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Abstract

The generalized gamma (GG) distribution is a widely used, flexible tool for parametric
survival analysis. Many alternatives and extensions to this family have been proposed.
This paper characterizes the flexibility of the GG by the quartile ratio relationship, log(Q2/
Q1)/log(Q3/Q2), and compares the GG on this basis with two other three-parameter
distributions and four parent distributions of four or five parameters. For most parameter
combinations of other distributions, a very similar GG, as assessed by the Kullback-Liebler
distance, can be found by matching the three quartiles; extreme cases where this fails
are examined. Limited additional flexibility is observed, supporting the basic GG family
as an ideal platform for parametric survival analysis.

Keywords: Generalized gamma, Parametric survival analysis, Hazard functions, Kullback-
Liebler distance

Introduction
Parametric survival analysis has been the source for the development of distributions

with richness and flexibility for modeling time-to-event data. Simple, familiar distribu-

tions such as the lognormal and Weibull have been extended, transformed, and com-

bined into myriad new and complex distributions. Distributions with more than three

parameters remain relatively rarely applied, with the Generalized Gamma (GG) being

among the most popular choices at the three-parameter level. The major appeal of this

distribution is its hazard behavior, which includes all four basic hazard shapes (increas-

ing, decreasing, bathtub, and arc-shaped), as well as its ready implementation in stand-

ard statistical software packages. These features are described at length in a tutorial by

Cox et al. (2007).

While the GG is broadly applicable and flexible, there are still many kinds of haz-

ards, even among the four basic shapes, which it cannot accommodate. We have inves-

tigated competing distributions including the three-parameter Exponentiated Weibull

(EW; Cox and Matheson 2014) and a family that includes the GG as a special case, the

five-parameter Beta-Generalized Gamma (Matheson and Cox 2017). Both of these

families include all four of the four basic hazard shapes. Our approach was to attempt

to find a closely-matching GG (including both the survival and hazard functions) for

any given member of these two families, using the Kullback-Liebler distance to assess

the closeness of the match. Each of these comparisons has led to the somewhat sur-

prising conclusion that the GG itself continues to be a good choice for modeling data,
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in the sense that given any member of the either of these two families, a GG can be

found whose survival and hazard functions are very similar and in many cases, includ-

ing the EW, indistinguishable. In this paper, we characterize an aspect of the GG’s flexi-

bility by interpreting the shape parameter, κ, in terms of the relationship between the

three quartiles of the distribution. This gives us a valuable tool for comparing the GG

to other distributions using our matching approach, which we pursue with six compet-

ing distributions of three to five parameters. Special cases of competing distributions

which may not be well-approximated by a GG are evaluated.

A More Complete Characterization of the Shape of the GG

The standard accelerated failure time model involves location (β) and scale (σ) parame-

ters, and in the case of the GG, an additional ‘shape’ parameter κ. Here we propose a

more concrete interpretation of κ as governing the quartile ratio relationship (QRR),

defined as log(Q2/Q1)/log(Q3/Q2). For any GG, the QRR curve depends solely on κ,

such that the curve defined by QRR = log(tκ(0.5)/ tκ(0.25))/log(tκ(0.75)/tκ(0.5)), where

tκ(p) represents the p
th percentile of a GG(0, 1, κ), is identical for any given β and σ. In-

deed, there is a one-to-one correspondence between κ (independent of β and σ) and

the QRR; this function is shown in Fig. 1, panel a, with the y-axis logarithmic to high-

light the function’s symmetry (namely, that the QRR for any negative κ is the reciprocal

of the QRR for the corresponding positive κ value).
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Fig. 1 Characterization of the Generalized Gamma, Exponentiated Weibull, and Generalized Weibull, with
Kullback-Liebler distance comparisons. Panel (a) depicts the quartile ratio relationship (QRR) of the Generalized
Gamma distribution. Panel (b) compares this to the corresponding curve for the Exponentiated Weibull and
Generalized Weibull distributions. Panel (c) displays the calculated Kullback-Liebler distance between an EW or
GW with the given κ and the percentile-matched GG
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The implications of this graph are substantial, but several in particular are relevant to

our current investigation. First, if three quartiles of data are known, one can determine

the κ of the GG that most appropriately fits the data, if one exists, using this function

