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Abstract

First, likelihood ratio statistics for checking the hypothesis of equal variances of
two-dimensional Gaussian vectors are derived both under the standard(
σ 2
1 , σ

2
2 , �

)
-parametrization and under the geometric (a, b,α)-parametrization where

a2 and b2 are the variances of the principle components and α is an angle of rotation.
Then, the likelihood ratio statistics for checking the hypothesis of equal scaling
parameters of principle components of p-power exponentially distributed
two-dimensional vectors are considered both under independence and under
rotational or correlation type dependence. Moreover, the role semi-inner products play
when establishing various likelihood equations is demonstrated. Finally, the dependent
p-generalized polar method and the dependent p-generalized rejection-acceptance
method for simulating star-shaped distributed vectors are presented.
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1 Introduction
One of the classical statistical problems deals with comparing variances. Results for quite
arbitrary pairs of dependent random variables are due to Morgan (1939), Pitman (1939),
Tiku and Balakrishnan (1986), McCulloch (1987), Wilcox (1990) and Mudholkar et al.
(2003) and are recently reviewed inWilcox (2015). For a survey of various practical appli-
cations in Snedecor and Cochran (1967), Lord and Novick (1968), Games et al. (1972),
Levy (1976) and Rothstein et al. (1981), see again Wilcox (2015). A closely related but
nevertheless rather different study in Richter (2016) compares scaling parameters of two-
dimensional axes-aligned p-generalized elliptically contoured distributions. Such distri-
butions show independence if the density generating function is that of the p-generalized
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Gaussian law and lp-dependence if the density generating function is of another type, but
they show no rotational or correlation type dependence. The present paper is aimed now
to study correlation type dependence modeling within the family of p-power exponential
distribution laws.
It is well known that two jointly Gaussian distributed random variables are indepen-
dent if and only if they are uncorrelated. The density level sets of such a vector
are axes-aligned ellipses. If the components of a two-dimensional Gaussian vector
are not independent then the vector may be constructed by rotating through its
distribution center an axes-aligned elliptically contoured distributed Gaussian vector
that has heteroscedastic components. The correlation coefficient may be expressed
in such situation in terms of the angle of rotation and the ratio of variances, see
Dietrich et al. (2013). This type of dependence between two random variables is
called here a rotational or correlation type dependence. Basic facts on modeling two-
dimensional Gaussian vectors with correlation and variances of Euclidean coordinates on
the one hand and with rotation and variances of principle components on the other hand
will be summarized in the presented paper. Considering these two models side by side
demonstrates different aspects of ’standard’ modeling with the more stochastically inter-
pretable parameters and of ’flexible’ modeling with the more geometrically motivated
parameters.
It is outlined in Wilcox (2015) that “seemingly the best-known technique for test-

ing H0 : σ 2
1 = σ 2

2 is a method derived by Morgan (1939) and Pitman (1939). Letting
U = X + Y and V = X − Y , if the null hypothesis is true, then �UV , Pearsons correla-
tion between U and V, is zero. So testing H0 can be accomplished by testing �UV = 0.”
We do not consider here the test problem in the same full generality as in Wilcox (2015)
where the joint distribution of X and Y is not basically restricted to belong to the fami-
lies of p-generalized elliptically contoured or star-shaped distributions. While it is proved
in Wilcox (2015) that certain heteroscedastic consistent estimators perform well in cer-
tain cases of heavy tailed distributions, here we use case sensitive estimators depending
on the given value of the shape-tail parameter p, see Sections 3 and 4 and recognize the
consequences drawn in Section 5. Note that cases of heavier and lighter than Gaussian
distribution tails are observed here in dependence of whether p ∈ (0, 2) or p > 2,
respectively. A study demonstrating far and narrow tail effects when sampling from those
distribution classes can be seen in Richter (2015a).
In the case of a two-dimensional Gaussian distribution �μ,� , it turns out that the class

of distributions satisfying H0 is the union of the following two subsets. The elements
of the first one are the spherical Gaussian distributions and the second one contains all
elliptically contoured Gaussian distributions having the lines y = + (−) x as the main
axes of their density level ellipses. Any number from the interval (−1, 1) is attained by
the correlation coefficient of a suitably chosen element from the latter subset. Thus, H0
covers two quite different cases of correlation and uncorrelation. Wemodify here the null
hypothesis in a way that one of these two subsets is not included.
One of the likelihood equations needed to be solved for constructing the likelihood ratio

