

)
, v = 1, 2,

and the marginal density of yit is

f
(
yit ;β1, σ1,β2, σ2

) = p(wit = 1)φ
(
yit ; xitβ1, σ1

)+ p(wit = 2)φ
(
yit ; xitβ2, σ2

)
.

Let

θ = (
π ,β1, σ1,β2, σ2

)
.

When Wit follows a Bernoulli distribution with parameter, π , the marginal density
becomes

f (yit ; θ) = πφ
(
yit ; xitβ1, σ1

)+ (1 − π)φ
(
yit ; xitβ2, σ2

)
.

This is a classical finite mixture of distributions with constant weights π and 1 − π .
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Parameters Estimation
The parameters of the preceding model can be estimated using maximum likelihood.
The complete-data likelihood is

Lc(θ) =
n∏

i=1

Ti∏
t=1

(
πφ

(
yit ; xitβ1, σ1

))I(wit=1) (
(1 − π)φ

(
yit ; xitβ2, σ2

))1−I(wit=1) ,

while the marginal likelihood is

L(θ) =
n∏

i=1

Ti∏
t=1

(
πφ

(
yit ; xitβ1, σ1

)+ (1 − π)φ
(
yit ; xitβ2, σ2

))
.

Since Wit is missing, maximizing the marginal likelihood appears to be the most
natural estimation approach. However, the Expectation-Maximization (EM) algorithm
(Dempster et al. 1977) offers a much simpler alternative. This algorithm maximizes the
complete-data likelihood after augmenting the data for the missing variable Wit during
the expectation step.
The two main steps of the algorithm are the following:

• E-Step (Expectation Step)
During this step, an intermediate quantity

Q
(
θ , θ ′) = Ewit

(
log

(
Lc(θ)|θ ′))

• M-setp (Maximization step)
during which the following maximization problem is solved

θ̂ = argmax
θ

Q
(
θ , θ ′)

Subject to:

Various appropriate constraints.

For the model considered here

Q
(
θ , θ ′) = Ewit

(
log

(
Lc(θ)|θ ′))

=
n∑

i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′)) (ln (1 − π) + lnφ

(
yit ; xitβ2, σ2

))

+
n∑

i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′) (lnπ + lnφ

(
yit ; xitβ1, σ1

))
.

Defining
√
Ewit

(
I(wit = 1)|yit ; θ ′)yit = y(1)

it (1)√(
1 − Ewit

(
I(wit = 1)|yit ; θ ′))yit = y(2)

it (2)√
Ewit

(
I(wit = 1)|yit ; θ ′)xit = x(1)

it (3)√(
1 − Ewit

(
I(wit = 1)|yit ; θ ′))xit = x(2)

it (4)
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and,

(
y(1)
11 , . . . , y

(1)
1T1

, . . . , y(1)
nTn

)′ = y(1) (5)(
y(2)
11 , . . . , y

(2)
1T1

, . . . , y(2)
nTn

)′ = y(2) (6)(
w(1)
11 , . . . ,w

(1)
1T1

, . . . ,w(1)
nTn

)′ = w(1) (7)(
w(2)
11 , . . . ,w

(2)
1T1

, . . . ,w(2)
nTn

)′ = w(2) (8)(
x(1)
11 , . . . , x

(1)
1T1

, . . . , x(1)
nTn

)′ = x(1), (9)(
x(2)
11 , . . . , x

(2)
1T1

, . . . , x(2)
nTn

)′ = x(2) (10)

the expected complete-data log-likelihood can be written as

Q
(
θ , θ ′) =

n∑
i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′)) ln (1 − π)

+
n∑

i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′) lnπ

− ln σ 2
2

2

n∑
i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′))

− ln σ 2
1

2

n∑
i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′)

− 1
2σ 2

2

(
y(2) − x(2)β2

)′ (
y(2) − x(2)β2

)

− 1
2σ 2

1

(
y(1) − x(1)β1

)′ (
y(1) − x(1)β1

)
.

After solving the system of equations derived from the first order conditions we get

π̂ =
∑n

i=1
∑Ti

t=1 Ewit

(
I(wit = 1)|yit ; θ ′)∑n

i=1 Ti

β̂1 =
((

x(1)
)′
x(1)

)−1 (
x(1)

)′
y(1)

β̂2 =
((

x(2)
)′
x(2)

)−1 (
x(2)

)′
y(2)

σ̂ 2
1 =

(
y(1) − x(1)β̂1

)′ (
y(1) − x(1)β̂1

)
∑n

i=1
∑Ti

t=1 Ewit (I(wit = 1)|yit ; θ ′)

σ̂ 2
2 =

(
y(2) − x(2)β̂2

)′ (
y(2) − x(2)β̂2

)
∑n

i=1
∑Ti

t=1
(
1 − Ewit (I(wit = 1)|yit ; θ ′)

) .
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Once we get an estimate forEwit (I(wit = 1)|yit ; θ ′), computing the preceding estimators
is simple. In fact,

Ewit

(
I(wit = 1)|yit ; θ ′) = prob

(
wit = 1|yit ; θ ′)

= prob(wit = 1) × f
(
yit|wit = 1; θ ′)

f
(
yit ; θ ′)

= πφ
(
yit ; xitβ1, σ1

)
πφ

(
yit ; xitβ1, σ1

)+ (1 − π)φ
(
yit ; xitβ2, σ2

) .
So, if we know π ,

(
β2, σ2

)
and

(
β1, σ1

)
we can find an estimate for E

(
wit|yit ; θ ′). The

EM algorithm for this model can be summarized as follows:

1. Choose initial values θ0 = (
π0,β0

1, σ 0
1 ,β

0
2, σ 0

2
)

2. Compute E
(
wit|yit ; θ0

)
for each observation

3. Substitute E
(
wit|yit ; θ0

)
in the complete-data log-likelihood

4. Find new values for the parameters θ1 = (
π1,β1

1, σ 1
1 ,β

1
2, σ 1

2
)
by maximizing the

complete-data likelihood
5. Compute error = |L(θ1)−L

(
θ0
)|

|L(θ0)|
6. If error is higher than a chosen tolerance level, repeat step 2 with the last estimates

for the parameters
7. Otherwise, stop; the last estimates are the maximum likelihood estimates.

This algorithm is attractive not only because it provides an intuitive interpretation of
the estimation, but also because of its monotone and global convergence properties. It has
been proved (McLachlan and Krishman 1997) that the log-likelihood is non-decreasing at
each consecutive iteration. This property is very useful for detecting programming errors.
Moreover, the global convergence property allows for more flexibility in the choice of
starting values than is possible with a Newton-type algorithm.
However, the EM Algorithm is criticized not only because it converges at a low rate,

but also because it does not supply automatically an estimate of the covariance matrix
of the parameters (McLachlan and Krishman 1997). The Hessian necessary to obtain an
estimate of the information matrix in the maximum likelihood setting is not used in the
computations. There have been several solutions proposed in the literature to solve this
problem. The most notable one is provided by Louis (1982).
Note that according to this model the probability that an economic agent belongs to a

certain group remains the same every period. In a dynamic economic environment this
assumption is too restrictive. For example, the financial status of a firm cannot be deter-
mined by flipping a coin; it is more likely to be dependent on the firm’s performance, its
characteristics and on the economic conditions it is facing. Thus, several observed vari-
ables should help in determining group membership. So, a more realistic model should
allow for covariates dependent mixing proportions.

A finite mixture model with smoothly varying mixing proportions (M2)

Suppose

wit =
{
1 if w∗

it > 0
2 otherwise
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where

w∗
it = zitγ − εit , εit ∼ N(0, 1) (11)

zit is a row vector of covariates that impact the probability for an agent i to belong to a
certain group and γ is a column vector of parameters.
The group membership equation (Eq. 11) could be modeled with the logistic distribu-

tion. Since I want to compare all the models, I would also need to model endogeneity in
the same setting and this is not straightforward. It is then better to use the normal dis-
tribution and take advantage of the nice properties of the conditional distributions of a
partitioned normal random vector. Let

θ = (
γ ,β1, σ1,β2, σ2

)
.

The joint density of (Yit ,Wit) is

f (yit ,wit ; θ) =
{
p(wit = 1)φ(yit ; xitβ1, σ1)
p(wit = 2)φ(yit ; xitβ2, σ2)

=
{
p(εit < zitγ )φ(yit ; xitβ1, σ1)
p(εit ≥ zitγ )φ(yit ; xitβ2, σ2)

=
{

�(zitγ )φ(yit ; xitβ1, σ1)
(1 − �(zitγ )) φ(yit ; xitβ2, σ2)

,

and the marginal density is

f (yit ; θ) = �(zitγ )φ(yit ; xitβ1, σ1) + (1 − �(zitγ )) φ(yit ; xitβ2, σ2),

where �(.) is the univariate cumulative distribution function of a standard normal
random variable.
Parameters Estimation
Thismodel can also be estimated using the EM algorithm. The complete-data likelihood

is

Lc(θ) =
n∏

i=1

Ti∏
t=1

(
�(zitγ )φ(yit ; xitβ1, σ1)

)I(wit=1) (
(1 − �(zitγ )) φ(yit ; xitβ2, σ2)

)1−I(wit=1)

and the marginal likelihood

L(θ) =
n∏

i=1

Ti∏
t=1

(
�(zitγ )φ

(
yit ; xitβ1, σ1

)+ (1 − �(zitγ )) φ
(
yit ; xitβ2, σ2

))
.

