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1 Introduction
James P. Scanlan, a Washington D.C. lawyer, has written extensively on statistical issues
of discrimination for more than two decades. He has contributed prodigiously to com-
mentaries, workshop presentations, legal briefs, news articles, web posts, lengthy letters
to organizations, including the American Statistical Association, various slide files as well
as several journal publications. Typically his focus is on various measures of different
population disparities. Most of this work is freely available on his burgeoning website
www.jpscanlan.com. Many of Scanlan’s contributions have focused on health dispari-
ties and commonly associated statistical measures of disparities. His most important
contributions have addressed what epidemiologists refer to as risk ratios, or relative risk.

Risk ratios are probability distribution function tail ratios, either empirical or theoreti-
cal, or sometimes functions thereof. Scanlan views risk ratios as having been improperly
understood and wrongly interpreted; as he sees it, his goal is to provide a more enlight-
ened perspective on their use. This is a core theme in his contributions. There is a very
large and often controversial literature on the use of risk ratios stretching back well more
than 50 years (Sheps 1958) and which is continuing (Talih and Huang 2016; Weissman
etal. 2011).

The focus here is on a surprising property of risk ratios apparently discovered by and
called by Scanlan Heuristic Rule X (HRX) or sometimes “Scanlan’s Rule” In more recent
contributions he has tended to avoid the term and focused on certain properties of HRX
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instead. Let F denote a distribution function lower tail, 1 — F the upper tail. Consider
group, D, disadvantaged with respect to another group A, with group A right-shifted,
relative to D with equal scales. Define the fail ratio FR and the success ratio SR with respect
to variable X.

FR(x) = Fp(x)/Fa(x)
and
SR(x) = [1 —Fp(x)]/ [1 — Fa(x)]

where the subscripts A and D refer to the advantaged and disadvantaged groups, respec-
tively. Typically SR(x) < 1 while FR(x) > 1. The terms “disparity” or “disparities” refer
to the relative departure of one or both of these ratios from one, where one can be
regarded as “equity” The magnitudes of these disparities can trigger public policy con-
cerns, especially claims of racism, discrimination, or bias, and consequently sometimes
legal actions.

The conundrum is the following: Suppose c is a test score above which there is success,
and below which there is failure. If ¢ is shifted downward (lowered) then SR(x) increases
toward one. However under certain mild conditions the failure ratio, FR(x) unexpectedly
increases away from one. This is the property HRX.

Scanlan has argued in numerous places with forcefulness and often at great length
about properties of these ratios he has long identified; however, he uses neither the
above notion nor does he characterize matters in the terms we use here. Consider the
graphs of pairs (x, FR(x)), and (x, SR(x)) with the risk ratio graphed against x. Scanlan
would argue that the corresponding trajectories of these graphs are grossly misunder-
stood...even by professionals whose business, presumably, is to understand them. For
example he starts his “Divining Difference” 1994 Chance article with the statement that
“There are few statistical phenomena that are at once so fundamental and so widely
misunderstood as the seemingly paradoxical relationship between disparities (i.e., SR
and FR above).... The misunderstanding of that relationship is responsible for immense
confusion in the appraisal of a wide range of phenomena disparately affecting different
demographic groups (Scanlan 1994, p. 38)".

He prefers to characterize the difficulty this way: “The main problem with existing
research lies in the failure to recognize the following statistical tendency, which we’ll call
heuristic rule X (HRX): When two groups differ in their susceptibility to an outcome, the
rarer the outcome, the greater the disparity in experiencing the outcome and the smaller
the disparity in avoiding the outcome. (Scanlan 2006, p. 47)”.

Readers (ourselves included) often find such statements hard to parse partly because
he typically provides an insufficient framework at the outset, visual or concep-
tual, within which to parse the prose. Scanlan himself has come, recently, to rec-
ognize this difficulty although he appears reluctant to alter his presentation style
(Scanlan 20164, footnote 3, p. 7).