statistic for testing the just mentioned modified hypothesis is formulated here on using
a so-called semi-inner product in the sample space. This rises the question whether this
analytical tool plays also a role in estimating location. We give a positive answer to this
question in the case of axes-aligned p-power exponential distributions.
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The paper is structured as follows. Gaussian correlation models and likelihood ratio
tests for checking equality of variances of two dependent random variables are studied
in Section 2. The content of this section is of some interest of its own although it might
be partly known to the reader. Testing equality of scaling parameters of axes-aligned
p-power exponential distributions is dealt with in Section 3. The more general results
are presented in Sections 4-6. Section 4 deals with testing equality of scaling parame-
ters of principal components of general, i.e. arbitrarily rotated, p-generalized elliptically
contoured p-power exponential distributions. Derivations are omitted in the sections on
Gaussian and axes-aligned p-generalized elliptically contoured distributions. They can
be considered being standard and follow also from proving the more general results in
Section 4. Throughout Sections 2-4, we restrict our consideration to the case of known
expectations. Practical examples of this type are given in Richter (2016). Section 5 gives
a new geometric-analytical insight into estimating the location parameter of the p-power
exponential, or p-generalized Gaussian or Laplace, law using semi-inner products in the
sample space.
Differently from the situation of statistics in Gaussian sample distributions, many sta-
tistical questions in p-generalized Gaussian and more general star-shaped sample dis-
tributions cannot yet fully be answered in a theoretical way. For intermittent empirical
studies, and much beyond it, methods for simulating such distributions are needed. Gen-
eralizing the methods in Kalke and Richter (2013), Section 6 presents corresponding
direct and acceptance-rejection methods and indicates how to extend to the dependent
p-generalized multivariate case the classical and the rejecting polar methods in Box and
Muller (1958) and Marsaglia and Bray (1964), respectively.

2 Likelihood ratio tests for scaling parameters in two-dimensional Gaussian
distributions

Testing equality of scaling parameters can be interpreted in Gaussian models at least
in two different ways. We deal here with equality of variances of the marginal vari-
ables or Euclidean coordinates if the Gaussian density is given in the classical

(
σ 2
1 , σ

2
2 , �

)

variances-correlation parametrization, and with equality of variances of principal com-
ponents if the Gaussian density is given in the geometric (a, b,α)-parametrization from
Dietrich et al. (2013) where a2 and b2 are the variances of the principle components and
α is an angle of rotation.

2.1 The common
(
σ 2
1 , σ

2
2 , �

)
-parametrization

In this section, we consider the marginal variables variances-correlation (mvv-c) model.
Likelihood ratio tests with respect to the equality of two variances will be given sepa-
rately for the cases of a known and an unknown correlation coefficient. Let (Xi,Yi)T , i =
1, . . . , n be independent Gaussian random vectors following the density ϕμ,�(., .) =
ϕ(., .|σ1, σ2, �) where μ = (μ1,μ2)

T is a vector from R
2 and � =

(
σ 2
1 �σ1σ2

�σ1σ2 σ 2
2

)

is a

positive definite matrix, and let (xi, yi)T , i = 1, . . . , n be a corresponding concrete sample.
We introduce the likelihood function

L (σ1, σ2, �) =
n∏

i=1
ϕ (xi, yi|σ1, σ2, �)
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and its restriction to the case of equal variances, L̃ (σ , �) = L (σ , σ , �).

2.1.1 The case of an unknown correlation coefficient

We intend now to decide between the two hypotheses

H0 : σ1 = σ2 and HA : σ1 �= σ2

using the likelihood ratio test statistic Q = L̃ (σ̃ , �̃) /L
(
σ̂1, σ̂2, �̂

)
where

(
σ̂1, σ̂2, �̂

) =
mle (σ1, σ2, �) and (σ̃ , �̃) = mle|H0 (σ , �) are maximum likelihood and restricted to H0
such estimators, respectively. Standard calculations show thatQ allows the representation

Q2/n

4
= �2

x�
2
y − �2

xy
(
�2

x + �2
y

)2 − 4�2
xy

(1)

where

�2
x =

n∑

1
(xi − μ1)

2 ,�2
y =

n∑

1
(yi − μ2)

2 ,�xy =
n∑

1
(xi − μ1) (yi − μ2) .