The intermediate EM quantity is

Q(θ , θ ′) = Ewit (log(Lc(θ)|θ ′))

=
n∑

i=1

Ti∑
t=1

(
1 − Ewit (I(wit = 1)|yit ; θ ′)

) (
ln (1 − �(zitγ ) + lnφ(yit ; xitβ2, σ2)

)

+
n∑

i=1

Ti∑
t=1

Ewit (I(wit = 1)|yit ; θ ′)
(
ln�(zitγ ) + lnφ(yit ; xitβ1, σ1)

)
.
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Using Eqs. (1) - (10), the intermediate EM quantity can be rewritten as

Q(θ , θ ′) =
n∑

i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′)) ln (1 − �(zitγ )

+
n∑

i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′) ln�(zitγ )

− ln σ 2
2

2

n∑
i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′))

− ln σ 2
1

2

n∑
i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′)

− 1
2σ 2

2

(
y(2) − x(2)β2

)′ (
y(2) − x(2)β2

)

− 1
2σ 2

1

(
y(1) − x(1)β1

)′ (
y(1) − x(1)β1

)
.

The first order conditions for the maximization of Q(θ , θ ′) will not produce a closed
form solution for γ , but the estimators for

(
β1, σ1,β2, σ2

)
are the same as before. The

intermediate EM quantity being separable in the different group of parameters, γ̂ can be
obtained separately using the Newton-type method:

γ̂ = argmax
γ

⎛
⎝ n∑

i=1

Ti∑
t=1

(
1 − Ewit

(
I(wit = 1)|yit ; θ ′)) ln (1 − �(zitγ )

+
n∑

i=1

Ti∑
t=1

Ewit

(
I(wit = 1)|yit ; θ ′) ln�(zitγ )

⎞
⎠

Also

Ewit

(
I(wit = 1)|yit ; θ ′) = �(zitγ )φ(yit ; xitβ1, σ1)

�(zitγ )φ
(
yit ; xitβ1, σ1

)+ (1 − �(zitγ ))φ
(
yit ; xitβ2, σ2

)

The EM algorithm can be implemented exactly as before.

An Endogenous Switching Regression Model (M3)

The preceding models are not as common in economics as they are in statistics. The
more general model known as switching regression model seems to be preferred. The
latter model has been used in several papers in the literature about firms investment.
One reason why this model is more popular in econometrics may be, as signaled by Kim
et al. (2008), is that the authors were mainly interested in modeling limited dependent
variables. The main difference between the preceding models and the switching regres-
sion model is that in the case of the switching regression model the distributions of the
components error terms are defined on the whole population while in the case of the
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mixture models they are defined only on the corresponding sub-populations (Maddala
1999). The model can be presented as follows:

wit =
{
1 if w∗

it > 0
2 otherwise

w∗
it = zitγ − εit

yit =
{
yit1 = xitβ1 + u1it , if wit = 1
yit2 = xitβ2 + u2it , if wit = 2⎡

⎢⎣
u1it
u2it
εit

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣
0
0
0

⎤
⎥⎦
⎡
⎢⎣

σ 2
1 σ12 σ1ε

σ12 σ 2
2 σ2ε

σε1 σε2 1

⎤
⎥⎦
⎞
⎟⎠

Let

θ = (γ ,β1, σ1,β2, σ2, σε1, σε2).

σ12 will not enter the density function and is then not estimable.
The joint density for (Yit ,Wit) is given by

f (yit ,wit ; θ) =
{
p(wit = 1)f (yit|wit = 1; θ)

p(wit = 2)f (yit|wit = 2; θ)

=
{
p(εit < zitγ )f (yit|w∗

it > 0; θ)

p(εit ≥ zitγ )f (yit|w∗
it ≤ 0; θ)

=
{

�(zitγ )f (yit|w∗
it > 0; θ)

(1 − �(zitγ )) f (yit|w∗
it ≤ 0; θ)

f (yit|w∗
it > 0; θ) = f (yit ,w∗

it > 0)
p(w∗

it > 0)
= f (yit1)p(w∗

it > 0|yit1)
p(w∗

it > 0)

= f (yit1)p(εit < zitγ |u1it)
p(w∗

it > 0)

=
(∫ zitγ

−∞ f (εit|u1it)
)
f (yit1)

p(w∗
it > 0)

=
(∫ zitγ

−∞ f (εit|u1it)
)
f (yit1)

�(zitγ )
.

Similarly

f (yit|w∗
it ≤ 0; θ) = f

(
yit ,w∗

it ≤ 0; θ
)

p(w∗
it ≤ 0)

= f (yit1)p(w∗
it ≤ 0|yit2)

p(w∗
it ≤ 0)

= f (yit2)p (εit > zitγ |u2it)
p(w∗

it ≤ 0)

=
(∫∞

zitγ f (εit|u2it ; θ)
)
f (yit2)

p(w∗
it ≤ 0

=
(∫∞

zitγ f (εit|u2it ; θ)
)
f (yit2)

1 − �(zitγ )
.

The joint density becomes

f (yit ,wit ; θ) =
{

�(zitγ )f (yit|w∗
it > 0; θ) = (∫ zitγ

−∞ f (εit|u1it ; θ)
)
f (yit1)

(1 − �(zitγ )) f
(
yit|w∗

it ≤ 0; θ
) =

(∫∞
zitγ f (εit|u2it ; θ)

)
f (yit2)

.
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The complete-data likelihood is

[(∫ zitγ

−∞
f (εit|u1it ; θ)

)
f (yit1)

]I(wit=1) [(∫ ∞

zitγ
f (εit|u2it ; θ)

)
f (yit2)

]1−I(wit=1)
,

and the marginal likelihood is

f (yit ; θ) =
(∫ zitγ

−∞
f (εit|u1it ; θ)

)
f (yit1) +

(∫ ∞

zitγ
f (εit|u2it ; θ)

)
f (yit2), (12)

which takes the form of a mixture of two distributions. However, since εit is dependent on
u2it and u1it and since u2it �= u1it , the weights do not necessarily add up to one which is
another difference between the latter model and the regular finite mixture of two normal
distributions. Note that

[
εit
u1it

]
∼ N

([
0
0

]
,
[

1 σε1
σε1 σ 2

1

])
[

εit
u2it

]
∼ N

([
0
0

]
,
[

1 σε0
σε0 σ 2

2

])
.

Thus

εit|u1it ∼ N
(
E(εit) + σε1

σ 2
1
u1it , 1 − σ 2

ε1
σ 2
1

)

εit|u2it ∼ N
(
E(εit) + σε2

σ 2
2
u2it , 1 − σ 2

ε2
σ 2
2

)

or

εit|u1it ∼ N
(

σε1

σ 2
1

(
yit1 − xitβ1

)
, 1 − σ 2

ε1
σ 2
11

)

εit|u2it ∼ N
(

σε2

σ 2
2

(
yit2 − xitβ2

)
, 1 − σ 2

ε2
σ 2
2

)
.

(13)

Thus,

∫ ∞

zitγ
f (εit|u2it ; θ)dεit = p(εit|u2it > zitγ )

= p

⎛
⎜⎜⎝

εit|u2it − σε2
σ 2
2

(
yit2 − xitβ2

)
√
1 − σ 2

ε2
σ 2
2

>

zitγ − σε2
σ 2
2

(
yit2 − xitβ2

)
√
1 − σ 2

ε2
σ 2
2

⎞
⎟⎟⎠

= 1 − �

⎛
⎜⎜⎝
zitγ − σε2

σ 2
2

(
yit2 − xitβ2

)
√
1 − σ 2

ε2
σ 2
2

⎞
⎟⎟⎠ .

(14)
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Similarly,∫ zitγ

−∞
f (εit|u1it ; θ)dεit = p(εit|u1it ≤ zitγ )

= p

⎛
⎜⎜⎝

εit|u1it − σε1
σ 2
1

(
yit1 − xitβ1

)
√
1 − σ 2

ε1
σ 2
1

≤
zitγ − σε1

σ 2
1

(
yit1 − xitβ1

)
√
1 − σ 2

ε1
σ 2
1

⎞
⎟⎟⎠

= �

⎛
⎜⎜⎝
zitγ − σε1

σ 2
1

(
yit1 − xitβ1

)
√
1 − σ 2

ε1
σ 2
1

⎞
⎟⎟⎠ .

(15)

By plugging Eqs. (14) and (15) in Eq. (12), the marginal likelihood becomes

f (yit ; θ) = �

⎛
⎜⎜⎝
zitγ − σε1

σ 2
1

(
yit1 − xitβ1

)
√
1 − σ 2

ε1
σ 2
1

⎞
⎟⎟⎠φ(yit ; xitβ1, σ1)

+

⎛
⎜⎜⎝1 − �

⎛
⎜⎜⎝
zitγ − σε2

σ 2
2

(
yit2 − xitβ2

)
√
1 − σ 2

ε2
σ 2
2

⎞
⎟⎟⎠
⎞
⎟⎟⎠φ(yit ; xitβ2, σ2).