The goal here is to explore analytically and empirically HRX, and to show under
what conditions HRX holds. It seems remarkable that given the central importance
of distribution functions to mathematical statisticians and probablists, that after more
than 20 years of writing on the matter only one article has addressed HRX, or Scan-

lan’s rule, within a more formal framework (Lambert and Subramanian 2014). Perhaps
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this is because Scanlan has not contributed to the mainstream sources most statisti-
cians read. Whatever the reason, Lambert and Subramanian state but do not prove
a result which is proven here in Theorem 2.1 and which holds in more generality.
In particular, their statement (Lambert and Subramanian 2014, p. 568-569) applies
to continuous random variables on [0,00). So it does not apply to the most impor-
tant case which Scanlan has employed in numerous settings as motivational frame-
work for claiming HRX effects, the normal shift model. Stated here are conditions
for continuous and discrete random variables and certain finite mixtures for which
HRX holds. HRX is not, in general, a robust condition but can be very sensitive to
model departures.

We start where Scanlan typically starts, with an empirical example. One of Scanlan’s
most readable shorter statements is his 2006 Chance article “Can We Actually Measure
Health Disparities?” which compares poverty for both blacks and whites. Table 1 is based
on U. S. Census 2004 poverty data (U. S. Census Bureau 2005). It is nearly identical to
Scanlan’s own Table 1, and differs from his largely in units and notation.

In Table 1 x is a percent poverty line; x = 100 is the 100% poverty line aggregate dollar
amount defined by the U. S. Census Bureau; x = 200 and x = 50 would designate twice
the poverty line income or half the income, respectively. In the following Fp(x) replaces
Fp(x) and similarly Fy (x) replaces F4(x). So Fp(x) is the proportion of blacks below a
given x, and similarly Fiyy(x) for whites. Table 1 reveals that at all levels of x there are
proportionally more blacks below x than whites. Second note that in Table 1, increases
in x over the entire range of reported data (from 50 to 600) is associated with mono-
tonic decreases in both SR and FR. This is HRX, which can be more easily seen by the
graphed points in Fig. 1: As x decreases, both the empirical SR and FR increase. Con-
sider those at the poverty line, x = 100, then FR(100) = 2.29 or proportionally more
than twice as many blacks as whites fall at or below the poverty line. However the suc-
cess ratio, SR(100) = .84, avoiding poverty, is nearer to one, and does not appear as
bleak. The fact that FR and SR can display very different magnitudes of departure from
one is one of the well know difficulties in deciding which risk ratio, FR or SR, on which
to focus.

Table 1 Blacks and whites below percentage poverty line values x

X Fg(x) Fy (x) FR(x) SR(x)
600 919 795 1.16 40
500 869 715 1.22 46
400 .786 605 1.30 54
300 662 457 145 62
250 581 373 1.56 67
200 488 285 1.71 72
185 458 258 1.78 73
175 437 230 1.83 74
150 374 191 1.96 77
135 333 167 1.99 80
130 319 156 2.04 81
125 310 149 2.08 81
100 247 108 2.29 84
75 179 072 249 88

50 118 044 2.68 92
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Fig. 1 Percent Poverty Table 1; points are empirical ratios; vertical is lower bound of 50; lines are fits under
normality

It is important to recognize what Scanlan views as important. A naive glance at the
FR(100) = 2.29 might prompt the conclusion that discrimination is the root cause of
more than twice the proportion of blacks being below the poverty line than whites. Scan-
lan does not dispute this possibility. Rather, he argues that the property of HRX must be
considered before a discrimination or bias conclusion is made. Thus, HRX, a purely statis-
tical property of tail ratios may be the basis for the disparity, and not discrimination. Thus,
HRX is a possible explanation that must be considered when disparities are interpreted.

Now suppose that both blacks and whites, through some effective social policy, expe-
rienced an additive shift such that those now at x = 50, or half the poverty line income,
were now at x = 100, which can be viewed as effectively rescaling the x variable. While
the overall proportions of both blacks and whites below the poverty line would both be
substantially smaller, the corresponding FR would be much higher, going from 2.29 prior
to the additive shift to .118/.044 = 2.68 afterwards. Hence, as Scanlan says “...the rarer
the outcome, the greater the disparity in experiencing the outcome” Similarly, for the
other ratio, “...the smaller the disparity in avoiding the outcome” namely the SR ratio
associated with those avoiding poverty. The SR disparity is reduced from .84 to .92.