Let α ∈ (0, 1). According to the likelihood ratio rule,H0 will be rejected ifQ < tα where
tα is chosen from the interval (0, 1) in a way such that

P (Q < tα) |H0 = α.

A restatement of this size α-test is based upon the following alternative representation
of the likelihood ratio,

Q2/n =
(

σ̂1σ̂2
σ̃ 2

)2 1 − �̂2

1 − �̃2 ,

where

σ̂ 2
1 = �2

x/n, σ̂ 2
2 = �2

y /n, �̂ = �xy/
(
�x�y

)

and

σ̃ 2 =
(
�2

x + �2
y

)
/(2n), �̃ = �xy/

(
nσ̃ 2) .

Rewording the corresponding likelihood ratio decision rule, it is then a size (α1 + α2)-
test to reject H0 if

�2
x

�2
y

∈ (0, λα1 ]∪[ λ1−α2,∞)

where λq, q ∈ (0, 1), is suitably chosen from (0,∞) such that

P
(

�2
x

�2
y

< λq

)

|H0 = q.

Here, �2
x/�

2
y is the ratio of two dependent Chi-squared distributed random variables.

The distributions of all statistics considered here and in later sections may be simulated
using the methods presented in Section 6. Alternatively, the geometric measure represen-
tation in Richter (2014) may be used to establish the exact distributions of several of these
statistics, or at least to derive suitable approximations.
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2.1.2 The case of a known correlation coefficient

Let � = �0 be a known number and put L (σ1, σ2) = L (σ1, σ2, �0) and L̃ (σ ) = L (σ , σ , �0).
The likelihood ratio Q = sup

σ
L̃(σ )/ sup

σ1,σ2
L (σ1, σ2) allows the representation

Q1/n

2
= �x�y − �0�xy

�2
x + �2

y − 2�0�xy
.

Let α ∈ (0, 1). The likelihood ratio decision rule leads to rejecting H0 if Q < tα ,α ∈
(0, 1) satisfies P (Q < tα) |H0 = α or, equivalently, if Q1/n/2 < zα for a suitably chosen
zα = z (tα) ∈ (0, 1/2), that is, if

1 − �0 (1 − 2zα)
�xy

�x�y
< zα

(
�x
�y

+ �y
�x

)
.

2.2 The geometric (a, b,α)-parametrization

We consider now the principal components variances-rotation (pcv-r) model. For sim-
plicity, we assume that μ1 = μ2 = 0. The geometric parametrization of the Gaussian
density is then

ϕ∗ (x, y|a, b,α) = 1
2abπ

exp
{

−1
2

[(
x cosα + y sinα

a

)2
+
(−x sinα + y cosα

b

)2
]}

,

see Dietrich et al. (2013). Here,

a = (σ 2
1 cos2 α + σ 2

2 sin2 α + 2�σ1σ2 sinα cosα)1/2,

b = (
σ 2
2 cos2 α + σ 2

1 sin2 α − 2�σ1σ2 sinα cosα
)1/2 ,

and

α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if � = 0

γ +
{

0 if � (σ1 − σ2) > 0
π/2 if � (σ1 − σ2) < 0

if � �= 0, σ1 �= σ2

π/4 if � �= 0, σ1 = σ2

with γ = 1
2 arctan

(
2�σ1σ2/

(
σ 2
1 − σ 2

2
))
. We put arctan (+(−)∞) = +(−)π/2 and

remark that a2 and b2 are the variances of principal components of the related Gaussian
random vector. The Euclidean coordinates of such a vector are correlated if � �= 0 and
may then also be called rotational dependent because then α �= 0.
For testing equality of variances of principle components

H0 : a = b vs. HA : a �= b,

we introduce the likelihood function

L∗ (a, b,α) =
∏

ϕ∗ (xi, yi|a, b,α)

and its restriction to H0, L̃∗ (a,α) = L∗ (a, a,α) .

