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Abstract
In Punta del Este, a resort town in Uruguay, real-estate property is in demand by both
domestic and foreign buyers. There are several stages of selling residential units: before,
during, and after the actual construction. Different pricing strategies are used at every
stage. Our goal in this paper is to derive, under various scenarios of practical relevance,
optimal strategies for setting prices within two-stage selling framework, as well as to
explore the optimal timing for accomplishing these tasks in order to maximize the
overall seller’s expected revenue. Specifically, we put forward a general two-period
pricing model and explore pricing strategies from the seller’s perspective, when the
buyer’s decisions in the two periods are uncertain: commodity valuations may or may
not be independent, may or may not follow the same distribution, be heavily or just
lightly influenced by exogenous economic conditions, and so on. Our theoretical
findings are illustrated with numerical and graphical examples using appropriately
constructed parametric models.
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1 Introduction
Commodity pricing has been a prominent topic in the literature, with various models
and strategies suggested and explored. In this paper, motivated by a problem described
next, we put forward and investigate (both theoretically and numerically) a general model
for pricing within the two-period framework that naturally arises in the context of the
motivating problem.

1.1 Motivating problem

In Punta del Este, a resort town in Uruguay, real-estate property is in demand by both
domestic and foreign buyers. As a recent example, the frequency distribution of buy-
ers for certain high-rise buildings was approximately as follows: 75% Argentineans, 10%
Uruguayans, 9% Brazilians, and the remaining ones from the rest of the world (Chile,
U.S.A., and so on). A few immediate observations follow. First, the ratio of domestic and
foreign buyers varies depending on a number of factors, including economic, financial,
and political. Second, it has been observed that the average foreign buyer is wealthier than
the average domestic one, and thus tends to exhibit higher bidding prices. Furthermore,
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given the diversity of buyers, the prices are usually in the US dollars (USD), but some of
the building costs such as salaries of workers are in the Uruguayan pesos (UYU).
To properly understand our problem, we need to describe the property development

and selling processes. Namely, contracted by an investor, a construction company starts
building, say, a residential tower. There are several stages of selling residential units:
before, during, and after the actual construction of the tower. Different pricing strategies
are used at every stage. It is frequently the case that, at least initially, the investor wishes
to sell the units en masse and thus hires a real-estate agent for several months. If the sale
is not successful during this initial stage, then the units are put on sale individually, with
no particular time horizon set in advance, and at a possibly different price, which could
be higher or lower than the original price.
The goal that we set out in this paper is to derive, under various scenarios of practical

relevance, optimal strategies for setting first- and second-stage prices, as well as to pro-
pose the optimal timing for accomplishing these tasks, in order to maximize the overall
seller’s expected revenue. In the next subsection, we give a brief appraisal of what we have
accomplished in the current paper, with a related though brief literature review given in
the following subsection.

1.2 Results and findings – an appraisal

First, in this paper we put forward a highly encompassing, yet tractable, model and explore
optimal pricing strategies from the seller’s perspective when buyer’s real-estate valuations
and decisions in the two stages are uncertain: they can be independent or dependent,
identically distributed, or stochastically dominate each other, be influenced by exogenous
factors at various degrees, and so on. In particular, we shall see from our considerations
and examples in the next section that the simultaneous pricing strategies yield higher
expected revenues than those under the sequential pricing strategy.
Second, we study the case when real estate costs are possibly denominated in different

currencies, as is the case in our motivating problem and, in general, is an important and
very common factor in developing countries where large fractions of building costs are
denominated in foreign currencies. Hence, currency exchange-rate movements influence
optimal pricing decisions.
Third, our model provides conditions under which second-stage prices could be higher

or lower than the first-stage prices. This might, initially, be surprising because it is a
common intuitive assumption that if a property is not sold during the first stage, then
the property price should be reduced before commencing the second stage. As we shall
see from our following considerations, however, the relationship between the two stage
prices is much more complex: higher holding costs, currency exchange movements, or
some type of dominance between the first- and second-stage buyers’ bidding price distri-
butions, could very much influence the second-stage price, thus possibly making it larger
than that of the first stage, assuming of course that the property was not sold during the
first stage.
Finally, our general model accommodates sellers with different shapes of their utility

functions, such as those arising in Behavioral Economics (see, e.g., Dhami 2016). In gen-
eral, while working on this project, we were considerably influenced by, and benefited
from, research contributions by many authors, and the following brief literature snapshot
highlights some of those that we have found particularly related to the present paper.
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1.3 Related literature

House pricing from the seller’s and buyer’s perspectives has been studied by many
authors. For instance, Quan and Quigley (1991), and Biswas and McHardy (2007) adopt
the seller’s viewpoint in their research. Furthermore, Stigler (1962); Rothschild (1974);
Gastwirth (1976); Quan and Quigley (1991); Bruss (2003) and Egozcue et al. (2013)
explore the problem from the buyer’s perspective. Pricing under different seller’s risk atti-
tudes has been studied in the real estate literature as well. For instance, seller’s risk neutral
behavior has been researched by Arnold (1992; 1999) and Deng et al. (2012). Biswas and
McHardy (2007) analyze optimal pricing for risk averse sellers. In addition, Genesove
and Mayer (2001); Anenberg (2011) and Bokhari and Geltner (2011) study house price
determination for sellers whose risk behavior follows the teachings of Prospect Theory
(Kahneman and Tversky 1979).
Bruss (1998, 2003); Egozcue et al. (2013); Egozcue and Fuentes García (2015) and Wu

and Zitikis (2017) apply a two-period model to determine optimal commodity (e.g.,
real estate, computer, etc.) prices that maximize the expected revenue, or minimize the
expected loss. Some of the aforementioned works have been influenced by the two-
envelope problem, and in particular by the viewpoint put forward by McDonnell and
Abbott (2009) and McDonnell et al. (2011). Furthermore, Titman (1985) considers a two-
period model to analyze the optimal land prices when the condominium unit prices are
uncertain. We also refer to Lazear (1986); Nocke and Peitz (2007); Heidhues and Koszegi
(2014), and reference therein, for additional two-period pricing models for real estate.
The rest of this paper is organized as follows. In Section 2 we present several illustrative

examples that clarify certain key aspects of our general model proposed in Section 3, such
as sequential and simultaneous price settings, differing valuations and thus bid prices,
costs associated with holding property unsold. In Section 4 we analyze the first-stage
selling probability, and in Section 5 we explore the more complex dynamic second-stage
selling probability. In Section 6 we discuss modeling first- and second-stage value func-
tions and then use them to numerically illustrate our general model. Section 7 concludes
the paper.