The change in these ratios, as x changes is the key critical empirical fact of Table 1 to
note: As x increases, both FR and SR decrease. Scanlan argues that people (even profes-
sionals) often fail to appreciate how these ratios behave under varying values of «, at least
in some settings. Without addressing what might be a plausible distribution of poverty
rates, Scanlan has suggested that “any set of data reflecting more or less normal distribu-
tions of factors” will reveal HRX. (Scanlan 2006, p. 47—48). This claim will be considered

below.



Thomas and Hettmansperger Journal of Statistical Distributions and Applications (2017) 4:27 Page 5 of 15

Early on, Scanlan considered risk ratios as they are defined above with the distribution
of the advantaged group in the denominator. Consequently as Table 1 shows, both FR
and SR decrease with increase in x. More recently, Scanlan has placed the larger of the
tail areas in the numerator. So for example in Table 1, SR becomes for Scanlan 1/SR, and
consequently he now claims, in some of his writings, ... the two relative differences tend
to change in opposite direction ...(Scanlan 2014a, p. 330). Here “relative difference” is
defined as the risk ratio minus one.

As suggested, Scanlan has addressed myriad settings where population disparities in
outcomes occur, infant mortality, arrest frequencies, mortgage lending rates, school dis-
cipline rates and the like. The Scanlan signature model (SSM) which forms the conceptual
basis for many of his empirical claims consists of two normal distributions with different
means and equal variances, the normal shift model.

Let n(i, o) denote a normal density with mean p and standard deviation o. Denote the
density for the disadvantaged group as np(0, 1) and for the advantaged group as 4 (.51, 1).
Let @ be the standard normal distribution function lower tail. Scanlan typically considers
two decision values, x = ¢ = —1.13 and x = ¢ = —.33. Then ®p(—.33) = .37 and
dp(—1.13) = .13, P4(—.33 — .51) = .20, D4(—1.13 — .51) = .05, with the corresponding
FR(c), 1.85, and 2.55, and SR(c) .787 and .915; these risk ratio values are shown in Fig. 2.
Figure 2 also shows the two densities, the two x = ¢ cutting or decision values, and their
associated risk ratios, as well as the trajectory of FR(x) and SR(x) over —4 < x < 4. Also
shown is Scanlan’s now favored upper tail ratio 1/SR(x). Note that SR(x) and FR(x) are
decreasing functions. Note further their relation to the unity line at one.

What is often surprising is that, as the results of the empirical example in Table 1
indicated, both SR(x) and FR(x) show decreases with increases in x or alternatively,
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increases with decreasing x, and in this case, over the entire range of x. Again, this is HRX.
According to Scanlan: “In 2000, however, this pattern was virtually unknown to health
researchers or anyone else...” (Scanlan 2014a, p. 328).

To understand HRX likely involves graphs, and grasping the trajectory of risk ratios
SR(x) and FR(x) over x. Consequently, given the importance for Scanlan of this motivating
case, graphs similar to Fig. 2 would seem natural candidates for display. It is thus puzzling
that Scanlan apparently has never provided such a graph. He does provide poverty data
risk ratio graphs in Scanlan (2006). No graphs appear in his most comprehensive publica-
tion (Scanlan 2014a). Two shifted normal densities appear in Scanlan (1994), but these do
not illustrate HRX. He does table two, or sometime four decision ¢ values and their cor-
responding numerical values (Scanlan 20144, Table 1; Scanlan 2016b, Table 1, p. 416). In
his presentation slide files empirical graphs of FR(x) and 1/SR(x) appear, but they are not
graphed against x as might be expected. Rather, these ratios are graphed against the fail-
ure rate F4 (x). Furthermore, the F4 (x) abscissa is numbered backwards reading from left
to right .99, .98., ....01 (e.g., Scanlan 2014b). It seems fair to say such graphs can certainly
lead to discomfort if not confusion.