2.2.1 The case of an unknown α

The likelihood ratio statistic Q∗ = max
a,α

L̃∗ (a,α) |H0/max
a,b,α

L∗ (a, b,α) in case α is to be

estimated, allows the representation

(Q∗)2/n

4
= I

(
α̂
)
J
(
α̂
)

(
�2

x + �2
y

)2
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where

I (α) = (cosα)2 �2
x + (sinα)2 �2

y + 2 (sinα cosα) �xy ,

J (α) = (sinα)2 �2
x + (cosα)2 �2

y − 2 (sinα cosα) �xy

and the maximum likelihood estimator α̂ = mle (α) is

α̂ = 1
2
arctan

(

2
�xy

�2
y − �2

x

)

.

If H0 is true then the correlation or rotational dependence of the Euclidean coordinates
is zero. Correspondingly, no restricted under H0 estimator of the angle of rotation α has
any effect onto the statistic Q∗.

2.2.2 The case of a known α

If the angle of rotation α is known, the likelihood ratio allows the representation

(Q∗)2/n

4
= I(α)J(α)
(
�2

x + �2
y

)2 .

The plug-in version of this statistic where, for unknown α,α = α̂ = mle (α), is just
the statistic from the previous section. Differently from this situation, the likelihood ratio
statistic in Section 2.1.1 using both the unrestricted and the restricted maximum likeli-
hood estimators of α, ist not such an immediate plug-in version of the statistic considered
in Section 2.1.2.

3 Likelihood ratio test for scaling parameters in axes-aligned p-generalized
elliptically contoured distributions

The present section is aimed to shortly summarize some results from the axes-aligned
or independence case. To start with, we recall that the univariate p-power exponential
distribution has the density

fp(x;μ, σ) = Cp
σ

exp
{
−|x − μ|p

pσ p

}
, x ∈ R,

which is also called p-generalized Gaussian or Laplace density, p > 0. The parameter p
controls both the shape of the density and the tail behaviour of the distribution and may
therefore be called a shape-tail parameter. Note that Cp = p1−1/p/(2�(1/p)) and the first
and second order moments of a correspondingly distributed random variable X are

EX = μ ∈ R and V (X) = σ 2�(3/p)
�(1/p)

.

Moreover, such random variable X allows the stochastic representation

X d= μ + σX0

where X0 follows the standard p-power exponential density, i.e. X0 ∼ fp(.; 0, 1). Because
of this representation, σ is called a scaling parameter. Note that E|X − μ|p = σ p. Two
independent such variables follow the joint product density

f (x, y|σ1, σ2) = C2
p

σ1σ2
exp

{

−|x − μ1|p
pσ p

1
− |y − μ2|p

pσ p
2

}

, (x, y) ∈ R2

having the distribution center (μ1,μ2)T ∈ R2 and whose level sets are axes-aligned p-
generalized ellipses.
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Note that the axes-aligned p-generalized elliptically contoured p-power exponential den-
sities introduced this way should not be confused with functions of the type f(X,Y )(x, y) =
C exp

{−Q(x, y)p/2
}
with Q being a quadratic form. The latter type of densities has been

considered in Kuwana andKariya (1991), Gómez et al. (1998), Gómez-Villegas et al. (2011)
and Dang et al. (2015) and may also be called elliptically contoured p-power exponential
densities. The corresponding type of distributions may be considered as a particular Kotz
type distribution within the broad family of elliptically contoured distributions, see Fang
et al. (1990) and Nadarajah (2003).
Testing

H0 : σ1 = σ2 vs. HA : σ1 �= σ2

in the model of the present section means checking equality of scaling parameters. Let
(Xi,Yi), i = 1, . . . , n be independent random vectors following the density f (., .|σ1, σ2) and
put X(n) = (X1, . . . ,Xn)T , Y(n) = (Y1, . . . ,Yn)T . We still assume that the expectations μ1
and μ2 are known. In case of a true hypothesis H0, the test statistic

T = (mle(σ1)/σ1)p

(mle(σ2)/σ2)p
=
(

σ2
σ1

)p |X(n) − μ11n|pp
|Y(n) − μ21n|pp

follows the p-generalized Fisher distribution with (n, n) d.f., T |H0 ∼ Fn,n(p). The lat-
ter distribution was derived in Richter (2009). It can be considered as the distribution of
the ratio of independent p-generalized Chi-squared distributed variables that were intro-
duced in Richter (2007). The density of the p-generalized Fisher distribution with (n, n)

degrees of freedom is according to Richter (2009)

fn,n,p(t) = �(2n/p)
(�(n/p))2

tn/p−1

(1 + t)2n/p , t > 0,

see Fig. 1. With the notation

�p,X =
( n∑

i=1
|Xi − μ1|p

)1/p

and�p,Y =
( n∑

i=1
|Yi − μ2|p

)1/p

,

the statistic T can alternatively be represented as

T =
(

σ2
σ1

)p �
p
p,X

�
p
p,Y

.