(Cox and Matheson, 2014). As long as the QRR lies between roughly 3/5 and 5/3, the

appropriate κ for the given QRR can be found; then, given this value of κ, σ is simply

log(Q3/Q1)/log(tκ(0.75)/tκ(0.25)) and β is log(Q2) - σ log tκ(0.5). If the QRR falls out-

side this range, κ should be restricted to 4 for positive log(QRR) values and −4 for

negative ones, as more extreme values of κ will not bring the GG any closer to the de-

sired QRR; σ and β can still be solved for as shown above. This leads to the second

point, which is that the flexibility of other distributions can be compared to the GG by

plotting their QRR. If the QRR of another distribution falls entirely between the limits

of the QRR of the GG, that distribution is not likely to have any additional flexibility

beyond what the GG already provides. However, if the competing distribution’s QRR

extends outside this vertical range, the GG may be limited in its capacity to approxi-

mate it.

Matching a GG to a Competitor Distribution

Given any parametric family, one can choose parameter values, calculate the three

quartiles of the resulting distribution, evaluate the QRR, and determine whether there

is a GG with the same QRR as described above. This process is entirely independent of

data, simulation, or considerations of censoring; it is a purely theoretical exercise for

matching two distributions. Cox and Matheson (2014) have shown that percentile

matching in this way compares favorably to generating simulated data for determining

matching GGs. The resulting matched distributions will not necessarily be mathematic-

ally identical. The Kullback-Liebler distance (KLD) is used to measure the closeness be-

tween a competing distribution and its matched GG (Cox and Matheson 2014).

Below, we apply this process to six competitor distributions. For each distribution, we

examine its QRR and compare the QRR to that of the GG; select several parameter

combinations to capture different hazard shapes and QRR values; find matching GGs

for each competitor; and assess the closeness of the match numerically (using the KLD)

as well as visually.

3. Competitors to the Generalized Gamma

Alternate Three-Parameter Distributions

Cox and Matheson (2014) previously investigated the exponentiated Weibull, another

family having all four of the basic hazard shapes, as a competitor to the GG. They

found that given any member of the EW family, a matching GG can be found whose

survival and hazard functions are indistinguishable. Another three-parameter family

also having the four basic hazard shapes is the Generalized Weibull (GW), which is

most easily defined by its CDF:

FGW tð Þ ¼ 1− exp

�
1−

�
1þ e−βt

� �1 σκ= �κ2�

This expression gives the CDF for positive values of κ. Both the GW and the previ-

ously discussed EW can be extended to κ < 0 by F(t; κ < 0) = 1 − F(t; −κ), that is, the
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complement of the CDF with the corresponding positive value of κ. We can then easily

plot the QRR of the EW and GW distributions for a range of values of κ; this is shown

in Fig. 1, panel b. The QRR of the EW very closely parallels that of the GG as κ gets

further away from 0, appearing to have the same limit, thus supporting the results of

our previous investigation. The GW proves to be even more limited, with a smaller

QRR range that lies completely within the range of the GG. Consistent with this limited

range, the GW distribution also fails to offer any features beyond the GG since a

matching GG can again be found whose survival and hazard functions are indistin-

guishable. Figure 1, panel c displays the KLD between the EW and GW, for a range of

absolute values of their κ parameter, and their percentile-matched GGs. While the lar-

gest discrepancies are observed for large values of κ for the EW and small values of κ

for the GW, the majority of KLDs are on the order of 10−3 or lower, which is very good

agreement; for such a KLD, the survival and hazard functions of the competing distri-

bution and its matched GG are visually indistinguishable. For comparison, the KLD be-

tween the standard normal and standard logistic distributions, commonly regarded as

“close” matches, is 1.436 × 10−2. A slightly but noticeably raised section in the KLD

curve for the GW, from roughly κ = 2.3 to κ = 3.4, shows the difficulty in calculating

the numerical integral for the KLD in some extreme cases.