It is the equal variances case only that leads to HRX holding in the normal cases, over all
x. See Example 4 below. In fact, seemingly small departures can lead to dramatic failures
of HRX, as Fig. 3 shows, where n4(.5,1), and np(.4,1.1). So caution needs to be exer-
cised regarding claims about the effects of HRX in settings where the distributions are
unknown. Still, HRX often seems to hold over regions of X which are of practical rele-
vance for many empirical data settings. However, none of Scanlan’s examples seems well
modeled by SSM, his signature normal shift model. For example if the poverty data were
regarded as being normal in distribution, then the values in Table 1 lead to mean and
standard deviation estimates np(222,197), nyw (351, 233) with corresponding SR and FR

S - FR(X) SR(x)

Risk Ratio

1.5

1.0

0.5
|

Fig. 3 SR(x) and FR(x) for na(.5,1),np(4,1.1)
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tail ratios in Fig. 1. Under normality HRX fails in general in this example when poverty
values turn negative. However, HRX clearly holds over the realizable values of interest
50 < x < 600 the range of Census Bureau data. Figure 1 also reveals that the empirical risk
ratios (points) and model values of SR(x) and FR(x) (lines) constructed under normality
are in poor agreement, signaling normality is a poor model for these poverty data.
Perhaps the setting where the effects of HRX and Scanlan’s arguments should find the
most saliency, are college admissions or similar selection settings. Here properties of the
setting are reasonably well known. College officials have known control over the criti-
cal test scores required for acceptance, and the distribution of the test scores, such as
SAT scores, are commonly assumed to be normal or roughly so. Different ethnic groups
are known to often have very different SAT test score distributions, and these typically
remain fairly stationary over the years. Consider African American and white student
applicants; the mean difference for different portions of the SAT has remained essentially
constant favoring whites for many years. The standard deviations have remained similar.
From the National Center for Education Statistics (NCES) 2014, (or similarly, the Col-
lege Board 2016) the reading SAT is for African Americans np(429,103) and for whites
nw (531, 100). Figure 4 shows the risk ratios for these distributions for the SAT range of
400 to 700. HRX clearly holds here. There is no really satisfactory critical SAT that results
in a success ratio near one so there is substantial disparity; SR(600) = .20, SR(400) = .68.
With a acceptance score of 550 or above, SR(550) = .28, still a potentially socially trou-
blesome value; the fail ratio, FR(550) = 1.53, so more African Americans are likely to be
rejected than whites. However, this example may be unrealistic for some settings. Student
applicants do self-select, and typically apply only to those colleges for which they have
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some reasonable expectation of being accepted. Consequently, the population distribu-
tion of college applicants for a given college may well be very different from the NCES
data.

With the above as background, next consider conditions under which HRX holds,
and conditions for HRX to hold for selected distributions. Some other related analytical

results as presented as well.

2 Analytical results
2.1 Definitions and main results

Definition 1 As above, let Fp(x) and Fa(x) be two cdfs with either probability density
Sfunctions (pdfs) or probability mass functions (pmfs) fp(x) and f4(x) with support sets Sp
and S 4, respectively. As defined at the outset above, FR(x) and SR(x) are failure and suc-
cess ratios respectively. Assume both are non-increasing for x € Sp NS4, with FR(x) > 1
and SR(x) < 1 then Fp(x) and F4(x) are said to have the HRX property, or simply Fp(x)
and F4(x) are HRX.

As noted above, Lambert and Subramanian (2014) consider without proof conditions
under which continuous Fp(x) and F4(x) are HRX, assuming x €[ 0, 00). They relate HRX
to a monotone likelihood ratio (MLR) property and stochastic ordering.

Definition 2 Fp(x) and F4(x) have the MLR property if fp(x)/fa(x) is non-increasing
forx e SpNS4.

Definition 3 F(x) is called log-concave provided logf (x) is concave.

Definition 4 Fp(x) and F4(x) form a location shift model when F4(x) = Fp(x—6),6 > 0,
and Fp(x) is a continuous distribution.