When σε1 = σε2 = 0, the preceding likelihood is the same as in the previous model and
the weights would add up to one. Xiaoqiang and Schiantarelli (1998), Hovakimian and
Titman (2006) and Almeida and Campello (2007) use classical econometric methods to
estimate the preceding endogeneous switching regression model with fixed effects.
This model can also be estimated with the EM algorithm, but the intermediate EM

quantity is no longer separable in the parameters which makes this less appealing than
the direct maximization of the log of the marginal likelihood. Maximizing Q(θ , θ ′) at
each iteration is potentially as computationally involved as the one-step maximization of
the marginal likelihood. However, if one has difficulty finding good starting values for a
Newton-type algorithm, one can still benefit from the nice convergence properties of the
EM algorithm via the simpler modelM2. As indicated before, if the correlations between
the components and the group membership equation are zeroM3 is identical toM2 and
as a result the latter will provide very good starting values for the former. One just has to
apply the EM algorithm toM2 and use the solution as starting value forM3.

An Endogenous Switching Regression Model with Random Effect (M4)

The endogenous switching regression can be extended by adding random effects in the
components to capture within group heterogeneity, which is a very important issue in the
panel data setting considered in this paper. Let

wit =
{
1 if w∗

it > 0, i = 1, . . . ,N , t = 1, . . . ,Ti
2 otherwise

w∗
it = zitγ − εit

yit =
{
yit1 = xitβ1 + αi1 + uit1, if wit = 1
yit2 = xitβ2 + αi2 + uit2, if wit = 2

.
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Following Mundlak (1978) I assume{
α1i = x̄.iζ 1 + ξi1
α2i = x̄.iζ 2 + ξi2

αi1 and αi2 capture within group heterogeneity which is decomposed into two parts: a
fixed-effect part (x.iζ0 and x.iζ1) and a random effect part (ξi0 and ξi1) uncorrelated with
the exogenous variables, where

x̄.i =
∑Ti

t=1 xit
Ti⎡

⎢⎣
uit1
uit2
εit

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣
0
0
0

⎤
⎥⎦ ,

⎡
⎢⎣

σ 2
1 σ12 σ1ε

σ12 σ 2
2 σ2ε

σε1 σε2 1

⎤
⎥⎦
⎞
⎟⎠

(
ξ1i
ξ2i

)
∼ N(0,�).

This specification of the firm-specific effect is interesting because in practice one
expects that some of the exogenous variables will be correlated with the agent’s unob-
served characteristics, which may also contain a random component. Moreover, the use
of two different random effects for each component distribution allows the data to dictate
whether or not those agents who fall more often in a given group have the same unob-
served specific characteristics as those who fall most of the time in the other group.When
ζ1 and ζ2 equal zero one obtains the usual random effect specification.
Let

θ = (γ ,β1, σ1,β2, σ2, σε1, σε2,�).

Then

f (yit|ξi1, ξi2; θ) = �

⎛
⎜⎜⎝
zitγ − σε1

σ 2
1

(
yit1 − xitβ1 − x̄.iζ 1 − ξi1

)
√
1 − σ 2

ε1
σ 2
1

⎞
⎟⎟⎠φ(xitβ1 + x̄.iζ 1 + ξi1, σ1)

+

⎛
⎜⎜⎝1 − �

⎛
⎜⎜⎝
zitγ − σε2

σ 2
2

(
yit2 − xitβ2 − x̄.iζ 2 − ξi2

)
√
1 − σ 2

ε2
σ 2
2

⎞
⎟⎟⎠
⎞
⎟⎟⎠

× φ(xitβ2 + x̄.iζ 2 + ξi2, σ2).

Assuming that the response variable, yit , is independent, conditional on the random
effects, the unconditional likelihood is

L(θ) =
N∏
i=1

⎛
⎝∫ ∞

−∞

∫ ∞

−∞

Ti∏
t=1

f (yit|ξi2, ξi1; θ)g(ξi1, ξi2)dξi1dξi2

⎞
⎠ .

Since the random effects are assumed to follow a normal distribution, the double inte-
gral is computed using Gauss-Hermite Quadrature. To put the integral in the convenient
form I first need to write the vector of correlated normally distributed random effects as
a linear function of a vector of standard normal random variables. This is done using the
spectral decomposition of �

� = S�S−1,
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where � is a diagonal matrix whose diagonal elements are the eigenvalues of � while S is
the corresponding matrix of eigenvectors. Let(

ξ0i
ξ1i

)
= S

√
�

(
z1
z2

)
.

If I write

S
√

� =
(
a b
c d

)
.

I then have:

ξi0 = az1 + bz2
ξi1 = cz1 + dz2,

where z1 and z2 are independent univariate standard normal random variables. The
integral can then be approximated as
∫ ∞

−∞

∫ ∞

−∞

Ti∏
t=1

f ( yit|ξi1, ξi2; θ)g(ξi1, ξi2)dξi1dξi2 ≈ 1
π

R∑
r=1

R∑
l=1

wrwl

Ti∏
t=1

× f ( yit|az1r + bz2l, cz1r + dz2l),

using an R-point one-dimensional Gauss-Hermite weight wr and nodes zr , r = 1, . . . ,R.
One can alternatively use a Cholesky decomposition, but as noted by Jäckel (2005), the

spectral decomposition provides a better rotation of the sampling points, which makes
the evaluation of the integral potentially more robust. Another issue is the waste of com-
putation time. The two-dimensional standard normal density for example has circular
level curves centered at the origin. Its mass is concentrated within circles of rays less than
or equal to 3. However, the set of sampling points obtained by taking the cartesian prod-
uct of one-dimensional sets of sampling points is a square in two dimensions. The mass
at the points located at the extremities of the axes of the square is almost zero and does
not contribute to the integral, which wastes computation time. One way to deal with this
issue is to use what is called “pruning” (Jäckel 2005) which is a way of eliminating these
non-important points. This can be done by rewriting the integral approximation as:

∫ ∞

−∞

∫ ∞

−∞

Ti∏
t=1

f (yit|ξi1, ξi2)g(ξi1, ξi2)dξi1dξi2 ≈ 1
π

R∑
r=1

R∑
l=1

I{wrwl>θR}wrwl

Ti∏
t=1

× f (yit|az1r + bz2l, cz1r + dz2l)

where

θR =
w1w[ R+1

2
]

R
.

Using the MATLAB function mherzo.m written by Zhang and Jin (1996) I have
generated 9-point one-dimensional Gauss-Hermite weights, wr and nodes zr (r=1,..,9).
The cartesian product of the nodes with and without pruning are shown in Fig. 1.
One should note that Gaussian quadrature, or numerical integration methods in gen-

eral, suffer from the curse of dimensionality. The number of function evaluations required
to approximate the integral to a certain degree of accuracy increases exponentially with
the dimension of the integral. Monte Carlo Integration or a monomial rule may be less
costly. González et al. (2006) show thatMonte Carlo andQuasi-Monte Carlomethods can
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Fig. 1 An example showing the effect of pruning. The number of points is reduced from 81 on the left to the
most heavily weighted 69 points on the right

not only reduce computation time but also provide better accuracy in the case of logistic
regressions.
Alternatively, one can use the h-likelihoodmethod by Lee and Nelder (1996) and bypass

the computation of the integral. In this case the random effects are treated as addi-
tional parameters that are estimated with the other parameters. For panel data with a
large number of units this method increases significantly the number of parameters to be
estimated.

A HiddenMarkov Model (M5)

One problem with the models already presented is that they do not allow the group mem-
bership at time t to be dependent on the group membership at time t-1. When the groups
are made of firms having the same financial status, one should note that several of the
variables used in the literature to determine the presence or the absence of financial con-
straints such as the firm’s size, the fraction of its assets that can be used as collateral, are
likely to be time-dependent and as a result, the firm’s financial status at time t is poten-
tially dependent on its status at time t-1. One way to capture this time dependence is to
make the following assumption

p(wit = 1) �= p(wit = 1|wit−1 = j), j = 1, 2.

Let

p(wit = l|wit−1 = k) = iPkl, k = 1, 2; l = 1, 2.

I assume that wit is an unobserved variable following a first order Markov chain on a
discrete state-space. The bivariate discrete-time process (Yit ,Wit) where Yit|wit is inde-
pendent, is a hidden Markov model (Cappé et al. 2005). Thus, the joint density for
(Yit ,Wit) is given by

f (yit ,wit) =
{
p(wit = 1|�i(t−1))f (yit|wit = 1)
p(wit = 2|�i(t−1))f (yit|wit = 2)

where �i(t−1) means information about firm i available up to time t-1.
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If, for a given firm i, the path of the chain is:{wi1 = j1,wi2 = j2, . . . ,wiTi = jTi}, the joint
density for this firm would be

f
(
(yi1, . . . , yiTi), (wi1 = j1, . . . ,wiTi = jTi)

) = p(wi1 = j1, . . . ,wiTi = jTi)

× f
(
(yi1, . . . , yiTi)|wi1= j1,wi2= j2, . . . ,wiTi

)
= p(wi1 = j1)p(wi2 = j2|wi1 = j1) × . . .

× p(wiTi = jTi |wi(Ti−1) = jTi−1)

× f (yi1|wi1 = j1) × f (yiTi |wiTi = jTi).

Note that the total number of possible paths is 2Ti for firm i. Suppose that the initial
probability vector for firm i is

iπ = (iπ1, iπ2).

The joint density can be rewritten as

iπj1 × iPj1j2 × . . . × iPjTi−1 jTi × f (yi1|wi1 = j1) × . . . × f
(
yiTi |wiTi = jTi

)
= iπj1 f (yi1|wi1 = j1)

Ti∏
t=2

iPjt−1jt f (yit|wit = jt).