2 Sequential vs simultaneous price setting
In this section we discuss scenarios that clarify various aspects of the problem at hand.
In particular, we shall see the difference between setting the two prices sequentially and
simultaneously, and we shall also see how the two prices are influenced by considera-
tions such as seeking certain gross or net profits, taking into account possibly different
treatments of domestic and foreign buyers, and so on.
We work with a discrete-time two-period economy: t = 0 and t = 1. Let X0 and X1

denote the amounts (i.e., bidding prices) that the buyer is willing to pay for the property
during the initial (i.e., t = 0) and subsequent (i.e., t = 1) selling stages, respectively.
Both X0 and X1 are random variables from the seller’s perspective, and thus we also view
them in this way. For the seller, the task is to set an appropriate price p0 for the initial
selling stage, and also an appropriate price p1 (which is usually different from p0) for the
following selling stage.
It is natural to think that the seller would tend to first set p0 that would result in a desired

outcome such as the maximal expected profit during the initial selling stage, and then, if
the sale fails, the seller would set p1 that would maximize the expected profit during the
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following selling stage. As we shall illustrate below, the two prices set in this sequential
manner may not maximize the expected overall profit, and thus a sensible strategy for the
seller who is not in a rush would be to set both p0 and p1 before commencing the initial
selling stage. The above caveat ‘who is not in a rush’ is important because rushed decisions
usually give rise to very different forces at play, such as willingness to set the price p0 low
enough to ensure a very high probability of selling the property during the initial selling
stage. There are of course many other scenarios of practical interest, but in this paper we
concentrate on maximizing the expected (gross or net) profit.
The rest of the section consists of two subsections: the first one contains preliminary

facts such as sequential and simultaneous pricing, and the second subsection discusses
four scenarios that clarify (and justify) the complexity of our general model that we start
developing in Section 3.

2.1 Preliminaries

2.1.1 Sequential price setting

Suppose that the seller decides to set the prices p0 and p1 sequentially: p0 before com-
mencing the initial selling stage and p1 just before the subsequent selling stage. In this
case, the maximal expected seller’s gross profit during the initial selling stage is the
maximal value of the function

�0(p0) = P[X0 ≥ p0] p0, (1)

which is achieved at the price

p0,max = arg max�0(p0)
p0

. (2)

Given the sequential manner of setting the prices, the maximal expected seller’s gross
profit during the second selling stage is the maximal value of the function

�1(p1) = P
[
X0 < p0,max,X1 ≥ p1

]
p1, (3)

which is achieved at the price

p1,max = arg max�1(p1)
p1

. (4)

2.1.2 Simultaneous price setting

The seller may decide to set the two prices p0 and p1 simultaneously, before commencing
the initial selling stage. In this case, the two expected-profit maximizing prices are

(
pmax
0 , pmax

1
) = arg max�(p0, p1)

p0,p1
, (5)

where

�(p0, p1) = P
[
X0 ≥ p0

]
p0 + P

[
X0 < p0,X1 ≥ p1

]
p1. (6)

Since �0(p0,max) + �1(p1,max) is equal to �(p0,max, p1,max), which cannot exceed
�(pmax

0 , pmax
1 ) by the very definition of (pmax

0 , pmax
1 ), the seller cannot be worse off by

simultaneously setting the prices before commencing the initial selling stage.

Note 2.1 The simultaneous setting of prices can be viewed as a strategic decision,
whereas setting the prices sequentially just before commencing the respective selling stages
are tactical choices, which in view of the above arguments cannot outperform the strategic
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(i.e., simultaneous) one. Deciding on which of these alternatives, and when to make them,
has been a prominent topic in the literature, particularly in enterprise risk management
(e.g., Fraser and Simkins 2010; Segal 2011; Louisot and Ketcham 2014).

2.1.3 Gamma distributed bidding prices

To illustrate the above arguments numerically, and to also highlight certain aspects of the
general model to be developed later in this paper, in the following subsection we consider
four scenarios based on dependent or independent random variables of the form

X0 = a0 + G0 and X1 = a0 + G1,

where a0, which we set to 200 thousands of dollars in our numerical explorations hence-
forth, is the seller’s reservation price during the initial selling stage (i.e., t = 0), which is
the smallest amount that the seller could possibly ask given the building costs and other
expenses, andG0 andG1 are two (dependent or independent) gamma distributed random
variables.
Although our general model is not limited to any specific price distribution, in our

numerical illustrative considerations, we assume that the prices follow the gamma distri-
bution, which is a very reasonable assumption, extensively used in the literature (see, e.g.,
Pratt et al. 1979; Quan and Quigley 1991; Hong and Shum 2006). In particular, Quan and
Quigley (1991) characterize the density function of the reservation price of a group of
self-selected buyers using this distribution. Hong and Shum (2006) apply the gamma dis-
tribution to model search costs, including time, energy and money spent on researching
products, or services, for purchasing. There are numerous cases of using the gamma dis-
tribution when modeling insurance losses (e.g., Hürlimann 2001; Furman and Landsman
2005; Alai et al. 2013).
Since different parameterizations of the gamma distribution have appeared in the lit-

erature, we note that throughout this paper we work with the one, defined by Ga(α,β),
whose probability density function (pdf) is1

fα,β(t) = βα

�(α)
tα−1e−βt , t > 0. (7)

We denote the corresponding cumulative distribution function (cdf) by Fα,β , which
for numerical purposes can conveniently be expressed in terms of the lower incomplete
gamma function γ (·, ·) by the formula

Fα,β(x) = γ (α,βx)
�(α)

. (8)

In Fig. 1 we have depicted its pdf for several parameter choices that we use in our
numerical explorations later in this paper. The choices are such that we always have the
same mean μG = 50 of G but varying standard deviations σG: equal to 5 (solid), 10
(dashed), 20 (dot-dashed), and 30 (dotted).

2.2 Scenarios

2.2.1 Scenario A: identical X0 and X1
Consider the case when the buyer decides on the same bidding price irrespective of the
seller’s perspective. This bidding price is random, and we denote it by X. In other words,
the earlier introduced two random variablesX0 andX1 are identical, that is, both are equal
to a random variable X, which we set to be
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Fig. 1 The pdf of the price X = 200+ G depicted in solid G ∼ Ga(100, 2), dashed G ∼ Ga(25, 0.5), dot-dashed
G ∼ Ga(6.25, 0.125), and dotted G ∼ Ga(2.78, 0.056) lines

X = a0 + G (9)

with the earlier defined a0 and the gamma random variable G ∼ Ga(α,β). Naturally,
if the property is not sold during the initial stage, then under Scenario A, in order to
at least hope to be successful during the subsequent stage, the seller has no alternative
but to reduce the price, and we shall see this clearly from our following mathematical
considerations.We note at the outset, however, that other scenarios to be discussed below
will show the possibilities of increasing second-stage prices and still be able to successfully
sell the property.
Hence, under Scenario A, and with p0,max defined by Eq. (2) via the function �0(p0)

given by Eq. (1) with X0 = X, the function �1(p1) is given by the formula

�1(p1) = P
[
p1 ≤ X < p0,max

]
p1. (10)

The (simultaneous) expected gross profit �(p0, p1), which is defined by Eq. (6) with
X0 = X1 = X, becomes

�(p0, p1) = P
[
X ≥ p0

]
p0 + P

[
p1 ≤ X < p0

]
p1. (11)

We now use specification (9) to reduce the above formulas to more computationally
tractable ones. First, we calculate p0,max, which is the point where the function

�0(p0) =
(
1 − γ (α,β(p0 − a0))

�(α)

)
p0 (12)

achieves its maximum. Next, we calculate p1,max, which is the point where the function

�1(p1) = γ
(
α,β(p0,max − a0)

) − γ (α,β(p1 − a0))
�(α)

1
{
p1 ≤ p0,max

}
p1 (13)

achieves its maximum, where the indicator 1{p1 ≤ p0,max} is equal to 1 when p1 ≤ p0,max
and 0 otherwise. Finally, we calculate the pair (pmax

0 , pmax
1 ) that maximizes the function

�(p0, p1) =
(
1 − γ (α,β(p0 − a0))

�(α)

)
p0

+ γ (α,β(p0 − a0)) − γ (α,β(p1 − a0))
�(α)

1
{
p1 ≤ p0

}
p1.