The main result is stated in the following theorem which uses methods in Shaked and
Shanthikumar (2007, Section 1.C.1).

Theorem 1 If Fp(x) and Fa(x) have the MLR property, Definition 2, then they have
property HRX of Definition 1. That is, MLR implies HRX.

Proof Suppose y1,y2 € Sp NS4 and y1 < yo. Then fp(y1)fa(y2) = fp(¥2)fa(y1). Take
ui, uy € SpN Sy, and u; < uy. Then

/ dFD()’l)/ dFa(y2) > / dFA()’l)/ dFp(y2)
Expanding gives
Fp(uy) [Fa(u2) — Fa(u1)] > Fa(u1) [Fp(uz) — Fp(u1)]

and

Fp(u1) > FR(uy) = FD(”Z)'
Fa(u) Fa(uy)

Hence, FR(x) is non-increasing on Sp N S4. A similar argument shows SR(x) is also

FR(u1) =

non-increasing on Sp N Sy. O

Wellner (2012) proved the following lemma:
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Lemma 1 The pdfs f(x),f(x — 6) have MLR property if and only if f is log-concave.
Consequently a corollary to Theorem 1 is:

Corollary 1 Given a location shift model (Definition 4), if Fp(x) is log-concave, then
Fp(x) and Fo(x) = Fp(x — 0),0 > 0, are HRX.

Example 1 Symmetric log-concave densities are often used in location shift models.
These include the normal (noted above), as well as the uniform, logistic and Laplace.

Example 2 Fp(x) and F4(x) need not be symmetric. This is the case for distributions
with positive support. Assume the advantaged group mean exceeds the disadvantaged
group mean, then the lemma can be used to establish HRX from Theorem 1. The following
densities are log-concave: extreme value, gamma with shape parameter at least one, expo-
nential, beta with both parameters at least one, and the Weibull with shape parameter at
least one.

The family of t distributions with finite degrees of freedom is not log-concave; hence by the
lemma, t distributions do not satisfy the MLR property. This family includes the Cauchy
density. The Pareto and lognormal are also not log-concave. We next consider the situation
for which HRX holds for a subset of Sp N S 4.

Example 3 Assuming the advantaged group mean exceeds the disadvantage group mean
then it is straight forward to show the Poisson, negative binomial, both satisfy Definition
2, are MLR and are thus HRX. However, the binomial requires some care. Let fp(x) =
(Mpp(L —pp)" %5 =0,...,m fax) = (T)Pi(L —pa)"™ %2 = 0,...,m with ps > pp,
Note that SpNS4 =A{0,...,min(m, n)}. Definer = pp(1 —pa)/l (1 —pp)pal thenr < 1,
and

Jpx) - fox+1)
Jax) T fax+1)

By comsidering cases min(m,n) = m or n, it follows the above expression holds if and

< x<m—rn)/(1—r)

only if min(m,n) — 1 < (m — rn)/(1 — r). Hence, the binomial satisfies Definition 2, and
by Theorem 1, the HRX property holds. Discrete models can be used when the D and A
populations must obtain a certain number of items correct to pass the test. If the criterion
for passing is lowered to increase SR(x), FR(x) will unexpectedly increase, because of HRX.

Mixtures provide flexible models, as will be illustrated below. Consider two component
mixtures Fp(x) = AFp,(x) + (1 — M) Fp,(x) and Fo(x) = aF4,(x) + (1 — a)Fa,(x) with
0 <X <1,0 <a < 1. The following theorem provides conditions under which Fp(x) and
F4(x) are HRX.

Theorem 2 Given the above mixtures, suppose according to Definition 2, the following

pairs have the MLR property (fp, (%), fa, (%)), (fp, (%), fa, (%)) and (fa, (x),f4,(x)), then the
mixtures fp(x) and f4(x) are HRX.

Proof

fp, (%) Iy (%)
fo@ e A VEG

A" e
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The numerator is decreasing by the MLR property. The denominator is increas-

ing because thjlgg is decreasing. Hence, the ratio is decreasing and HRX follows from
2

Theorem 1. O

A simple example of Theorem 2 occurs when the mixtures are defined by a log-concave
location shift model with location parameters 6p, < 6p, < 64, < 64,. More complicated
models are possible.