Four- and Five-Parameter Extensions of the GG

There are many extensions of the GG that transform the cumulative distribution func-

tion (CDF) using one or two additional parameters. Matheson and Cox (2017) previ-

ously investigated the Beta-Generalized Gamma distribution (BGG), failing to find a

completely matching GG only for small values of the beta parameters θ and τ, when

the behavior of the BGG becomes somewhat unusual. Other candidates include the

five-parameter Kumaraswamy GG (KGG; de Pascoa et al. 2011), the four-parameter

transmuted GG (TGG; Lucena et al. 2015), and the four-parameter Marshall-Olkin GG

(MOGG; Tahir and Nadarajah 2015). Simplified versions of the CDFs of these distribu-

tions, illustrating how they transform the basic GG, are shown in Table 1. In order to

evaluate the QRR of these extended distributions, we must fix values of the additional

parameters.

As shown by Matheson and Cox (2017) the Beta-GG, for θ > 1 and τ > 1, is well-

approximated by the GG; consistent with this, we note here that the QRR range is

compressed for these parameter values. However, allowing one or both parameters to

fall below 1 expands the range; lower QRRs are possible if θ < 1, while higher QRRs are

possible if τ < 1. The QRR curves for several combinations of (θ, τ) are shown in Fig. 2,

panel a to illustrate this; panel b compares the hazard functions of the BGG(0, 1, −2,
0.5, 0.5) to the closest approximating GG, GG(−1, 0.85, −4). Despite the necessity of

Table 1 Selected Extensions of the Generalized Gamma Distribution

Distribution CDF Additional parameters

Generalized Gamma FGG(t) n/a

Beta GG FBGG tð Þ ¼ FB FGG tð Þð Þ ¼ B FGG tð Þ;θ;τð Þ
B θ;τð Þ θ > 0 , τ > 0

Kumaraswamy GG FKGG(t) = 1 − (1 − FGG(t)
λ)φ λ > 0 , φ > 0

Transmuted GG FTGG(t) = (1 + λ)FGG(t) − λFGG(t)2 −1≤ λ≤ 1

Marshall-Olkin GG FMOGG tð Þ ¼ 1− α 1−FGG tð Þð Þ
1− 1−αð Þ 1−FGG tð Þð Þ α > 0
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settling for an imperfect percentile match, the hazard functions are remarkably similar.

The KLD between these two distributions is calculated as 1.702, a relatively large value

for this measure. Figure 2, panel c displays curves of the KLD for the various combina-

tions of (θ, τ) utilized in panel a. For (θ = 2, τ = 2), the case for which the QRR lies fully

within the range of the GG, the matched GG maintains a good agreement across values

of the BGG’s κ, with values less than 10−4 for small absolute values of κ, rising to

around 10−2 for large absolute values of κ. For (θ = 2, τ = 0.5), positive values of κ en-

able close GG matches, with the largest KLDs around 10−2; however, negative values of

κ begin to become unmatchable, leading to relatively large or incomputable KLDs. The

reverse is true for (θ = 0.5, τ = 2), as the KLD curve is a mirror image of the previous

case. However, for (θ = 0.5, τ = 0.5), only very small absolute values of κ can be

matched well, with KLDs around 10−3; once |κ| becomes greater than 1, matching can-

not be achieved and the KLD of the “closest” fits are relatively poor. For clarity, we dis-

play the KLD lines only where good matches could be achieved.