(14)

We report the values of the aforementionedmaximal points and the respective expected
profits in Table 1.Wenote that our chosen values ofα andβ are such that they lead to the same
mean μG = 250 of G but different standard deviations σG (= σX). We see from the table
that we always have p0,max > p1,max and pmax

0 > pmax
1 , which is natural because X0 = X1.

As we already mathematically concluded (see below Eq. (6)), the numerical values in
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Table 1 Prices and profits when X0 = X1 = X with X = a0 + G and G ∼ Ga(α,β)

α β σG �(p0,max, p1,max) p0,max p1,max �(pmax
0 , pmax

1 ) pmax
0 pmax

1

100 2 5 238.3249 238.3686 232.1596 243.6800 246.8699 236.3763

25 0.5 10 229.9880 230.1152 220.5280 238.4024 244.7218 226.8302

6.25 0.125 20 217.1578 217.3732 206.2535 229.8237 241.8907 213.1633

2.78 0.056 30 207.4594 207.5638 200.5773 223.6389 240.9744 204.4544

Table 1 confirm that p0,max < pmax
0 and p1,max < pmax

1 , that is, setting the two selling
prices simultaneously before commencing the initial selling stage proves to be more ben-
eficial for the seller. Note also from the table that the values of all the four prices p0,max,
pmax
0 , p1,max and pmax

1 decrease when the standard deviation σG (= σX) increases.
When α = 25 and β = 0.5, the functions �0(p0) and �1(p1) as well as the surface

�(p0, p1) are depicted in Fig. 2.
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Fig. 2 Prices and gross profits when X0 = X1 = a0 + G with G ∼ Ga(25, 0.5). a Function �0(p0) with
p0,max = 230.1152. b Function �1(p1) with p1,max = 220.5280. c Global view of �(p0, p1). d �(p0, p1)
around (pmax

0 , pmax
1 ) = 244.7218, 226.8302
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2.2.2 Scenario B: independent X0 and X1
Now we assume that the bidding prices X0 and X1 are independent, which sets us
apart from Scenario A. However, we still let the two prices follow the same distribution.
Specifically,

X0 =d X and X1 =d X, (15)

where X = a0 + G is the same as in Eq. (9) with G ∼ Ga(α,β), and ‘=d ’ denotes equality
in distribution. Hence, p0,max is defined by Eq. (2) via the function �0(p0) given by Eq. (1)
with X0 = X, and the expected profits (3) and (6) become

�1(p1) = P
[
X < p0,max

]
P

[
X ≥ p1

]
p1 (16)

and

� (p0, p1) = P
[
X ≥ p0

]
p0 + P

[
X < p0

]
P

[
X ≥ p1

]
p1. (17)

Obviously, p0,max and p1,max must be identical because X0 and X1 follow the same distri-
bution, but there is of course no reason why pmax

0 and pmax
1 should be identical: the clear

difference between the two will be seen from the following numerical example.
First, we see that p0,max is the same as in Scenario A but p1,max that maximizes the

function

�1(p1) = γ
(
α,β(p0,max − a0)

)

�(α)

(
1 − γ (α,β(p1 − a0))

�(α)

)
p1 (18)

is different from the corresponding one in Scenario A.We see these facts in Table 2 where
we use the same shape α and rate β parameters as in earlier Table 1. In Table 2 we have
also reported the pairs (pmax

0 , pmax
1 ) on which the maximum of the function

� (p0, p1) =
(
1 − γ (α,β(p0 − a0))

�(α)

)
p0

+ γ (α,β(p0 − a0))
�(α)

(
1 − γ (α,β(p1 − a0))

�(α)

)
p1

(19)

is achieved. Note from Table 1 that the values of all the four selling prices p0,max, pmax
0 ,

p1,max and pmax
1 decrease when the standard deviation σG (= σX) increases. Note also

that the bounds p0,max < pmax
0 and pmax

0 > pmax
1 hold. Furthermore, we always see the

ordering p0,max < pmax
0 in Table 1, but the ordering of p1,max and pmax

1 seems to depend
on the value of σG.
In the special case α = 25 and β = 0.5, we have depicted the functions �0(p0) and

�1(p1) as well as the surface �(p0, p1) in Fig. 3.

2.2.3 Scenario C: X1 stochastically dominates X0
We see from previous two Tables 1 and 2 that neither sequential nor simultaneous
second-stage selling prices are higher than the corresponding first-stage prices: we always

Table 2 Prices and gross profits when X0 and X1 are independent and follow the distribution of
a0 + G with G ∼ Ga(α,β)

α β σG �(p0,max, p1,max) p0,max p1,max �(pmax
0 , pmax

1 ) pmax
0 pmax

1

100 2 5 238.3595 238.3686 238.3686 244.1578 247.0367 238.3651

25 0.5 10 230.0839 230.1152 230.1152 239.2700 244.9522 230.1226

6.25 0.125 20 217.3058 217.3732 217.3732 230.9968 242.0798 217.3781

2.78 0.056 30 207.5201 207.5638 207.5638 224.4556 241.0434 207.5595
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Fig. 3 Prices and gross profits when X0 and X1 are independent and follow the distribution of a0 + G with
G ∼ Ga(25, 0.5). a Function �0(p0) with p0,max = 230.1152. b Function �1(p1) with p1,max = 230.1152.
c Global view of �(p0, p1). d �(p0, p1) around (pmax

0 , pmax
1 ) = 244.9522, 230.1226

have p0,max ≥ p1,max and pmax
0 ≥ pmax

1 in Tables 1 and 2. In practice, however, we often
observe that after the failed initial sales, the sellers increase the prices and achieve success-
ful results. There are several explanations of this phenomenon, and we shall next discuss
one of them, with the other one making the contents of Scenario D below.
Namely, our first explanation is based on the assumption that, due to various reasons,

buyers are often willing to pay higher prices during the second selling stage. To illustrate
this situation numerically, we let