The decision rule according to which one rejects H0 if T < Fn,n,α2(p) or T >

Fn,n,1−α1(p) performs an exact size (α1+α2)-test. This test turns out to be the correspond-
ing likelihood ratio test. Figures 2, 3 and 4 deal with the performance of this test showing
histograms of simulation results for the test statistic T, under H0. To this end, a random
vector (X,Y )T following the distribution �(1,1),p,(0,0),I2 was simulated n × N-times, and
the value of the statistic T was calculated N-times based upon this sample. The choices
of the values of n and p allows direct comparisons with Fig. 1.
Figure 5 shows the influence an increasing simulation sample size N has onto the accu-

racy of the estimation of the density of the test statistic if the null hypothesis is true. In the
case n = 30, p = 2 and for four different values of the simulation sample size N, Table 1
presents the correspondingly calculated percentiles of orders 5 and 95, respectively, and
the exact Fisher quantiles F30,30,q = F30,30,q(2), q ∈ {0.05, 0.95}.
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Fig. 1 The p-generalized Fisher densities fn,n,p for four values of the shape-tail parameter, p ∈ {0.6, 1.2, 2, 3.5}.
Recognize different scalings on the ordinate axes

The likelihood ratio test can be equivalently reformulated as to rejectH0 if, for a suitably
chosen c, the likelihood ratio Q satisfies Q < c. Let

L(σ1, σ2) =
n∏

i=1
f (xi, yi|σ1, σ2)

and L̃(σ ) = L(σ , σ), and denote unrestricted and restricted under H0 mle’s of σ1, σ2
and σ1(= σ2 = σ , say) by σ̂1, σ̂2 and σ̃ , respectively. The likelihood ratio statistic
Q = L̃(σ̃ )/L(̂σ1, σ̂2) allows the representations

Qp/n

4
= �

p
p,X�

p
p,Y

(
�

p
p,X + �

p
p,Y

)2 = |X(n) − μ11n|pp|Y(n) − μ21n|pp
(|X(n) − μ11n|pp + |Y(n) − μ21n|pp

)2 .

According to the general geometric measure-theoretical methodology of investigation
in Richter (2014) and papers referred to there, the restricted distribution function of T if
H0 is true is

P(T < t)|H0 = P
((

XT
(n)Y

T
(n)

)T ∈ Cn,p(t)
)

|H0 , t ∈ R

where

Cn,p(t) =
{

(xTyT )T ∈ Rn × Rn :
|x|pp
|y|pp

< t
}

is a cone with vertex in 0 ∈ R2n and |z|p = |z|(1,1),p. A geometric measure representa-
tion of the standardized p-power exponential law applies to show that this distribution is
the p-generalized Fisher or Fn,n(p)-distribution. As mentioned before, this method may
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Fig. 2 Histograms of 200 simulated values of the test statistic T in case H0 is true, n = 5 and shape-tail
parameter attains in consecutive order from upper left to lower right picture the values p = 0.6, 1.2, 2, 3.5.
Recognize different scalings on the abscissa and ordinate axes
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Fig. 4 Histograms as in Fig. 2 but for n = 50

also be used to derive exact distributions of other statistics. Differently from what was
considered so far, throughout the following section the vectors (Xi,Yi)T are allowed to be
rotated through (μ1,μ2)T , in other words, the variables Xi,Yi are allowed to be rotational
dependent or correlation type dependent, i = 1, 2, . . . .