The preceding is true if we know a priori the full path of the state variable, wit . If we
don’t, the joint density can be written as

2∏
j=1

(
iπjf (yi1|wit = j)

)I(wi1=j)
Ti∏
t=2

2∏
k=1

2∏
l=1

(
iPklf (yit|wit = l)

)I(wit−1=k,wit=l) .

The marginal density for firm i for the observed data is then
2∑

j1=1
. . .

2∑
jTi=1

iπj1 iPj1j2 × . . . × iPjTi−1 jTi × f (yi1|wi1 = j1) × . . . × f
(
yiTi |wiTi = jTi

)
.

If

λ(yit) =
[
f (yit|wit = 1) 0

0 f (yit|wit = 2)

]
, γ it =

[
iP11 iP12
iP21 iP22

]
,

then the marginal density can be rewritten using vector-matrix operations (MacDonald
and Zucchini 1997)

iπλ(yi1)γ i2λ(yi2) × . . . × γ iTi
λ(yiTi )1

′ =i πλ(yi1)
( T∏
t=2

γ itλ(yit)
)
1′, (16)

where 1′ is a column vector of ones.
Parameters Estimation (EM Algorithm)
Let θ = (

iπ1, iP11, iP22,β1,β2
)
be the vector of parameters of the model. With N firms,

the dimension of the vector θ is

dim(θ) = 3N + 2 dim(β i)

which is a large number of parameters. To reduce the number of parameters to be
estimated, I assume that

iπ1 = π1, iP11 = P11, iP22 = P22,
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then,

dim(θ) = 3 + 2 dim(β i).

The complete-data likelihood is given by

Lc(θ) =
N∏
i=1

⎛
⎝ 2∏

j=1

(
πjf (yi1|wit = j)

)I(wi1=j)
Ti∏
t=2

2∏
k=1

2∏
l=1

(
Pkl f (yit|wit = l)

)I(wit−1=k,wit=l )

⎞
⎠ ,

(17)

and the complete-data log-likelihood is

lc(θ) = log (Lc(θ)) =
n∑

i=1

⎛
⎝ 2∑

j=1
I(wi1 = j) log (πjf (yit|wi1 = j))

+
Ti∑
t=2

1∑
k=0

2∑
l=1

I(wi(t−1) = k,wit = l) log (Pklf (yit|wit = l))

⎞
⎠

or

lc(θ) = log (Lc(θ)) =
n∑

i=1

⎛
⎝ 2∑

j=1
I(wi1 = j) log (πjf (yit|wi1 = j))

+
Ti∑
t=2

2∑
k=1

2∑
l=1

I(wi(t−1) = k,wit = l) log (Pkl)

+
Ti∑
t=2

2∑
k=1

2∑
l=1

I(wit = l) log f (yit|wit = l)

⎞
⎠ .

The intermediate quantity of EM is

Q(θ ; θ ′) = Eθ ′(lc(θ)|�T )

=
n∑

i=1

⎛
⎝ 2∑

j=1
Eθ ′

[
I(wi1 = j) log (πjf (yit|wi1 = j))|�iTi

]

+
Ti∑
t=2

2∑
k=1

2∑
l=1

Eθ ′
[
I(wi(t−1) = k,wit = l) log (Pkl)

]

+
Ti∑
t=2

2∑
k=1

2∑
l=1

Eθ ′
[
I(wit = l) log (f (yit|wit = l))|�iTi

]⎞⎠ .

To get the preceding expectation, only Eθ ′(I(wit = j|�iTi)) and Eθ ′(I(wi(t−1) = k,wit =
l|�iTi)) need to be evaluated. Note that

Eθ ′
(
I(wit = j|�iTi)

) = p
(
wit = j|�iTi , θ ′)

Eθ ′
(
I(wi(t−1) = k,wit = l|�iTi)

) = p
(
wi(t−1) = k,wit = l|�iTi , θ ′)
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p(wi(t−1) = k,wit = l|�iTi , θ ′)

= p
(
wi(t−1) = k,wit = l,�iTi ; θ ′)

f (�iTi)

= p
(
wi(t−1) = k,wit = l, yi1, . . . , yi(t−1), yit , .., yiTi ; θ ′)

f (yi1, . . . , yi(t−1), yit , .., yiTi)

= p
(
yi1, . . . , yi(t−1),wi(t−1) = k; θ ′) × p(yit , .., yiTi ,wit = l|wi(t−1) = k, yi1, . . . , yi(t−1); θ ′)

f (yi1, . . . , syi(t−1), yit , .., yiTi)

= αi(t−1)(k) × p
(
wit = l|wi(t−1) = k; θ ′)× f

(
yit , .., yiTi |wit = l,wi(t−1) = k; θ ′)

f (yi1, . . . , yi(t−1), yit , .., yiTi)

= αi(t−1)(k) ×i Pklf (yit|wit = l) × f
(
yi(t+1), .., yiTi |wit = l,wi(t−1) = k; θ ′)

f (yi1, . . . , yi(t−1), yit , .., yiTi)

= αi(t−1)(k) ×i Pklf (yit|wit = l) × β̌it(l)
f (yi1, . . . , yi(t−1), yit , .., yiTi)

where

αit(k) = p(yi1, . . . , yit ,wit = k)

β̌it(k) = f (yi(t+1), . . . , yiTi |wit = k).

The EM algorithm for this model proceeds as follows:

1. Choose initial values θ0 and,
2. Compute p(wit = j|�iTi ; θ0) and p(wi(t−1) = k,wit = l|�iTi ; θ0) for each

observation,
3. Substitute the computed probability in the intermediate EM quantity (Q)(θ1, θ0),
4. Solve

θ1 = argmax
θ

Q(θ , θ0)

subject to:
2∑

j=1
πj = 1

2∑
l=1

Pkl = 1; k = 1, 2

0 ≤ πj ≤ 1, j = 1, 2.

5. Repeat step 2 after replacing θ0 by θ1,
6. Keep going until convergence.

It should be noted that the forward-backward algorithm used to obtain αit(k) and β̌it(k)
is subject to numerical underflow. To avoid this problem the FORTRAN codes used for
this algorithm apply the scaling method proposed by Rabiner (1989). The version of the
EM algorithm just presented is also known as the Baum-Welch algorithm. Step 4 is called
the M-step or maximization step. The Lagrangian for the problem is

L(θ , λ, λk ; θ ′) = Q(θ ; θ ′) + λ

⎛
⎝1 −

2∑
j=1

πj

⎞
⎠+

2∑
k=1

λk

(
1 −

2∑
l=1

Pkl

)
.
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Assume, as before, that f (yit|wit = l) is the density function of the normal distribution.
Then,

n∑
i=1

Ti∑
t=1

log f (yit|wit = l) = −1
2

n∑
i=1

Ti∑
t=1

lnπ −
n∑

i=1

Ti∑
t=1

ln σl− 1
2σ 2

l

n∑
i=1

Ti∑
t=1

(yit−xiβ l)
2.

Let √
p(wit = l|�iTi ; θ)yit = y(l)

it√
p(wit = l|�iTi ; θ)xit = x(l)

it(
y(l)
11, . . . , y

(l)
1T1

, y(l)
21, . . . , y

(l)
nTn

)′ = y(l)

(
x(l)
11, . . . , x

(l)
1T1

, x(l)
21, . . . , x

(l)
nTn

)′ = x(l),

then

p(wit = l|�iTi ; θ) log f (yit|wit = l) = −1
2

n∑
i=1

Ti∑
t=2

p(wit = l|�iTi ; θ) ln (2π)

−
n∑

i=1

Ti∑
t=2

p(wit = l|�iTi ; θ) ln σl

− 1
2σ 2

l

(
y(l) − x(l)β l

)′ (
y(l) − x(l)β l

)
.

The first order conditions for the maximization problem are the following:

wrt : πj

∑n
i=1 p

(
wi1 = j|�iTi ; θ ′)

πj
= λ (18)

wrt : Pkl
∑n

i=1
∑Ti

t=2 p(wi(t−1) = k,wit = l|�iTi ; θ ′)
Pkl

= λk , k = 1, 2; l = 1, 2 (19)

wrt : β l

(
x(l)
)′
x(l)β̂ l =

(
x(l)
)′
y(l) (20)

wrt : σ 2 − 1
2

n∑
i=1

Ti∑
t=2

p
(
wit = l|�iTi ; θ ′)

σ 2
l

= 1
2σ 4

l

(
y(l) − x(l)β l

)′ (
y(l) − x(l)β l

)
(21)

wrt : λ
2∑

j=1
πj = 1 (22)

wrt : λk
2∑

l=1
Pkl = 1. (23)

Combining Eqs. (18) and (22) one gets

n∑
i=1

2∑
j=1

p(wi1 = j|�iTi ; θ ′) =
n∑

j=0
λ̂π̂j

⇒
n∑

i=1
1 = λ̂

⇒ λ̂ = n.
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Thus,

π̂j = 1
n

n∑
i=1

p(wi1 = j|�iTi ; θ ′). (24)

Combining Eqs. (19) and (23)
n∑

i=1

Ti∑
t=2

2∑
l=1

p
(
wi(t−1) = k,wit = l|�iTi ; θ ′) = λ̂k

2∑
l=1

P̂kl

⇒
n∑

i=1

Ti∑
t=2

p
(
wi(t−1) = k|�iTi ; θ ′) = λ̂k ,

which implies

P̂kl =
∑n

i=1
∑Ti

t=2 p
(
wi(t−1) = k,wit = l|�iTi ; θ ′)∑n

i=1
∑Ti

t=2 p
(
wi(t−1) = k|�iTi ; θ ′) . (25)

From Eq. (20) one gets

β̂ l =
((

x(l)
)′
x(l)
)−1 (

x(l)
)′
y(l). (26)

From Eq. (21) one obtains

σ̂ 2 =
(
y(l) − x(l)β l

)′ (y(l) − x(l)β̂ l

)
∑n

i=1
∑Ti

t=2 p(wit = l|�iTi ; θ ′)
. (27)

One main drawback with the HMM model with constant transition matrix is that
the probability for a firm to move from one state to another does not depend on any
observable, which is unrealistic for reasons considered in the case of the first model.