X0 = a0 + G0 and X1 = a0 + b1G1,

where b1 > 0 is a constant, andG0,G1 ∼ Ga(α,β) are two independent random variables.
That is, the buyer is willing to change the bidding amount by (b1 − 1)100%. Note that
b1G1 ∼ Ga(α,β/b1), which is useful when calculating. Namely, with the same p0,max as
in Scenarios A and B, we now have
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�1(p1) = γ
(
α,β(p0,max − a0)

)

�(α)

(
1 − γ (α,β(p1 − a0)/b1)

�(α)

)
p1 (20)

and

� (p0, p1) =
(
1 − γ (α,β(p0 − a0))

�(α)

)
p0

+ γ (α,β(p0 − a0))
�(α)

(
1 − γ (α,β(p1 − a0)/b1)

�(α)

)
p1,

(21)

where p1,max maximizes the function �1(p1) and the pair
(
pmax
0 , pmax

1
)
maximizes the

surface �(p0, p1). In Table 3 we have reported the numerical values of the expected
gross profits �(p0,max, p1,max) and �

(
pmax
0 , pmax

1
)
, as well as of the prices at which these

maximal expected gross profits are achieved, for several values of b1.
We see from Table 3 that for every noted value of b1, the prices p0,max and p1,max

decrease when the standard deviation σG (= σX) increases, but the pattern of pmax
0 and

pmax
1 is unclear. Note also from the table that the ordering p0,max < pmax

0 always holds, but
various orderings hold between the second-stage prices p1,max and pmax

1 . Furthermore, we
see that when b1 = 0.5, we have p0,max > p1,max and pmax

0 > pmax
1 , but when b1 = 1.1 and

b1 = 2.1, we have p0,max < p1,max and pmax
0 > pmax

1 .
In the special case α = 25, β = 0.5 and a = 1.1, we have depicted the functions �0(p0)

and �1(p1) as well as the surface �(p0, p1) in Fig. 4.

2.2.4 Scenario D: cost of holding the property

Based on Scenario C, when the seller guesses that the buyer might be willing to pay a large
price during the second-stage selling stage, the price in the second stage can be set larger
and still the maximal expected gross profit achieved.
There is also another reason why the second-stage selling price can be set larger and

the seller’s goals achieved, and it is based on the fact that the seller may wish to maximize,
for example, the net profit instead of the gross profit. To simplify our illustration of this
fact, we take into consideration only one deductible, which is the cost c1 of holding the
property unsold, in which case the (net) profit during the second selling stage becomes
p1−c1. Furthermore, let the bidding prices X0 and X1 be the same as in Scenario B, that is,
they are independent and follow the same distribution as X = a0 + G with G ∼ Ga(α,β)

(see Eq. (15)). Hence, p0,max is the same as in Scenario B or, equivalently, as in Scenario A,

Table 3 Prices and gross profits when X0 = a0 + G0 and X1 = a0 + b1G1 with independent
G0,G1 ∼ Ga(α,β) and varying parameter b1 values

α β σG �(p0,max, p1,max) p0,max p1,max �(pmax
0 , pmax

1 ) pmax
0 pmax

1

b1 = 0.5 100 2 5 238.2429 238.3686 218.6924 241.1509 243.4476 218.6442

25 0.5 10 229.9149 230.1152 214.1065 235.7860 240.6705 214.1065

6.25 0.125 20 217.1670 217.3732 207.1570 228.2490 238.4532 207.1570

2.78 0.056 30 207.4754 207.5638 202.3953 223.0999 238.8913 202.3953

b1 = 1.1 100 2 5 238.3830 238.3686 242.3547 241.4216 243.7144 220.6309

25 0.5 10 230.1187 230.1152 233.4259 240.3086 246.1226 233.3253

6.25 0.125 20 217.3363 217.3732 219.6358 231.6847 242.9417 219.6334

2.78 0.056 30 207.5313 207.5638 208.8733 224.8072 241.2413 208.8733

b1 = 2.1 100 2 5 238.6217 238.3686 282.7481 241.4216 243.7144 220.6309

25 0.5 10 230.4780 230.1152 267.7370 250.7337 252.1044 248.5686

6.25 0.125 20 217.6737 217.3732 245.0225 241.6766 253.5593 244.0345

2.78 0.056 30 207.6767 207.5638 226.2926 229.9190 247.4248 225.7422
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Fig. 4 Prices and gross profits when X0 = a0 + G0 and X1 = a0 + b1G1 with independent G0,G1 ∼ Ga(α,β)

and b1 = 1.1. a Function�0(p0)with p0,max = 230.1152. b Function�1(p1)with p1,max = 233.4259. c Global
view of �(p0, p1). d �(p0, p1) around (pmax

0 , pmax
1 ) = (246.1226, 233.3253)

that is, the selling price p0,max is given by Eq. (2) via the same function�0(p0) as in Eq. (1).
The function �1(p1) and the surface �(p0, p1), however, need to be redefined in order to
take into account the aforementioned cost c1. Namely, we have

�1,c(p1) = P
[
X0 < p0,max

]
P

[
X1 ≥ p1

]
(p1 − c1)

= γ
(
α,β(p0,max − a0)

)

�(α)

(
1 − γ (α,β(p1 − a0))

�(α)

)
(p1 − c1),

with the same p0,max as in Scenario B (or A), and

�c(p0, p1)=P
[
X0 ≥ p0

]
p0 + P

[
X0 < p0,max

]
P

[
X1 ≥ p1

]
(p1 − c1)

=
(
1− γ (α,β(p0−a0))

�(α)

)
p0+ γ (α,β(p0−a0))

�(α)

(
1− γ (α,β(p1−a0))

�(α)

)
(p1−c1).
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Thus, we have

p1,c,max = arg max�1,c(p1)
p1

and

(
pmax
0,c , pmax

1,c
) = arg max�c(p0, p1)

p0,p1
,

whose numerical values for different cost c1 values are reported in Table 4.
We see from the table that for all specified values of c1, the sequentially set selling prices

follow the order p0,max < p1,c,max, which is the opposite of what we have seen in the
previous scenarios. In the case of simultaneously set prices, we have pmax

0,c > pmax
1,c for

the two smaller costs c1 = 20 and c1 = 100, with the opposite ordering pmax
0,c < pmax

1,c
in the case of the cost c1 = 150. The sequentially set selling prices in the initial stage
are always smaller than the corresponding simultaneously set prices, that is, the ordering
p0,max < pmax

0,c holds throughout the entire table. The reported in Table 4 numerical values
of the selling prices p1,c,max and pmax

1,c are very similar.
In the special case α = 25, β = 0.5 and c1 = 20, we have depicted the functions �0(p0)

and �1(p1) as well as the surface �(p0, p1) in Fig. 5.