The Kumaraswamy GG behaves very similarly. Values of λ > 1 or φ > 1 compress the

lower and upper end of the QRR, respectively, while values <1 expand the correspond-

ing tail. Figure 2, panel d illustrates this, and panel e compares the hazard of the

KGG(0, 1, 2, 0.5, 0.5) to the closest approximating GG, GG(1.02, 0.75, 4); again we note

the hazard functions are quite similar. The KLD between these two distributions is

2.060. Figure 2, panel f gives a fuller examination of the KLDs between many KGGs
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Fig. 2 Characterization of the Beta-Generalized Gamma and Kumaraswamy Generalized Gamma.Panels (a) and
(d) depict the QRR curves for selected values of the extension parameters of the BGG and KGG, respectively.
Panels (b) and (e) compare two cases where a QRR outside the range of the basic GG is observed to the closest
matching GG. Panels (c) and (f) display the KLD comparing the BGG and KGG to their percentile-matched GGs,
with line types and parameter combinations as in panels (a) and (d) respectively

Matheson et al. Journal of Statistical Distributions and Applications  (2017) 4:15 Page 5 of 9



and their matched GGs; the patterns are strikingly similar to those of the BGG matches

in panel c, such that a detailed description would be effectively redundant.

The transformation induced by the additional parameter of the Transmuted GG is

interesting. At the null value of λ = 0, the original GG – and therefore QRR – are

maintained. At either extreme value, λ = ±1, the QRR is compressed in one tail and

equal at the limit of the other. But other positive or negative values of lambda shift the

QRR down or up, respectively, enabling some QRRs to be outside the range of the GG.

Notably, though, these novel QRRs are only achieved for fairly extreme values of κ. The

largest divergence comes around values of λ = ±0.5. This is shown in Fig. 3, panel a.

Because the curves shift very little, we show only those for λ = 1 and λ = −0.5; the
curves for λ = −1 and λ = 0.5 are symmetric, as the QRR for any given (κ, λ) is the

reciprocal of the QRR for (−κ, −λ). Figure 3, panel b compares the hazard functions of

the TGG(0, 1, 4, −0.5) to the closest approximating GG, GG(0.27, 0.74, 4). Again, the

hazards are very similar; the KLD between these distributions is 0.363, much closer

than for the previous examples, which is consistent with the closeness of the QRR.

Figure 3, panel c displays the KLDs for λ = 0.5 and λ = 1; because of the symmetry of

the transformation, the KLD for any (κ, λ) is equal to the KLD for (−κ, −λ). We can see

that the KLD is quite small for positive values and small negative values of κ; only when

κ dips below −2 do the matches and distances start to lose quality.

The “tilt” parameter of the Marshall-Olkin GG is much more powerful for expanding

the QRR range. Any value of α > 1 produces an upward shift in the whole curve
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Fig. 3 Characterization of the Transmuted Generalized Gamma and Marshall-Olkin Generalized Gamma.
Panels (a) and (d) depict the QRR curves for selected values of the extension parameters of the TGG and
MOGG, respectively. Panels (b) and (e) compare two cases where a QRR outside the range of the basic GG
is observed to the closest matching GG. Panels (c) and (f) display the KLD comparing the TGG and MOGG
to their percentile-matched GGs, with line types and parameter values as in panels (a) and (d) respectively
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(although α ≫ 1 will bend the curve in such a way that part of it will lie below the

GG’s curve), while α < 1 produces a corresponding downward shift (with the corre-

sponding caveat for α ≪ 1). Figure 3, panel d illustrates these shifts, while panel e com-

pares the hazard of the MOGG(0, 1, −3, 0.5) to the closest approximating GG,

GG(−0.53, 0.53, −4). The agreement is considerable, and the KLD between these distri-

butions is 1.867. Figure 3, panel f shows the KLD for a range of κ; because of the sym-

metry of this transformation, the KLD for any (κ, α) is equal to the KLD for (−κ, 1/α).
For α = 2, even the close matches are not great, with KLDs ranging from 10−3 up to 10
−1 for negative values of κ, while κ > 2 leads to poor matches and high KLDs. As the tilt

parameter increases, the matching becomes more difficult and the KLDs accordingly

higher.