HMMModel with Time dependent Transition Matrix (M6)

To relax the constraint imposed on the preceding model by the constant transition prob-
abilities, a transition matrix whose components are functions of some observables can be
used. Suppose

wit =
{
1 if w∗

it > 0, t = 1, . . . ,Ti; i = 1, . . . , n
2 otherwise

(28)

where

w∗
it = zitγ + λ(wi(t−1) − 1) − εit ; εit ∼ N(0, 1) (29)

The preceding equation means that it is possible to predict the financial situation of
firm i at time t using its situation at time t-1 and some exogenous variables zit . Thus,

p(wit = 1|wi(t−1) = 1) = p(εit ≥ zitγ ) = �(zitγ )

p(wit = 2|wi(t−1) = 2) = p(εit < zitγ + λ) = 1 − �(zitγ + λ),

the transition matrix is then[
�(zitγ ) 1 − �(zitγ )

�(zitγ + λ) 1 − �(zitγ + λ)

]
.

This is a time heterogeneous transition matrix. This matrix is different from the spec-
ifications in Asea and Blomberg (1998), Atman (2007) and Maruotti (2007). It is also
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possible to use a probit or logit model for each row of the transition matrix. In fact, when
the Markov chain has more than two states a multinomial probit or logit model would
be the most convenient choice. However, for a chain with two states, the current specifi-
cation appears to be better since it involves a smaller number of parameters and offers a
nice way to test for time dependence by testing the hypothesis λ = 0.
Parameters Estimation
The complete-data log-likelihood function looks the same as in the previous section.

The only difference is that the transition probabilities depend now on the parameters γ

and λ. As a result, instead of estimating the transition matrix, I will have to estimate γ

and λ. Note that there are no closed form solutions for the first order conditions with
respect to γ and λ. So, the M-step of the EM algorithm will include a Newton-Rapthon
maximization step.

(γ̂ , λ̂) = arg max
(γ ,λ)

n∑
i=1

Ti∑
t=2

2∑
k=1

2∑
l=1

Ewit

[
I(wi(t−1) = k,wit = l) log (iPkl); θ ′] ,

where iPkl, k = 1, 2; l = 1, 2; i = 1, .., n are given in the preceding transition matrix. The
HMM model presented in this section does not account for within group heterogeneity
which opens the door for a possible extension.

Hidden Markov Model with Time Varying Transition Matrix and Random Effects (M7)

Even though the groups are homogeneous with respect to the financial characteristics
used to form them, there are still some unobserved characteristics with respect to which
the firms within a given group can be considered to be heterogeneous. One such char-
acteristic is the difference in management. To take account of this additional source
of heterogeneity, I introduce an unobserved firm specific variable in each of the two
components. Let{

α1i = x̄.iζ 1 + ξi1
α2i = x̄.iζ 2 + ξi2

(30)

(
ξ1i
ξ2i

)
∼ N(0,�) (31)

ξji (j=1,2) are random effects that are uncorrelated with xit and x̄.i. The conditional
expectations will be modeled such that

E(yit|xit , x̄it , ξji,wit = j) = xitβ j + x̄itζ j + ξji, j = 1, 2. (32)

I also assume that the random effect is independent of the firm’s financial situation
captured with the variable wit and that conditional on the random effects and {wit}Ti

1 ,
investment is independent. The complete-data likelihood can be written as

Lc(θ) =
n∏

i=1

⎛
⎝ 2∏

j=1

(
πjf (yi1|wit = j, ξij)

)I(wi1=j)

×
Ti∏
t=2

2∏
k=1

2∏
l=1

(
iPklf (yit|wit = l, ξij)

)I(wit−1=k,wit=l) h(ξ1i, ξ2i)

⎞
⎠ .
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The complete-data log-likelihood is then

lc(θ) = log (Lc(θ)) =
n∑

i=1

⎛
⎝ 2∑

j=1
I(wi1 = j) log (πjf (yit|wi1 = j, ξij))

+
Ti∑
t=2

2∑
k=1

2∑
l=1

I(wi(t−1) = k,wit = l) log (iPkl)

+
Ti∑
t=2

2∑
k=1

2∑
l=1

I(wit = l) log f (yit|wit = l, ξij)

+ log h(ξi1, ξi2)

⎞
⎠ .

The intermediate EM quantity is given by

Q(θ ; θ ′) = Eξ

[
Ewit (lc(θ)|�iTi ; θ ′)

]
=

n∑
i=1

⎛
⎝ 2∑

j=1
Ewit

[
I(wi1 = j) log

(
πj
)) |�iTi ; θ ′]+

Ti∑
t=2

2∑
k=1

2∑
l=1

× Ewit

[
I(wi(t−1) = k,wit = l) log (iPkl)|�iTi ; θ ′]+

∫ ∫ Ti∑
t=1

2∑
k=1

2∑
l=1

× Ewit

[
I(wit = l) log (f (yit|wit = l, ξil))|�iTi ; θ ′] h(ξi0, ξi1|�iTi)dξi0dξi1

+
∫∫

log (h(ξi0, ξi1)) h(ξi1, ξi2|�iTi)dξi0dξi1

⎞
⎠ .

Closed-form solution for the maximization of the intermediate EM quantity Q(θ , θ ′)
exists only for the first component. The other three components have to be maximized
using a Newton-type method. Let the Lagrangian for the first component be

L(πj, ζ ) =
n∑

i=1

⎛
⎝ 2∑

j=1
Ewit

[
I(wi1 = j) log (πj))|�iT ; θ ′]

⎞
⎠+ ζ

⎛
⎝1 −

2∑
j=1

πj

⎞
⎠ .

The first order conditions are
n∑

i=1
Ewit

[
I(wi1 = j)|�iT ; θ ′] = ζ̂ π̂j; j = 1, 2 (33)

2∑
j=1

π̂j = 1. (34)

Thus,
n∑

j=0

n∑
i=1

E
[
I(wi1 = j)|�iT ; θ ′] = ζ̂

2∑
j=1

π̂j. (35)

Using Eq. (34) in Eq. (35), I get

ζ̂ =
n∑

j=0

n∑
i=1

Ewit

[
I(wi1 = j)|�iT ; θ ′] = n (36)
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since
2∑

j=1

n∑
i=1

Ewit

[
I(wi1 = j)|�iT ; θ ′] =

n∑
i=1

2∑
j=1

p(wi1 = j|�iT ) =
n∑

i=1
1 = n.

Thus

π̂j = 1
n

n∑
i=1

Ewit

[
I(wi1 = j)|�iT ; θ ′]

= 1
n

n∑
i=1

p(wi1 = j|�iT )

= 1
n

n∑
i=1

p(wi1 = j,�iT )

f (�iT )
= 1

n

n∑
i=1

∫ ∫
p(wi1 = j,�iT |ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2∫ ∫

f (�iT |ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2

= 1
n

n∑
i=1

∫ ∫
p(wi1 = j, yi1|ξi1, ξi2)) × f (yi2, · · · , yiTi |wi1 = j, ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2∫ ∫

f (yi1, · · · , yiTi |ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2

= 1
n

n∑
i=1

∫ ∫
νit(j|ξi1, ξi2)β̌it(j|ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2∑2

j=1
∫ ∫

νit(j|ξi1, ξi2)β̌it(j|ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2
,

where

νi1(j|ξi1, ξi2) = p(wi1 = j, yi1|ξi1, ξi2) = p(wi1 = j|ξi1, ξi2)f (yi1|wi1 = j, ξi1, ξi2)

β̌i1(j|ξi1, ξi2) = f (yi2, · · · , yiTi |wi1 = j, ξi1, ξi2)

=
2∑

k=1

f (yi2, · · · , yiTi ,wi1 = j,wi2 = k|ξi1, ξi2)
p(wi1 = j|ξi1, ξi2)

=
2∑

k=1

[
p(wi1 = j|ξi1, ξi2)p(wi2 = k|wi1 = j, ξi1, ξi2)

p(wi1 = j|ξi1, ξi2)

× f (yi2, · · · , yiTi |wi1 = j,wi2 = k, ξi1, ξi2)
]

=
2∑

k=1

[
p(wi2 = k|wi1 = j, ξi1, ξi2)

× f (yi2|wi2 = k, ξi1, ξi2)f (yi3, · · · , yiTi |wi2 = k, ξi1, ξi2)
]

=
2∑

k=1

(
iPjkf (yi2|wi2 = k, ξi1, ξi2)β̌i2(k|ξi1, ξi2)

)
.