3 The general model
We need to further elaborate on the motivating problem, and to also introduce additional
notation. Hence, during the initial selling stage, which we have agreed to collapse into only
one instance t = 0, the seller keeps the property on sale. Let X0 be the price, viewed as a
random variable, that the buyer is willing to pay for the property during the initial selling
stage. Let p0 be the price set by the seller, who wishes it to be such that certain (economic,
financial, etc.) goals would be achieved. Hence, unlike X0, the price p0 is not random – the
seller chooses it based on the available information and the goals to be achieved. When
X0 ≥ p0, the property is sold and the seller’s profit is v0(p0), where v0 is a function, usually
such that v0(p) ≤ p for all p ≥ 0. For example,

v0(p0) = (p0 − c0)+, (22)

Table 4 Prices and profits for various holding cost c1 values when the bidding prices X0 and X1 are
independent and follow the distribution of a0 + G with G ∼ Ga(α,β)

α β σG �(p0,max, p1,c,max) p0,max p1,c,max �(pmax
0,c , pmax

1,c ) pmax
0,c pmax

1,c

c1 = 20 100 2 5 238.2367 238.3686 238.5186 241.0633 243.3410 238.5186

25 0.5 10 229.8538 230.1152 230.4159 234.9445 239.6038 230.4159

6.25 0.125 20 216.9603 217.3732 217.9019 225.1370 234.1515 217.9019

2.78 0.056 30 207.2347 207.5638 208.1217 217.2595 230.1206 208.1216

c1 = 100 100 2 5 237.7470 238.3686 239.3381 238.2509 239.9507 239.3381

25 0.5 10 228.9377 230.1152 232.1152 229.8364 233.0915 232.1152

6.25 0.125 20 215.5916 217.3732 221.1499 216.9273 222.2088 221.1500

2.78 0.056 30 206.1066 207.5638 212.1154 207.4254 212.7300 212.1154

c1 = 150 100 2 5 237.4428 238.3686 240.2109 237.6034 239.1895 240.2109

25 0.5 10 228.3730 230.1152 234.0368 228.6428 231.6018 234.0368

6.25 0.125 20 214.7622 217.3732 225.3874 215.1202 219.6026 225.3874

2.78 0.056 30 205.4343 207.5638 218.7960 205.7393 209.6705 218.7952
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Fig. 5 Profits and prices when the cost is c1 = 20 and the bidding prices X0 and X1 are independent and
follow the distribution of a0 + G with G ∼ Ga(α,β). a Function �0(p0) with p0,max = 230.1152. b Function
�1(p1) with p1,c,max = 230.4159. c Global view of �(p0, p1). d �(p0, p1) around (pmax

0,c , pmax
1,c ) = (239.6038,

230.4159)

where c0 is, e.g., the property development cost evaluated during the initial selling stage.
(By definition, x+ = x when x ≥ 0, and x+ = 0 when x < 0.) If, however, X0 < p0, then
the buyer rejects the offer and makes the second (and final) attempt to buy the property
at a later time, which is generally unknown and thus treated as a random variable, which
we denote by T.

Note 3.1 There are of course situations when T is pre-specified and thus deterministic,
say T = 1. For example, Wu and Zitikis (2017) consider a two-period economy with t = 0
standing for the Black Friday promotion period and t = 1 for the Boxing Day promo-
tion period. In this paper, we let T be random, with specific choices of a distribution and
parameter values provided in Note 6.1 at the end of this paper.

Let XT be the amount of money that the buyer is willing to pay at time T > 0 during the
second selling stage. Conditionally onT, the priceXT is a random variable from the seller’s
perspective. Let p1 be the price set by the seller some time prior to commencing the
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second selling stage (the price can be set as early as the time of setting the initial price p0).
Analogously to the initial decision making, if XT ≥ p1, then the property is sold and the
seller’s profit is vT (p), where vT is a value (or utility) function, perhaps different from v0,
but usually such that vT (p) ≤ p for all p ≥ 0. For example, vT (p) = (p−cT )+, where cT is,
e.g., the costs of property development and holding it unsold at time T. We shall provide
specific details on the structure of cT later in this paper.
For the sake of concreteness, throughout the rest of the paper we assume that the seller

wishes to determine p0 and p1 such that the overall two-stage expected profit

�(p0, p1) = P
[
X0 ≥ p0

]
v0(p0) +

∫ ∞

0
P

[
Xt ≥ p1,X0 < p0

]
vt(p1)dFT (t)

=P
[
X0≥p0

]
v0(p0)+

(
1−P

[
X0≥p0

]) ∫ ∞

0
P

[
Xt ≥ p1 | X0 < p0

]
vt(p1)dFT (t)

(23)

would be maximal, where FT is the cdf of T. The seller may have various goals to achieve,
and our following considerations can be adjusted accordingly. When deriving Eq. (23),
which involves conditioning on T, we have assumed that the events Xt ≥ p1 and T = t
are independent and in this way obtained the probability P[Xt ≥ p1 | X0 < p0].
Even though the simplifying independence assumption is natural, it can be relaxed if a

necessity arises, but there are also situations when this assumption is automatically satis-
fied. For example, this happens in the static two-stage scenario when T always takes the
same constant value, say T = 1. We note in this regard that the chosen value 1 is just a
symbolic representation of the second selling stage, such as the Boxing Day promotion
period that follows the initial (i.e., t = 0) Black Friday promotion period (e.g., Wu and
Zitikis 2017). In this case formula (23) reduces to

�(p0, p1) = P
[
X0 ≥ p0

]
v0(p0) + P

[
X1 ≥ p1,X0 < p0

]
v1(p1), (24)

where

v1(p1) = (p1 − c1)+. (25)

Henceforth, we shall make a number of other simplifying yet practically sound assump-
tions, so that the technicalities would not be too complex.

4 The initial-stage selling probability
To assess the probabilities P

[
X0 ≥ p0

]
and P

[
Xt ≥ p1 | X0 < p0

]
on the right-hand side

of Eq. (23), we need to specify appropriate models for the random variables Xt , t ≥ 0.
Their distributions may involve population heterogeneity, as our motivating example
shows, which we take into consideration. Specifically, we assume that the population of
potential buyers consists of two groups: domestic buyers (D) permanently residing in
Uruguay and foreigners (A) wishing to make investments.

Note 4.1 We have reserved F for denoting cdf ’s, as is usually the case in the literature,
and so use A to denote foreign buyers. This notation also reflects the fact that most of the
foreign property buyers in Punta del Este are Argentineans.

Since economic and financial considerations of the two types of buyers are usually dif-
ferent, the structures of the corresponding random variables are also different. In this
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section we concentrate on the probabilityP[X0 ≥ p0] and thus specify the structure ofX0.
For this, we first note the forces that give rise to the amount of money X0 that the buyer
(domestic or foreign) is willing to pay for the property during the initial selling stage.
In this section and throughout the rest of this paper, background risk models will play

an important role. There are two major classes of such models: additive and multiplica-
tive. For applications and discussions of additive models in Economic Theory, we refer to
Gollier and Pratt (1996) and references therein, and to problems in Actuarial Science, we
refer to Furman and Landsman (2005, 2010); Tsanakas (2008), and references therein. Our
current research is essentially based on the multiplicative model, which has been exten-
sively explored and utilized in the literature (see, e.g., Tsetlin and Winkler 2005; Franke
et al. 2006, 2011; Asimit et al. 2016; references therein). It is worth noting that a number
of important parametric multiplicative models incorporate elements of both Pareto and
gamma distributions, and we refer to Asimit et al. (2016); Su (2016) and Su and Furman
(2017) for details and further references.