4. Discussion
In this manuscript, we have described the flexibility of the generalized gamma distribu-

tion in terms of the relationship among its three quartiles, and demonstrated how this

quantity can aid in simple GG matching and quickly allow comparisons of the similar-

ity between the GG and other distributions. We compared a matching GG to members

of six competing distributions via the QRR and KLD, and in particular highlighted sev-

eral specific cases where the match was relatively poor but the hazard behavior of the

extended distribution was only slightly different from that of the matched GG. Overall,

the graphs of the KLD that we have provided show that the quality of the match can

vary considerably, as the values of the KLD vary over several orders of magnitude.

However, in the vast majority of cases the KLD was near or below 10−2, the magnitude

for the normal and logistic distributions, which are considered to be relatively close.

An investigation of this scope is necessarily limited, as there are literally infinitely

many possible parameter values to evaluate. However, the simplicity of the QRR as a

summary measure of the flexibility of a distribution combined with the plainly observ-

able effect on the QRR of shifting extension parameters makes even this limited explor-

ation of these families robust and illuminating. There are also certainly many other

possible extensions of the GG or alternatives to it. About these we can only broadly say

that, based on the results seen here, it will generally require fairly extreme parameter

values to extend the QRR beyond that of the basic GG, and we welcome further re-

search to explore this comparison in other distributions.

In previous work, we noted that extreme parameter values of the Beta-GG in the

range that induce a QRR outside the range of the GG produce distributions which may

be numerically unstable or difficult to estimate. The same is true for extreme cases of

the Kumaraswamy, Transmuted, and Marshall-Olkin GGs; while each one has some

flexibility beyond the GG, this often involves extreme values of κ as well as the add-

itional parameters. It seems relatively rare to have a scenario that features both 1) data

which is well-fit by, say, a Marshall-Olkin GG but not a traditional GG, and 2) suffi-

cient observations to facilitate accurate estimation of the extreme parameter values.

We have also seen that even cases which fall beyond the actual QRR range of the GG

produce data which are still reasonably well estimated by a GG.

It is important to recognize that there are indeed nonstandard hazard shapes achiev-

able through specific (though often extreme) parameter combinations for some of these

distributions. An extreme tilt parameter in the Marshall-Olkin GG can produce an arc-
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bathtub or bathtub-arc shape (e.g., the MOGG(0, 1.2, 1, 3)); a Beta-GG with very small

θ, τ, and σ can actually produce a double arc (or “m-shaped”) hazard (e.g., the BGG(0,

0.3, 0, 0.2, 0.2)). In each of these examples, the QRR of the MOGG or BGG with its

unique hazard is well within the range of the GG, so a “good match” can easily be

found, although it will have a bathtub or single-arc hazard shape, respectively. This

highlights one limitation of the QRR as a comparison tool. We cannot guarantee that

percentile-matched GGs will have the same hazard behavior as the distribution (or

data) they are matched to, and we cannot discern the hazard taxonomy of a distribu-

tion based on its QRR curve. However interesting these cases are, again, this requires

parameter values which might be difficult to estimate from actual data, as the estima-

tion procedure would encounter numerical instability. Our focus is not on breaking out

of the four standard hazard shapes, but rather finding potential additional richness

within those hazard shapes, and our investigations, as presented here, have yielded very

little in this respect.

The generalized gamma is a rich, robust, and flexible parametric distribution for

modeling many types of data, and while many extensions and competitors have been

studied, those we have examined add very little to its capabilities. Because of the com-

plexity of estimating these extended distributions and the minimal potential benefit of

doing so, we continue to recommend the three-parameter generalized gamma as the

standard for parametric analysis of positive data.
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