Let

νit(j|ξi1, ξi1 = p(wit = j, yit|ξi1, ξi1)

β̌it(j|ξi1, ξi1) =
2∑

k=1

(
iPjkf (yi(t+1)|wi(t+1) = k, ξi1, ξi2)β̌i(t+1)(k)

)
,

then

νit(j) =
∫ ∫

(νit(j|ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2

β̌it(j) =
∫ ∫

β̌it(j|ξi1, ξi2)h(ξi1, ξi2)dξi1dξi2.

The integrals are computed using Gauss-Hermite quadrature.
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Hidden Markov Model with Time Varying Transition Matrix and endogeneity (M8)

An alternative way of extending model M6 is to assume that the states of the Markov
chain and the response variable are dependent. More precisely, we can assume

yit =
{
yit1 = xitβ1 + u1it , if wit = 1
yit2 = xitβ2 + u2it , if wit = 2

,

together with Eqs. (28), (29) and[
εit
u1it

]
∼ N

([
0
0

]
,
[

1 σε1
σε1 σ 2

1

])
[

εit
u2it

]
∼ N

([
0
0

]
,
[

1 σε2
σε2 σ 2

2

])
.

The last distributional assumptions make the states of the Markov chains and the
response variable yit interdependent. The resultingmodel is an extension to the panel data
setting of a modified version of the model by Kim et al. (2008). The transition matrix of
the current model uses less parameters and the correlations between the state-indicator
variable and the component distributions are allowed to be different.
Parameters estimation
Because of the interdependence between the states of the Markov chains and the

response variable, during the maximization step of the EM the parameters of the transi-
tion matrix and the component distributions have to be estimated together. As a result,
the EM algorithm does not have any computational advantage over a Newton-type algo-
rithm applied to the marginal likelihood. The latter can be written as in Eq. (16) after
some suitable transformation. Note that

f (yit|wit = 1) = f (yit ,wit = 1)
�(zitγ + λ(wi(t−1) − 1))

.

Thus, to evaluate this conditional density the current state and the previous state are
both needed. The computation of the likelihood will require conditional densities that
depend on the current state and the previous state. Since the transition matrix has two
states, four conditional densities will result. To write the likelihood as in Eq. (16), the
Markov chain has to be written as a four-state chain. LetWWit be the new Markov chain
with state space

{11, 12, 21, 22} .

wwit equals kl is equivalent to wi(t−1) equals k and wit equals l. The transition matrix
associated to the new chain can be written as

γ it =

⎡
⎢⎢⎢⎣

itP11 itP12 0 0
0 0 itP21 itP22

itP11 itP12 0 0
0 0 itP21 itP22

⎤
⎥⎥⎥⎦

Since the component densities now depend on the current state and the previous state,
if the initial distribution of the old state-indicator variable (wit) is still the distribution
at time 1 the first observation of each firm will not enter the computation of the likeli-
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hood. One alternative is to assume that the initial distribution is the distribution at time
0. In this case, even when the correlation between the state-indicator variable and the
component distributions are zero, the likelihood of the current model will not be equal
to the likelihood of model M7. As a result when testing for endogeneity, direct tests
on the correlation coefficients may be preferred to the likelihood ratio test comparing
model M7 and M8. Given the preceding assumption the initial distribution of the new
state-indicator variable is

(π1P11,π1P12,π2P21,π2P22)

Let

λ(yit) =

⎡
⎢⎢⎢⎣
f (yit|wwit = 11) 0 0 0

0 f (yit|wwit = 12) 0 0
0 0 f (yit|wwit = 21) 0
0 0 0 f (yit|wwit = 22)

⎤
⎥⎥⎥⎦
(37)

With these transformations, the marginal likelihood is given by Eq. (16). The compo-
nent densities are

f (yit|wwit = 1k) = f (yit|wi(t−1) = 1,wit = k)

= f (yit1)p(wi(t−1) = k|yit)p(wit = 1|wi(t−1) = k, yit)
p(wi(t−1) = k|yit)p(wit = 1|wi(t−1) = k, yit)

= f (yit1)p(wit = 1|wi(t−1) = k, yit)
p(wit = 1|wi(t−1) = k, yit1)

= f (yit1)p(εit < zitγ + λ(k − 1)|u1it)
p(εit < zitγ + λ(k − 1))

, k = 1, 2.

The conditional distribution of εit given u1it is given in Eq. (13). Using this conditional
distribution the previous expression becomes

f (yit|wwit = k1) = f (yit)

�

⎡
⎢⎢⎣
(
zitγ+λ(k−1)− σε1

σ21
(yit−xitβ1)

)
√
1− σ2

ε1
σ21

⎤
⎥⎥⎦

�(zitγ + λ(k − 1))
, k = 1, 2.

Similarly,

f (yit|wwit = k2) = f (yit)

�

⎡
⎢⎢⎣−

(
zitγ+λ(k−1)− σε2

σ22
(yit−xitβ2)

)
√
1− σ2

ε2
σ22

⎤
⎥⎥⎦

� [− (zitγ + λ(k − 1))]
, k = 1, 2.

Hidden Markov Model with Time Varying Transition Matrix, endogeneity and random

effects (M9)

For a panel data set, a natural extension of the previous model is obtained by adding
random effects in the components using the specifications in Eqs. (30) - (32). The main
difference between the likelihood of the current model and that of model M8 is the
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introduction of a double integral in the former. More formally, if for each unit the
response variables are assumed to be independent conditional on the random effects
and if one maintains the assumption that the units are independent, the marginal
likelihood is

L(θ) =
n∏

i=1

[∫
iπλ(yi1)

( T∏
t=2

γ itλ(yit)
)
1′f (ξi1, ξi2)dξi1dξi2

]
.

Model Identification
The parameters of all the models previously presented are not automatically identified.
In theory the log-likelihoods are all unbounded and a maximum likelihood estimator
may not exist. Also, they all suffer from non-identification due to label switching. The
log-likelihood is invariant under the permutation of the components which will make it
difficult to dissociate the unconstrained component from the constrained component.
As suggested in the literature (Fruhwirth-Schnatter 2006), this identification prob-

lem can be solved by the use of a set of constraints. These constraints may come from
economic theory. In the case of firms’ physical investment one may be tempted to
argue that a firm that has no trouble financing its investment activities should have
a higher investment to capital ratio than when it has trouble obtaining funds, ceteris
paribus. However, economic theory can only support the idea that a constrained firm
is likely to choose a rate of investment below its optimal rate. Given the heterogene-
ity of the firms, it is possible that the majority of the constrained firms has a higher
optimal rate of investment than the unconstrained ones. As a result, the previous con-
straint would be misleading. Thus, identification constraints should be chosen with
care.
Another identification problem is associated with the use of a mixture model of too

many components (overfitting). If the data set is generated by a single component,
attempting to fit a mixture of two components may produce a component with a very
small number of observations. In the case of a mixture with constant mixing propor-
tions, the weight of each component will be very close to zero. As a consequence the
log-likelihood will be approximately the same for any choice of parameters associated to
that component.
Another issue that makes the identification of the parameters of these models difficult

is the fact that the log-likelihoods are generally multimodal. Since the optimizers that
will be used to maximize the log-likelihood can only find local maxima, the parameters
estimates will be highly dependent on the starting values. To deal with this problem the
log-likelihood maximization will be repeated several times with different starting values
and the parameters estimates will be chosen to be the vector of estimates that corresponds
to the highest log-likelihood assuming that it does not have the characteristics of a spu-
rious maximizer. Each time the starting values are generated using either the K-means
clustering algorithm (MacQueen 1967; Fink 2007) or a random classification scheme
where each observation is randomly assigned to one group by flipping a fair coin. Note
that the K-means algorithm does not produce the same classification at each run since
the initial assignments are random. With these procedures, I try to increase the probabil-
ity of finding a vector of starting values that falls in the bassin of attraction of the highest
log-likelihood.
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Inferences
Inferences will be based on the asymptotic properties of the maximum likelihood esti-
mator. As discussed in the previous section, the likelihood of the models presented in
this paper do not have an absolute maximum. However, for model M1, Kiefer (1978)
has showed that it is possible to find a closed set that contains the true value of the
vector of parameters in which there exists a unique consistent estimator. One require-
ment for this set is that it does not contain π = 0, π = 1, σ2 = 0, and σ1 = 0. That
estimator is asymptotically normal with a covariance matrix equal to the inverse of the
information matrix. Choi and Zhou (2002) proved similar results for a class of models
with covariate-dependent mixing proportions.
Douc and Mathias (2001) prove the consistency and the asymptotic normality of the

maximum likelihood estimator of a general hiddenMarkov model for both stationary and
non-stationary Markov chains. The asymptotic covariance is, as usual, the inverse of the
information matrix.