4.1 General considerations

Consider first the population of domestic buyers. Suppose that, initially, their buying deci-
sions are based on individual considerations detached from all the exogenous factors,
such as the overall economic situation. Let Y0D be the amount of money (i.e., valua-
tion) that the buyer thinks is affordable and worthy to pay, based on the aforementioned
personal considerations. We call Y0D the endogenous domestic valuation.
Naturally, the valuation Y0D is subsequently revised into a more sophisticated and real-

istic one, which we denote by X0D, taking into account various exogenous factors. We
collectively model these factors with a random variable Z0, that we call the exogenous val-
uation adjustment. Let h0 be the function that couples Y0D with Z0 and gives rise to the
aforementioned price X0D, that is,

X0D = h0(Y0D,Z0). (26)

This is the amount of money (i.e., valuation) that the domestic buyer can afford, and is
willing, to pay for the property during the initial selling stage.
Likewise, we arrive at

X0A = h0(Y0A,Z0), (27)

which is the amount that the foreign buyer is willing to pay during the initial selling stage,
where Y0A is the corresponding endogenous valuation.

Note 4.2 Throughout this paper we assume that the random variables Y0D, Y0A, and Z0
are independent, which is a reasonable assumption as we argue next. Indeed, suppose that
Y0D and Y0A are dependent. This would suggest that we have not properly separated the
exogenous information from the individual valuations of the domestic and foreign buyers,
thus contradicting the above description of the endogenous valuations Y0D and Y0A.

Hence, with X0D representing the amount that the domestic buyer is willing to pay dur-
ing the initial selling stage, and with X0A representing the corresponding amount of the
foreign buyer, the valuation X0 can be expressed by the formula

X0 = ξ0X0D + (1 − ξ0)X0A, (28)
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where ξ0 is a binary random variable taking values 1 and 0, with the event ξ0 = 1 mean-
ing ‘domestic buyer.’ The proportion of domestic buyers depends on the value of the
exogenous valuation adjustment Z0, which naturally gives rise to the function

q0(z) = P (ξ0 = 1 | Z0 = z) ,

that plays a pivotal role in our subsequent considerations.
Namely, when calculating the probability P

[
X0 ≥ p0

]
, we first condition on Z0, whose

cdf we denote by FZ0 , and then separate X0D from X0A by conditioning on ξ0. We obtain
the equations

P
[
X0 ≥ p0

] =
∫

P
[
X0 ≥ p0 | Z0 = z

]
dFZ0(z)

=
∫ (

q0(z)P
[
X0 ≥ p0 | ξ0 = 1,Z0 = z

]

+(1 − q0(z))P
[
X0 ≥ p0 | ξ0 = 0,Z0 = z

])
dFZ0(z). (29)

Using representation (28) and expressions (26) and (27) on the right-hand side of
Eq. (29), we obtain

P
[
X0 ≥ p0

] =
∫ (

q0(z)P
[
X0D ≥ p0 | ξ0 = 1,Z0 = z

]

+(1 − q0(z))P
[
X0A ≥ p0 | ξ0 = 0,Z0 = z

])
dFZ0(z)

=
∫ (

q0(z)P
[
h0(Y0D, z) ≥ p0 | ξ0 = 1,Z0 = z

]

+(1 − q0(z))P
[
h0(Y0A, z) ≥ p0 | ξ0 = 0,Z0 = z

])
dFZ0(z). (30)

We find it reasonable to simplify the right-hand side of Eq. (30) by first recalling that the
endogenous domestic and foreign valuations Y0D and Y0A are independent of the exoge-
nous valuation adjustment Z0, and then we additionally assume that the valuations Y0D
and Y0A do not depend on ξ0. All of these are justifiable assumptions from the practical
point of view. Hence, Eq. (30) simplifies into

P
[
X0 ≥ p0

]=
∫ (

q0(z)P
[
h0(Y0D, z) ≥ p0

]+(1−q0(z))P
[
h0(Y0A, z) ≥ p0

])
dFZ0(z).

(31)

In the next subsection, we specialize formula (31) into a practically sound scenario
based on the gamma distribution, under which we subsequently explore the expected
profit �(p0, p1) numerically and graphically (Section 6 below).

4.2 Specific modelling

The gamma distribution provides a good way to model Y0D, Y0A, and Z0. In particular,
we model the endogenous domestic price Y0D using the shifted gamma distribution sup-
ported on the intervals [ a0,∞), with a0 denoting the seller’s reservation price, that is, we
have the equation

Y0D = a0 + G0D,

where G0D ∼ Ga(α0D,β0D). Assuming that the exogenous valuation adjustment Z0 is an
independent gamma random variable G0 ∼ Ga(α0,β0), the valuation X0D can then be
modelled as follows
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X0D = a0 + G0DG0 = h0(Y0D,Z0),

with the coupling function

h0(y, z) = a0 + (y − a0)z. (32)

Analogously, starting with

Y0A = a0 + (1 + ϕ0)G0A,

where G0A ∼ Ga (α0A,β0A) is an independent gamma random variable, with the factor
1 + ϕ0 referring to the (1 + ϕ0) 100% price change (e.g., increase when ϕ0 > 0) that the
foreign buyers additionally face when compared to the domestic ones, we arrive at the
representation

X0A = a0 + (1 + ϕ0)G0AG0 = h0(Y0A,Z0),

with the same coupling function as in Eq. (32). We have used the same G0 as in the
‘domestic case’.

Note 4.3 To be in line with our earlier made assumption that foreign buyers generally
offer higher endogenous valuations than the domestic ones, in our numerical explorations
we choose the gamma parameters so that the average of G0D ∼ Ga (α0D,β0D) does not
exceed the average of G0A ∼ Ga (α0A,β0A), which is equivalent to bound

α0D
β0D

≤ α0A
β0A

. (33)

Bound (33) is satisfied for the parameter choices that we shall specify in Note 6.2 below.

Since the random variables G0D, G0A, and G0 are independent, formula (31) reduces to
the following one:

P
[
X0 ≥ p0

] = 1 −
∫ ∞

0

{
q0(z)Fα0D,β0D

(
p0 − a0

z

)

+(1 − q0(z))Fα0A,β0A

(
p0 − a0

(1 + ϕ0)z

)}
fα0,β0(z)dz. (34)

It is natural to view the function q0(z) as decreasing, and such that q0(0) = 1 and
q0(∞) = 0. Thus, for example, we can model q0(z) as a survival function (i.e., 1 minus a
cdf) on the interval [ 0,∞). The gamma distributions serves a good model, and we thus
set

q0(z) = 1 − Fγ0,δ0(z) (35)

in our numerical research later in the paper, with appropriately chosen shape γ0 > 0 and
rate δ0 > 0 parameters. For specific parameter choices, we refer to Note 6.2 at the end of
this paper.