Recall the dilemma of HRX. Consider a criterion value ¢ above which there is suc-
cess. If ¢ is lowered so that SR(c¢) increases toward one, the unexpected consequence
is that FR(c) also increases. There is an alternative way to view this situation. Con-
sider P(D|F) as the proportion of D members in the failure pool and P(D|S) as the
proportion of D members in the success pool. Further, let P(D) and P(A) be the rela-
tive proportions in the D U A population. We have the corresponding dilemma: When
¢ is lowered so that SR(c) increases, it also happens that P(D|S) increases. Similarly,
with increases in FR(c) there are unexpected increases in P(D|F); the proportion of the
D population in the failure pool increases. This result is developed in the following

theorem.

Theorem 3 Suppose Fp(x) and F4(x) satisfy Definition 1 and are HRX. Then P(D|S)
and P(D|F) are non-decreasing functions of SR(x) and FR(x) respectively.

Proof Let c be the criterion value for pass-fail. Note that P(F|D) = Fp(c) and P(F|S) =
F4(c). Using Bayes theorem:
P(F|D)P(D)
P(FID)P(D) + P(F|A)P(A)
Divide numerator and denominator by P(F|A) then:
FR(c)P(D)
FR(c)P(D) + P(A)’

This is a non-decreasing function of FR(c). A similar argument shows P(D|S) is a non-

P(D|F) =

P(D|F) =

decreasing function of SR(c). O

Suppose c is decreased. Under HRX both SR(c) and FR(c) increase. By Theorem 3 both
P(D|S) and P(D|F) increase.

2.2 When HRX fails to hold

Example 4 Consider the normal location-scale model and without loss of generality
Fs(x) = Fp (’%0) ,0 > 0,0 > 0, with Fp(x) the standard normal cdf. Then Sp NS4 =
(—00, 00). The likelihood ratio I(x) is

1) = exp[~2714] /exp [~ (20%) " (x = 67)]

I'(x) < Owhenl—0%>O0andx < 0/(1 —c*)orl—0? < 0andx > 6/(1 — o).
The MLR property only holds for certain x. Figure 5 shows that FR(x) and SR(x) are not
decreasing functions of x on (—00, 00), however this example and others demonstrate there
may be intervals for which HRX holds.

Theorem 4 Given continuous distributions and FR(x), SR(x), and I(x) = fp(x)/fa(x)
the likelihood ratio, define A = {x : I[(x) < FR(x)},B = {x : SR(x) < I(x)},C =ANB, then
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on the interval (a, b) where a = inf C and b = sup C, FR(x) and SR(x) are non-increasing.
Furthermore, when l(x) is monotone decreasing on (a, b) then a and b are determined by

SR(a) = l(a), FR(b) = I(b) (1)

Proof The results follow from noting that the derivatives
SR'(x) <0 <= SR(x) <l(x)and FR'(x) <0 <= I(x) < FR(x)
O

To apply Theorem 4 requires at a minimum the solution of Eq. 1. A more practical
approach is to plot FR(x) and SR(x) and by inspection determine the HRX interval, noting
whether the HRX interval contains the relevant critical values of c. As noted earlier, the ¢
distribution is not log-concave, and hence the MLR property does not hold.

2.3 Data, inference, asymptotics

Suppose there are random samples from populations D and A, Di,D,,...,D,, and
A1,As,...,Ay,, and estimates §3(C) and ﬁ?(c) are obtained from the empirical cdfs f:D
and F4. The samples are independent and nD?D(c) and nFy (¢) have binomial distribu-
tions. Suppose sample sizes increase at the same rate (np/na — k > 0). Then asymptotic
theory is based on the bivariate central limit theorem, along with Slutsky’s theorem. The

following results hold:

np + ny (FR(C) _FR(C)) z <Zl) ~BVN<0,V>

SR(c) — SR(c) Z
o o
o~ o~
2 FR(x) 2 | FRK)
o SR(x) o SR(x)
£ o | £ o |
e - e -
O O
0 | o
o o
o | e
o o
[ [ [ [ [ [ | [ [ [ | | | |
6 4 -2 0 2 4 6 6 4 -2 0 2 4 6
X X
Fig.5 Left: np(0,1),n4(1,1.5); right: np(0,1),n4(1,2.5)
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It is of interest to consider the variance, covariance and correlation between the risk
ratio estimates @(c) and ﬁ%(c) given Olkin’s (1998) observation that “the risk ratio for
dying is unrelated to the risk ratio for surviving...” and earlier Sheps (1958) commented
that FR “has no predictable relation” to SR.

Consider a fixed c. The asymptotic covariance, variances and correlation are as follows:

cov(SR(c), FR(c)) ~ —(1/na + 1/np)SR(c) x FR(c)

and the variances are

var(SR(c)) ~ SR(c)® x ( Fp(c) Fa(c) )

np(1 —Fp(c))  na(l — Fa(c))

and

Var(ﬁ?(c)) ~ FR(c)? x (1 —Fp(c) 1-— FA(c)) '

npFp(c) naFa(c)

The correlation is: p (ﬁ?(c),ﬁ?(c)) ~
1 1
wp t o
{ Fp© 4 Fa(© } {(17FD<c>> + (1—FA<c>>}
np(1—Fp(c)) ' na(1—Fx(c)) npFp(c) naFa(c)
A simulation of 1000 FR(c), SR(c) pairs, each based on sample size 1000, with ¢ = —.33
under SSM, yields p = —.91, while the Pearson r = —.87. Clearly the risk ratios are

correlated.

3 Discussion

Scanlan argues in his 2014 Society article “Race and Mortality Revisited” that since his
2000 “Race and Mortality” Society article that “almost nothing said” about health dispari-
ties “has had a sound statistical basis (Scanlan 20144, p. 330)”” This is quite an indictment.
Without considering the merits of the statement, there seems little doubt that Scanlan’s
efforts have not elicited the attention they deserve; it is also clear that some writers have
avoided if not ignored his work. Scanlan (20144, p. 344) discusses at length the history of
his interaction with the authors of “Commission Paper: Healthcare Disparities Measure-
ment” (Weissmann et al. 2011) prior to its final release. It is an 84 page document and
contains 125 references. None reference Scanlan. Penman-Aguilar et al. (2016), another
health disparities summary document, contains 60 references. Scanlan does not appear.
(He issued a sharp critique, Scanlan 2016b).

Scanlan’s own writing can be hard to penetrate, as was noted at the outset, and his lack
of notation, avoidance of graphs, especially in his published articles would appear to be
clear hindrances to understanding. Simple graphs, such as Fig. 1, would appear to make
HRX much more easily understandable. At least graphs should supplement tabled values,
to facilitate understanding of HRX which certainly can be elusive.

Recall SSM denotes Scanlan’s signature model and is displayed in Fig. 2. SSM is ubiqui-
tous in its use in Scanlan’s documents and is the motivation for invoking HRX under SSM
in myriad settings. SSM is a restrictive model framework; it assumes there is a measurable
variable, such as test scores, over which there is assumed to be a pair of normal or at least
approximately normal distributions, with equal variances; it is assumed that the empiri-
cal data of focus are in rough correspondence to the SSM model. It further assumes there
is some fixed cutting or decision score, so that the risk ratios are plausibly defined. Many
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test score settings seem appropriately so modeled by SSM. A serious problem arises when
SSM is applied to settings which may lack any resemblance to this scenario, and for which
there are little or no data, nor any statistical or substantive theory available for guidance.