Robust Standard errors

According to the results stated above the standard errors of the estimated parameters can
be obtained by taking the square root of the diagonal of the negative inverse of Hessian of
the log-likelihood. However, the target applications are panel data. Since the likelihoods
of the mixture models (M1-M4) ignore the time series properties of the data, dynamic
misspecification is likely to be an issue. As a result, robust standard errors should be
provided. These standard errors can be estimated using the following sandwich form

⎛
⎝ N∑

i=1

Ti∑
t=1

∇2Lit(θ̂)

⎞
⎠

−1

B̂

⎛
⎝ N∑

i=1

Ti∑
t=1

∇2Lit(θ̂)

⎞
⎠

−1

,

where ∇2Lit(θ̂) is the Hessian of the log-likelihood for the observation associated to firm
i at time t evaluated at the maximum likelihood estimator. B̂ can be computed as in
Wooldridge (2002)

B̂ =
N∑
i=1

Ti∑
t=1

(
∇Lit(θ̂)

)′ ∇Lit(θ̂) +
N∑
i=1

∑
r �=s

(
∇Lir(θ̂)

)′ ∇Lis(θ̂),

where ∇Lit(θ̂) is a row vector containing the gradient of the log-likelihood for firm i at
time t. In the preceding case the firm identification variable is used as a cluster variable.
If the sample is relatively small one can alternatively use parametric or nonparamet-

ric bootstrap. In the nonparametric case an appropriate resampling method is Moving
Blocks Bootstrap as described in Cameron and Trivedi (2005). Nevertheless, for the
hidden Markov models where the time series properties of the data are very impor-
tant resampling among the units as proposed by Kapetanios (2008) may even be more
appropriate.
I should note that for the models considered in this paper bootstrapping requires some

care. The likelihoods being potentially multimodal the highest local maximum may not
be reached at each repetition.
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Statistical tests

The statistical tests that will be considered have four objectives: 1) to determine the num-
ber of components of the mixtures, 2) to choose the best mixture among the models with
a given number of components, 3) to test for endogeneity and 4) to test for random effects.
As stated in McLachlan and Peel (2000) choosing the number of components for a mix-

ture is difficult. The preceding authors provide a long discussion about this issue in their
book. One important problem is that in some cases one may not be able to find evidence
that favors a model of a given number of components over another model that contains
more or fewer components. In such situations they advocate choosing the model with the
smaller number of components.
For the applications targeted in this paper the possible number of components will be

inferred from economic theory. The main issue will then be how to find the distribution
of the chosen test statistic under the null hypothesis.
Let kx and kz be respectively the dimension of the row vector xit and the row vector zit .

Let 
m be the parameter space of modelMm,m=1,. . . ,9.


1 =
{
(π ,β2, σ2,β1, σ1) : (π ,β2, σ2,β1, σ1) ∈[ 0, 1]×�kx × �+ × �kx × �+

}
(38)


2 =
{
(γ ,β2, σ2,β1, σ1) : (γ ,β2, σ2,β1, σ1) ∈ �kz × �kx × �+ × �kx × �+

}
(39)


3 =
{
(γ ,β2, σ2,β1, σ1, ρ0, ρ1) : (γ ,β2, σ2,β1, σ1, ρ0, ρ1) ∈ �kz × �kx × �+

× �kx × �+×[−1, 1]×[−1, 1]
}

(40)


4 =
{
(γ ,β2, σ2,β1, σ1, ρ0, ρ1,�) : (γ ,β2, σ2,β1, σ1, ρ0, ρ1,�) ∈ �kz (41)

× �kx × �+ × �kx × �+×[−1, 1]×[−1, 1]×P(2)
}

(42)


5 = {
(π , p00, p11,β2, σ2,β1, σ1) : (π , p00, p11,β2, σ2,β1, σ1) ∈[ 0, 1]×[ 0, 1]×[ 0, 1]

× �kx × �+ × �kx × �+
}

(43)


6 =
{
(π , γ ,β2, σ2,β1, σ1) :(π , γ ,β2, σ2,β1, σ1)∈[ 0, 1]×�kz ×�kx ×�+×�kx ×�+

}
(44)


7 =
{
(π , γ ,β2, σ2,β1, σ1,�) :(π , γ ,β2, σ2,β1, σ1,�)∈[ 0, 1]×�kz ×�kx × �+×�kx

× �+ × P(2)
}
. (45)


8 =
{
(π , γ ,β2, σ2,β1, σ1, σε2, σε1) : (π , γ ,β2, σ2,β1, σ1, σε2, σε1)∈[ 0, 1]×�kz ×�kx

× �+ × �kx × �+ × � × �
}

(46)


9 = {
(π , γ ,β2, σ2,β1, σ1, σε2, σε1,�) : (π , γ ,β2, σ2,β1, σ1, σε2, σε1,�) ∈[ 0, 1]

× �kz × �kx × �+ × �kx × �+ × � × � × P(2)
}

(47)

P(2) is the space of positive definite matrices of dimension 2.
I want to test the hypothesis of a one-component model versus a two-component model

represented by any ofM1 − M9. The null hypothesis can be stated as

H0 : g = 1,
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which means

π = 0 forM1

at least one element of γ is infinite forM2

at least one element of γ is infinite forM3

at least one element of γ is infinite forM4

p00 = 1, p11 = 0 or p00 = 0, p11 = 1 forM5

λ = 0 and at least one element of γ is infinite forM6 − M9

In all cases the null hypothesis falls on the boundary of the parameter space as can be
seen from Eq. (38) to Eq. (47). As a consequence the regularity conditions used to derive
the asymptotic distribution of the likelihood ratio test break down. Note also that under
H0 the parameters of the component distribution with zero mixing proportion are not
identifiable. The asymptotic distribution of the likelihood ratio test is not the expected χ2

distribution. For example, in the case of a one-component binomial distribution versus
a two-component distribution Chernoff and Lander (1995) show that the distribution of
twice the logarithm of the likelihood ratio is a mixture of three distributions, two of them
are χ2. Goffinet and Loisel (1992) found similar non standard results. A review of these
issues can be found in McLachlan and Peel (2000).
Since the asymptotic distribution of the likelihood ratio is not standard, an interesting

alternative approach is to empirically approximate the distribution of this statistic. This
can be done using parametric bootstrap (McLachlan and Krishman 1997; Davidson and
Hinkley 1997). This can be done as follows:

1. Compute the maximum likelihood estimator (β , σ) for the one-component model.
2. Generate a sample y∗

it , t = 1, ..Ti, i = 1, . . . ,N from φ(xitβ , σ).
3. Use y∗

it and the other covariates to obtain (βm, σm) for the one-component model
and θm for the alternative two-component model.

4. Use these parameters to compute the likelihood ratios tm.
5. Repeat this process 999 times to obtain a sequence {tm}999m=1.

The p-value for the test is then computed as

p = 1 + #{tm > t}
1000

,

where t is the observed likelihood ratio. Note that for the random effect models M4
and M7 this procedure is likely to be time consuming because of the computation of
the double integral. An alternative is to choose information criteria such as the Akaike
Information criterion (AIC) and the Bayesian Information criterion (BIC).
The test for endogeneity is essentially the test of modelM3 versus modelM2. The null

hypothesis can be stated as

H0 : ρ1 = 0 and ρ2 = 0.

The alternative hypothesis is that at least one of the coefficients of correlation is dif-
ferent from zero. As can be seen from Eq. (40) the boundary problem no longer exists
and twice the likelihood ratio statistic has a chi-square distribution with two degrees of
freedom. Alternatively, the test can also be conducted using a t-statistic.
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The test for the presence or absence of random effects is also problematic. The same
boundary problem discussed above is encountered. The null hypothesis of no random
effect can be stated as follows:

H0 : � =
(
0 0
0 0

)
.

The preceding matrix is positive semi-definite and H0 falls on the boundary of the
parameter spaces 
4 and 
7. As before the distribution of the likelihood ratio statistics is
not the expected χ2 distribution. Stram and Lee (1994) have studied this problem for one-
component linear models and showed that the asymptotic distribution of the likelihood
ratio statistic is a mixture of chi-square distributions.
The next important test to consider is the test of a independent mixture versus a depen-

dent mixture (HMM). This corresponds to the test of model M1 versus M2, and M2
versusM6. In the first case the null hypothesis is

H0 :
(
p00 p01
p10 p11

)
=
(
p00 p01
p00 p01

)
and (π0,π1) = (p00, p01),

and in the second case[
1 − �(zi1γ ) �(zi1γ )

1 − �(zitγ ) �(zitγ )

]
and (π0,π1) = (1 − �(zitγ ),�(zitγ )) ,

or

H0 : λ = 0.

In both cases the rows of the transition matrices are the same under the null hypothesis.
The asymptotic null distribution of the likelihood ratio is valid in theses cases. In the case
where λ = 0 under the null hypothesis a t-test is also appropriate.