5 The second-stage selling probability
In this section, we express the probability P

[
Xt ≥ p1 | X0 < p0

]
in terms of underlying

quantities at every time instance t > 0. We accomplish this task in a similar way to that
for P

[
X0 ≥ p0

]
in the previous section.
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5.1 General considerations

We start with additional notations, mimicking the earlier ones. Firstly, we assume that the
endogenous valuations YtD and YtA as well as the exogenous valuation adjustment Zt are
independent random variables. The definition of the coupling function ht follows that in
Eq. (32) but now with at instead of a0, that is,

ht(y, z) = at + (y − at)z.

Hence, with

XtD = ht(YtD,Zt) and XtA = ht(YtA,Zt),

we have

Xt = ξtXtD + (1 − ξt)XtA. (36)

Analogously to Eq. (30), we obtain

P
[
Xt ≥ p1 | X0 < p0

] =
∫ (

qt(p0, z)P
[
ht(YtD, z) ≥ p1 | X0 < p0, ξt = 1,Zt = z

]

+(1−qt(p0, z))P
[
ht(YtA, z)≥p1 | X0<p0, ξt =0,Zt =z

])
dFZt (z),

(37)

where

qt(p0, z) = P (ξt = 1 | X0 < p0,Zt = z)

is the proportion of domestic buyers at time t who did not buy during the initial selling
stage (i.e, X0 < p0).
To make our following considerations simpler, we assume that the endogenous domes-

tic and foreign valuations YtD and YtA are based solely on personal considerations at time
t > 0, that is, they do not depend on any past or current exogenous factors, nor on the past
endogenous factors Y0D and Y0A. In other words, we assume that the random variables
YtD and YtA are independent of X0, ξt and Zt . This simplifies Eq. (37) into the following
one:

P
[
Xt ≥ p1 | X0 < p0

] =
∫ (

qt(p0, z)P
[
ht(YtD, z) ≥ p1

]

+(1 − qt(p0, z))P
[
ht(YtA, z) ≥ p1

])
dFZt (z). (38)

5.2 Specific modelling

Analogously to the initial selling stage, we set

YtD = at + GtD and YtA = at + (1 + ϕt)GtA,

where GtD ∼ Ga (αtD,βtD) and GtA ∼ Ga (αtA,βtA) with the factor 1 + ϕt referring to
the (1 + ϕt)100% additional amount at time t that the foreign buyer needs to pay when
compared to the domestic buyer. The exogenous valuation adjustment is

Zt = Gt ∼ Ga(αt ,βt).
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We assume that the three gamma random variables GtD, GtA, and Gt are independent, in
which case Eq. (38) reduces to

P
[
Xt ≥ p1 | X0 < p0

] = 1 −
∫ ∞

0

{
qt(p0, z)FαtD,βtD

(
p1 − at

z

)

+(1 − qt(p0, z))FαtA,βtA

(
p1 − at

(1 + ϕt)z

)}
fαt ,βt (z)dz.

(39)

It is reasonable to assume that the seller’s reservation price at may change over time.
For example, it may grow at the inflation rate. Hence, in our numerical explorations we
assume that there is a constant ρ such that

at = (1 + ρt)a0,

for all t ≥ 0. This assumption reduces Eq. (39) to

P
[
Xt ≥ p1 | X0 < p0

] = 1 −
∫ ∞

0

{
qt(p0, z)FαtD,βtD

(
p1 − (1 + ρt)a0

z

)

+(1 − qt(p0, z))FαtA,βtA

(
p1 − (1 + ρt)a0

(1 + ϕt)z

)}
fα0,β0(z)dz,

(40)

where, for the sake of simplicity, we have assumed that the distribution of the exogenous
valuation adjustment Zt does not change with time t, that is, Zt ∼ Ga(α0,β0) for all t ≥ 0.
Finally, we introduce an appropriate model for qt(p0, z), which is more complex than

that for q0(z). We start with a few observations:

1) When p0 = a0, it is reasonable to assume that there is not anyone wishing to wait
until the second selling stage, and thus qt(a0, z) = 0 for every exogenous valuation
adjustment z.

2) When p0 = +∞, no one wishes to buy during the initial selling stage, and thus
qt(+∞, z) should look like q0(z). Hence, we let qt(+∞, z) be the survival function
1−Ht(z) for a cdf Ht(z) on the interval [ 0,∞). Just like in the case of t = 0, a good
model for the cdf Ht is the gamma cdf Fγt ,δt with shape γt > 0 and rate δt > 0
parameters, which may depend on t.

3) It is reasonable to assume that qt(p0, z) is an increasing function of p0, because
larger prices during the initial selling stage would suggest that more domestic
buyers are deferring their purchases until the second selling stage.

In summary, we have arrived at the model

qt(p0, z) = Qt(p0 − a0)(1 − Ht(z)), (41)

where Qt is a non-negatively supported cdf. In Section 6 below, we work with the gamma
cdf, that is, we set

qt(p0, z) = Fηt ,θt (p0 − a0)
(
1 − Fγt ,δt (z)

)

= γ (ηt , p0 − a0)
�(ηt)

(
1 − γ (γt , δtz)

�(γt)

)
. (42)

For specific parameter choices, we refer to Note 6.3 at the end of this paper.
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6 Value functions and a numerical exploration
To make formula (23) actionable, in addition to the already discussed probabilities
P

[
X0 ≥ p0

]
and P

[
Xt ≥ p1 | X0 < p0

]
, we need to specify appropriate models for the

value functions v0(p0) and vt(p1).

6.1 Value function v0(p0)

We already have a model for v0(p0) given by Eq. (22), but in view of our motivating exam-
ple, an adjustment to this function needs to be made. Namely, property prices in Punta
del Este, Uruguay, are predominantly in the US dollars, while property development costs
are partially in the Uruguayan pesos and partially in the US dollars. In general, the costs
are mainly due to land, design and development, materials, labor costs and subcontracts.
Those that are in the Uruguayan pesos are labor costs (i.e., salaries of Uruguayan workers)
and they can, for example, be around 30% of the structure’s costs, that is, of the total cost
minus the land cost. Therefore, we can say that, for some ν ∈ (0, 1), the percentage ν100%
of the total cost is in the Uruguayan pesos and the rest (1 − ν)100% is in the US dollars.
To express these costs into one currency, we convert the Uruguayan pesos into the US

dollars – because the prices p0 and p1 are in the latter currency – using the exchange rate
(US dollars per one Uruguayan peso) at an appropriate time instance. Namely, let ε0 be
the exchange rate during the initial selling stage (i.e., t = 0). Then Eq. (22) turns into the
following one

v0(p0) = (
p0 − νc0,UYUε0 − (1 − ν)c0,USD

)
+ . (43)

Strictly speaking, the exchange rates are unknown in advance, and thus predicted values
need to be used. It is very likely, however, that the prices p0 and p1 are set just before
commencing the initial selling stage, and thus the value of ε0 can be reasonably assumed
known, and thus v0 defined in Eq. (43) becomes deterministic and fully specified.