An example concerns arrest warrants. Arrests are counts. One might model arrests as
Poisson or binomial variables but they are clearly not normal variables nor is a shift model
appropriate for count data. Scanlan (2016c) seems unperturbed. He reports that The
Department of Justice filed suit against the city of Ferguson, Missouri claiming disparate
impact because the city issued too many arrest warrants than they should have, given the
city’s 67% black population makeup. “What the DOJ fails to understand, however, is that
reducing the number of citations and arrest warrants will tend to increase, not decrease,
the proportion of African Americans make up (sic) of persons cited and arrested”
(Scanlan 2016¢). An abbreviated statement of SSM to motivate its application then fol-
lows. Yet there appear to be no data on relative arrest frequencies, nor any suggestion as
to what distribution such frequencies might plausibly follow, should such data be avail-
able. The U. S. Department of Justice investigation of Ferguson (2015) is of little help.
It provides only crude raw frequency or percentage data. There appears to be no data
nor theory to defend the appropriateness of SSM. Furthermore, in city policing, the idea
that numerous police officers in complex law enforcement settings would be expected
to behave in a fashion roughly similar to the way a college admissions officer behaves in
setting an SAT test selection criterion seems hopelessly unrealistic. (A more appropriate
approach would seem to be to view police arrest decisions as random effects.) Further-
more, Scanlan’s claim “The pattern is essentially universal” is certainly false; HRX is not
robust, and can be very fragile as is illustrated by Figs. 3 and 5.

There are other settings for which the appropriateness of SSM appears question-
able. School discipline is an example. More African Americans are often disciplined
than whites, and discrimination is often claimed. Whether SSM is appropriate for
such settings is never addressed. Recently, Scanlan (2017) considered racial differences
in incarceration rates, and with similar SSM reasoning states that “Similar patterns
will tend to appear when any outcome is increasingly restricted to those most sus-
ceptible to it—not in every instance of course, but a good deal of the time (p. 2)”
(emphasis added).

This is not to say HRX is wrong as an explanation for settings where substantial
disparities are found, only that there is insufficient evidence to suggest HRX, under
SSM, provides a plausible and creditable motivating framework for some of Scan-
lan’s settings of interest. Scanlan’s goal is to influence public policy, often judicial
policy. However too often his basis for claiming HRX is based on reasoning by anal-
ogy: If HRX under SSM holds in test score settings, it is appropriate, he reasons,
for this same outcome to apply to a diverse range of settings which show no resem-
blance to SSM. Such reasoning is unlikely to sway policy makers. To invoke SSM in
frameworks where SSM is unrealistic can only weaken the credibility of Scanlan’s argu-
ments in other arenas where his arguments have cogency, and that outcome would be
unfortunate.

The analysis here leaves open important analytical questions that deserve attention.
What has been given here are sufficient conditions to assure that HRX holds over the
region of support for x and conditions for HRX to hold for certain discrete and continuous
distributions. Whether necessary conditions can be given remains open. An important
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question which is discussed in the analytical section above, concerns the problem of spec-
ifying conditions under which HRX holds over regions of practical relevance. That HRX
fails under normality when test scores turn negative is of no practical concern.

Dynamic graphs with sliders to adjust the model parameters can result in real-time dis-
plays of the risk ratios using Mathematica’s Manipulate command (Wolfram Research
Inc. 2017). These graphs are very helpful for exploring the behavior of SR(x) and
FR(x). It would appear that, under normality, as long as the mean of the disadvan-
taged group is substantially smaller than the mean of the advantaged group, considerable
variation in the variance parameters of each distribution can be tolerated for HRX to
hold over non-negative x or the region of interest. Figure 4 provides a real illustra-
tive example, and so of course does Fig. 1. Another set of issues are statistical. Some
asymptotic results were given above for estimates of SR(x) and FR(x) and their corre-
lation, but there are many open questions of interest. For example, given data, can an
interval of x for which HRX holds be specified? This question relates to Theorem 4
and the discussion that follows that theorem. Can a test of the appropriateness of HRX
be developed?

A critically important question is raised by Scanlan’s concerns: How does one evaluate,
in data, the relative importance of HRX given possible bias or discrimination? It seems
highly unlikely, even if HRX were more widely understood, that matters of social policy
would be altered substantially from current practice unless it were possible to separate
the influence on risk ratios of HRX from the influence of discrimination or bias. Scanlan’s
HRX is an interesting property that deserves much wider attention.
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