Application: Firms’ investment and financing constraints
The basic intertemporal investment model by Hayashi (1982) assumes that a firm chooses
the level of its next period capital stock by maximizing the expected discounted value
of dividends. In reality, it is not always possible for certain firms to finance the level of
investment that maximizes profit. This situation may arise because of the existence of
information asymmetry between the firm’s managers and the potential suppliers of funds.
Without the ability to evaluate accurately the profitability of the firm’s projects, the sup-
pliers of funds may be unwilling to finance the firm’s investment or they may be willing
to supply only a fraction of the funds needed by the firm. As a result, investment may not
be financed to the level that is optimal in the absence of constraints. One way of account-
ing for this issue is by adding a borrowing constraint to the Hayashi (1982) model (Adda
and Cooper 2003). The Euler equation from the resulting model would imply two dif-
ferent relationships between investment and its determinants depending on whether the
constraint is binding or not. If this model is a good approximation for a firm’s investment
behavior, at each point in time the firm will fall in one of two groups: the group of firms
that are financially constrained (borrowing constraint is binding) and the group of firms
that are not financially constrained. Since the observed data do not generally include any
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variable that indicates group membership, this setting is well suited for the use of finite
mixture models of the kinds presented in this paper.
In this application two variables are modeled: the change in firm i’s investment to cap-

ital ratio at time t (�Iit), and the financial status of the firm at time t (Wit). Given the
potential interdependence of the variables, they will be modeled as a bivariate processs
(�Iit ,wit)′, t=1,. . . ,Ti,i=1,. . . n. Under the assumption that at any point in time, a firm can
be either financially constrained or not,Wit is an unobserved dichotomous random vari-
able. Assuming that the models for �Iit are obtained by taking the first difference of the
models in level for Iit , individual-specific effects or random effects will not appear in the
models for �Iit . As a result, the most appropriate models to estimate are M1, M2, M3,
M5, M6, and M8. I estimated those models with data on 2263 US manufacturing firms
obtained from the COMPUSTAT dataset for the period between 1974 and 2005. To com-
pare the results with those obtained from some previous studies, I have generated the data
almost exactly as stated in Hovakimian and Titman (2006). The definitions of the main
variables are presented in Table 1.
Bootstrap likelihood ratio tests of one component versus two show a two-component

distribution is favored over a one-component one in all considered cases.
Table 2 presents regular likelihood ratio tests comparing the different two-component

models.
It is clear that themore flexiblemodels are favored in all the cases. The evidence appears

to be overwhelming (observed likelihood ratio are higher than 710) in all the cases except
in the case of modelM2 versusM3 (observed likelihood ratio is 19.5); also, Table 3 shows
that only the coefficient of correlation between the second component and the choice
equation is statistically significant. As a result, the addition of endogeneity may not have
caused a big improvement in the fit of the data to this model. However, the correlation
coefficients are both significant for modelM8 (Table 3).
The most important result here is that the HMM model M5 strongly outperforms the

mixture model M1 and the same is true for the HMM model M6 versus the mixture
modelM2. Moreover, the test statistic on lambda (See transition matrix of modelM6) is
quite large (31.25) which implies that this parameter is significantly different from 0 and

Table 1 Variables definitions

Variables Definitions

INVESTMENT Investment ÷ (beginning of period capital stock)

GROWTH OPPORTUNITIES (Market value of the firm’s asset − common equity and deferred taxes) ÷ (Book value)

CASHFLOWS (Income before extraordinary items + Depreciation) ÷ (Beginning of period capital)

LOGBOOKASSET Log(Value of Assets adjusted for inflation)

SHORTTERMDEBT (Short Term Debt) ÷ (Firm’s Assets)

LONGTERMDEBT (Long Term Debt) ÷ (Firm’s Assets)

FINANCIAL SLACK Cash and short term investment ÷ previous year Assets

DUMMYDIVPAYOUT Equal to 1 if firm pays dividend, 0 otherwise

DUMMYBONDRATING Equal to one if firm has bond rating 0 otherwise

COVERAGE RATIO Interests ÷ Earnings Before Interest

ASSET SALES (Sales of property, plant and Equipment) ÷ beginning of period capital

Note: Using the COMPUSTAT Xpressfeed data items, the above variables are defined as follows: Investment=capx, capital=ppent,
(Market value of Assets)=prcc_c*csho, (Common Equity)=ceq, (Book value of assets)=at, (Income Before Extraordinary Items) =ib,
Depreciation=dp, Short Term Debt=dlc, Long Term Debt = dltt, (Cash and short term investment)=che,Dividends =dv,
Interest=xint, Earnings Before Interest=ebidta, (Sales of Property, plant and equipments)=sppe
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Table 2 Likelihood ratio tests comparing the two-component models

M1 vsM2 M2 vsM3 M1 vsM5 M2 vsM6 M5 vsM6

Likelihood ratio 1833.337 19.504 1890.253 767.080 710.163

Degrees of freedom 7.000 2.000 9.000 2.000 7.000

pvalue 0.000 0.000 0.000 0.000 0.000

Notes: These are regular likelihood ratio tests. The likelihood ratio is 2*(L2-L1) where L2 is the log-likelihood of the bigger model
and L1, the log-likelihood of the smaller model. Under the null hypothesis that the smaller model is true, this statistic has a
χ2(k2 − k1) distribution where k2 is the number of parameters from the bigger model and k1, the number of parameters from
the smaller model

reinforces the idea that the firms financial states are time-dependent. Of the two hidden
Markov models, the likelihood ratio test reveals that the best one is the one that allows
for a covariate-dependent transition matrix.
The results of the likelihood ratio tests are also confirmed by the information criteria

AIC and BIC since the most flexible Hidden Markov Model shows the lowest values.
Moreover, these criteria make possible the comparison between the non-nested models
M3 and M6 and models M3 and M5. Even though the hidden Markov models do not
account for endogeneity they fit the data much better than the endogeneneous mixture
generally used in the literature. Neglecting time-dependence is then more problematic
than neglecting endogeneity.
Nevertheless, even though it is clear that a two-component distribution fits the data

better, it is not obvious which component should be labeled as financially constrained. So,

Table 3 Estimates of the parameters of the components distributions for ModelsM1,M3, andM8

CFta CFt−1 ASt+1
b ASt ASt−1 sigma π ρ

ModelM1

Component 1

Estimates 0.274 0.004 0.180 0.238 0.125 0.281 0.333 ___

ste 0.012 0.003 0.055 0.061 0.055 0.003 0.005 ___

Component 2

Estimates 0.113 0.016 0.023 0.042 0.027 0.073 0.667 ___

ste 0.005 0.002 0.013 0.015 0.015 0.001 0.005 ___

ModelM3

Component 1

Estimates 0.136 0.040 0.024 0.049 0.032 0.071 0.031

ste 0.006 0.004 0.013 0.020 0.018 0.001 0.050

Component 2

Estimates 0.231 0.006 0.143 0.156 0.145 0.281 -0.146

ste 0.010 0.003 0.055 0.052 0.051 0.003 0.050

ModelM8

Component 1

Estimates 0.225 0.004 0.137 0.133 0.124 0.291 0.491 0.447

ste 0.012 0.003 0.257 0.577 0.571 0.006 0.387 0.126

Component 2

Estimates 0.139 0.037 0.024 0.049 0.036 0.072 0.509 0.293

ste 0.006 0.005 0.022 0.033 0.033 0.001 0.387 0.093
aCash flows
bAsset Sales at time t+1
Notes: For each component, π is the prior probability of belonging to the component, σ is volatility of the change in investment
for firms belonging to the component, and ρ is the correlation coefficient between the change in investment and financial status.
The vector of explanatory variables does not include lags of the dependent variable, but includes time dummies and other control
variables whose coefficients are not reported to save space. The dependent variable is the first difference of investment-to-capital
ratio
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to interpret the results in Table 3 I first need to find some criteria to label the components.
For this reason I choose the identification criteria from the literature. Financially uncon-
strained firms are expected to be big, old and not highly leveraged; they are expected to
pay dividends regularly and to have a bond rating; and they may face lower growth oppor-
tunities and may be less interested in carrying large cash balances. The justification of
these criteria is reviewed in Hovakimian and Titman (2006). Applying these criteria to
models M2 and M3 one can identify the financially constrained component as the one
that has the largest standard deviation. The same is true for modelM6.
The results then suggest that investment is more responsive to cash flow and asset sales

in the financially constrained state as was signaled in Hovakimian and Titman (2006).
Since the standard deviation of investment is much higher for the financially constrained
group (0.28 versus 0.08), one can conclude that the change in fixed capital investment is
much more volatile for firms that spend a long time in the financially constrained state.
The most important results come from the HMM models. The estimated prior transi-

tionmatrix and the average of the posterior transitionmatrices for the time homogeneous
model are

P̂ =
(
0.776 0.224
0.068 0.932

)
,
(
P̄|�Iit

) =
(
0.573 0.427
0.174 0.826

)
.

The financially unconstrained state appears to be quite persistent. While a firm that is
currently constrained has a higher probability to stay in that state next period, it also has
a significant probability (43%) to become unconstrained.
Even though the Markov chain was not assumed to be stationary, the estimated tran-

sition matrices clearly admit a stationary distribution. The stationary probability vector
associated with the second transition matrix is (p1, p2) = (0.29, 0.71), which means that
in the long run a higher proportion of the observations (71%) is expected to be classified as
unconstrained. This is consistent with the estimated mixing proportions for model M1.
Similar results are obtained for the exogenous HMM model with covariate-dependent
transition matrix.

Conclusion
I have presented nine alternative mixture models that may be of interest for making
inference from available economic panel data sets. I have also reviewed the maximum
likelihood estimation of six of them via the well known Expectation-Maximization algo-
rithm. A series of possible tests are also discussed. These tests can be use to identify
among the proposed models the one that fits the data better.
Estimation of the hidden Markov models with random effects may be time consuming

because, for each unit, the log-likelihood at each point in time depends on all the pre-
vious observations of that unit; moreover, this likelihood has to be computed repeatedly
for each vector of abscissae or each vector of draws of the random effects. If, how-
ever, the log-likelihood is programmed in FORTRAN or C as opposed to MATLAB or
R, the computation time may be reduced significantly, but performing bootstrap tests
may still require a long time. Nevertheless, the models considered in this paper are very
flexible and can be used to account for several potential sources of heterogeneity in
panel data.
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Finally, as an application I used the models without random effects to study the differ-
ences in the investment behavior of firms when they are financially constrained and when
they are not, and also to learn about the process that governs the evolution of a firm’s
financial status over time.
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