6.2 Value function vt(p1)

The exchange rate εt at time t > 0 cannot be known beforehand, that is, at time t = 0,
and we thus treat it as a random variable. For this reason, we define vt analogously as v0,
but now with the averaging over the distribution of εt , that is, we let

vt(p1) = E
[(
p1 − νc0,UYUεt − (1 − ν)c0,USD

)
+
]

= E
[(
p1 − νc0,UYUε0rt − (1 − ν)c0,USD

)
+
]
, (44)

where rt = εt/ε0. In our numerical explorations, we let rt follows the geometric Brownian
motion, that is,

rt = exp{μt + σWt},

whereWt is the standard Wiener process (i.e., Brownian motion). This simple model has
been a popular example in financial engineering. Equation (44) becomes

vt(p1) = E
[(

p1 − νc0,UYUε0 exp
{
μt + σ

√
t N0,1

}
− (1 − ν)c0,USD

)

+

]
, (45)

whereN0,1 denotes the standard normal random variable. For specific parameter choices,
we refer to Note 6.4 at the end of this paper.
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We conclude this section with a note that arguments of Behavioural Economics may
suggest using the more general value functions

v0(p0) = u
(
p0 − νc0,UYUε0 − (1 − ν)c0,USD

)

and

vt(p1) = E
[
u

(
p1 − νc0,UYUε0rt − (1 − ν)c0,USD

)]

with some function u. Note that we have so far used u(t) = t+, which is a very simple
member in the class of so-called S-shaped functions: concave for t ≥ 0 and convex for
t < 0. Reverse S-shaped functions, which are convex for t ≥ 0 and concave for t < 0, have
also been extensively employed by researchers. We also find many studies where even
more complexly shaped functions have been justified. For related discussions, we refer to,
for example, Pennings and Smidts (2003); Gillen and Markowitz (2009); Dhami (2016),
and references therein.

6.3 A numerical illustration and parameter choices

Using formulas (34), (40), (42), (43) and (45) on the right-hand side of Eq. (23), and with
the parameter choices specified below, we obtain an expression for the expected profit
�(p0, p1) whose maximum with respect to p0 and p1 we want to find. Alongside the sur-
face �(p0, p1) and the point (pmax

0 , pmax
1 ) where it achieves its maximum, in Fig. 6, we

have also depicted the profit functions �0(p0) and �1(p1).
Next are the parameter choices that we have used in our numerical and graphical explo-

rations, summarized in the four panels of Fig. 6 and subsequently detailed in Fig. 7. We
note that the parameter choices have arisen from our statistical analyses of (proprietary)
data sets, as well as from our Economic Theory based considerations.

Note 6.1 We assume T ∼ Ga(α∗,β∗) and set the following parameter values:

• α∗ = 4 and β∗ = 4

Note 6.2 These are the specific parameter choices pertaining to the model of Section 4.2:

• a0 = 200
• α0D = 20 and β0D = 0.6
• α0A = 30 and β0A = 0.4
• α0 = β0 = 4
• ϕ0 = 0.2
• γ0 = 10 and δ0 = 0.1

Note 6.3 These are the specific parameter choices pertaining to the model of Section 5.2:

• at = 200 (= a0)
• ϕt = 0.2
• ρ = 0.1
• αtD = 20 (= α0D) and βtD = 0.6 (= β0D)

• αtA = 30 (= α0A) and βtA = 0.4 (= β0A)

• αt = βt = 4 (= α0 = β0)

• ηt = 8 and θt = 1
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Fig. 6 Profits and prices under the parameter specifications in Notes 6.1–6.4. a Function �0(p0) with
p0,max = 211.1910. b Function �1(p1) with p1,max = 234.6324. c Global view of �(p0, p1). d �(p0, p1)
around (pmax

0 , pmax
1 ) = (219.8946, 233.2321)

• γt = 10 and δt = 0.1

Note 6.4 These are the specific parameter choices pertaining to the value function vt(p1)
discussed in Section 6:

• ν = 0.3
• c0,UYUε0 = 150 and c0,USD = 150
• μ = 0 and σ = 1

The proposed model has been developed to facilitate well-informed decisions, and the
real-life example has guided us in every step of the model development. The model has,
inevitably, turned out to be complex. Hence, at this initial stage of our exploration, we
have prioritized certain aspects of the research according to their relevance in terms of
policy implications, in order to keep considerations within reasonable space limits. The
timing of price setting has perhaps been the most significant aspect that is affecting all
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Fig. 7 �(p0, p1) for various values of μ and σ . a μ = 0 and σ = 0.5. b μ = 0.5 and σ = 0.5. c μ = 1 and
σ = 0.5. d μ = 0 and σ = 1. e μ = 0.5 and σ = 1. f μ = 1 and σ = 1. g μ = 0 and σ = 2. h μ = 0.5 and
σ = 2. i μ = 1 and σ = 2. j μ = 0 and σ = 3. k μ = 0.5 and σ = 3. l μ = 1 and σ = 3

the other ones. The dependence between the two-stage pricing decisions and the influ-
ence of the systematic (or background) risk has been among the other important aspects.
The exchange rate fluctuations, though very important, have nevertheless been given a
lesser attention in the present paper, due to a justifiable reason. Namely, a detailed explo-
ration of this aspect with due mathematical care of its various issues such as change
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points, heteroscedasticity, and other non-linear structures manifesting naturally in finan-
cial stochastic models would require considerable space. Our use of the simple geometric
Browning motion, instead of a more complex and realistic process, has also been influ-
enced by space considerations. Nevertheless, to give an initial idea about the influence of
the mean μ and the volatility σ , we have produced a set of graphs in Fig. 7.

7 Summary
Motivated by a real problem, we have proposed a general two-period pricing model and
explored various pricing strategies from the seller’s perspective. Our model takes into
account such practical considerations as the facts that the buyer’s valuations, which are
random from the seller’s perspective, in the two periods may or may not be indepen-
dent, may or may not follow the same distribution, and so on. We have seen in particular
that the seller’s simultaneous-pricing strategies yield higher expected revenues than the
sequential-pricing strategies. Our general model allows for the possibility of commodity
costs being denominated in different currencies, and thus being impacted by currency
exchange-rate movements. The model also takes into account various endogenous and
exogenous factors, such as personal seller’s and buyer’s considerations, general economic
conditions, different seller’s utility or value functions. We have illustrated our theoretical
findings both numerically and graphically, using appropriately constructed multiplica-
tive background models that easily take into account various specific elements of the
motivating problem.

Endnote
1 The mean of this gamma distribution is α/β and the variance is α/β2.
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