4 Tests for equal scaling parameters in correlational dependent
p-generalized elliptically contoured distributions

This section is aimed to generalize the results presented in Section 3 for the case that
two random variables may be rotational or correlation type dependent. To this end, we
start in Section 4.1 with a p-generalization of the (a, b,α)-representation of the Gaussian
law. Section 4.2 is aimed to give a geometric explanation of correlation in the partic-
ular case of a two-dimensional Gaussian distribution. Roughly spoken, correlation is
interpreted by rotation under heteroscedasticity. Section 4.3 presents a test for checking
homoscedasticity of principal components.

4.1 The geometric ((a, b), p,α)-parametrization

Let a random vector follow a rotational dependent p-generalized elliptically contoured
p-power exponential distribution, (X,Y )T ∼ �(a,b),p,(μ1,μ2),D(α) where a, b, p are positive

parameters, (μ1,μ2)T ∈ R2 and D(α) =
(

cosα sinα

− sinα cosα

)

with 0 ≤ α < 2π is an orthog-

onal matrix causing a clockwise rotation around the origin through an angle of size α.
Such random vector has according to Richter (2014) and Richter (2015a), (33), the density
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Fig. 5 Histograms of simulated values of the test statistic T where H0 is true, n = 30, p = 2 and the
simulation sample size attains in consecutive order from upper left to lower right picture the values
N = 200, 400, 800, 2000

f(X,Y )(x, y) = C2
p

ab
exp

⎧
⎨

⎩
−1
p

∣∣∣∣∣
D(α)

(
x − μ1
y − μ2

)∣∣∣∣∣

p

(a,b),p

⎫
⎬

⎭

where the functional

|z|(a,b),p = (|z1
a

|p + |z2
b

|p)1/p, (x, y)T ∈ R
2

is a norm if p ≥ 1 and an antinorm if 0 < p ≤ 1. For the latter notion, see Moszyńska
and Richter (2012). The level sets of the density f(X,Y ) are p-generalized ellipses being not
necessarily axes-aligned but centered at the point (μ1,μ2)T .
Moreover, the stochastic representation

D(α)

(
X − μ1
Y − μ2

)
d= RU

holds true where R ≥ 0 and U ∼ ωE(a,b),p are independent, R follows the density

fR(r) = re−
rp
p /

∞∫

0

re−
rp
p dr, r > 0

Table 1 Simulating quantiles F30,30,q(2), q = 0.05, q = 0.95

Simulation sample size N: 200 400 800 2000 F30,30,q(2)

5-percentile 0.541 0.523 0.546 0.545 0.543

95-percentile 1.933 1.984 1.864 1.858 1.841=1/0.543
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andU follows the E(a,b),p-star-generalized uniform distribution on the Borel σ -field of the
p-generalized axes-aligned ellipse having main axes of lengths 2a, 2b,

E(a,b),p =
{
(x, y)T ∈ R2 :

∣∣∣(x, y)T
∣∣∣
(a,b),p

= 1
}
.

Thus,

P(U ∈ A) = ωE(a,b),p(A) = U(A)/U(E(a,b),p), A ∈ B2 ∩ E(a,b),p

where U denotes the E(a,b),p-generalized arc-length measure.
Let us finally remark that another definition of a bivariate p-generalized error density is
given in Taguchi (1978).

4.2 Geometry of variance homogeneity

In this section, we exploit the fact that under heteroscedasticity a rotation causes a
particular type of dependence, and give a new geometric interpretation of the hypoth-
esis of variance homogeneity. To this end, we restrict our consideration once again to
the Gaussian case. Let us assume that (X,Y )T is an anti-clockwise rotated axes-aligned
Gaussian vector

(
X
Y

)

= DT (α)

(
ξ

η

)

∼ N
((

μ1
μ2

)

,�
)

,� =
(

σ 2
1 �σ1σ2

�σ1σ2 σ 2
2

)

where
(

ξ

η

)

∼ N
((

ν1
ν2

)

,
(
a2 0
0 b2

))

.

Then,

f(X,Y )(x, y) = f(ξ ,η)(D(α)(x, y)T )

= 1
2πab

exp

⎧
⎨

⎩
−1
2

(
x − μ1
y − μ2

)T

D(α)T
(
a2 0
0 b2

)−1

D(α)

(
x − μ1
y − μ2

)⎫⎬

⎭

= 1
2πab

exp
{

−1
2

(
(x − μ1) cosα + (y − μ2) sinα

a

)2

−1
2

(−(x − μ1) sinα + (y − μ2) cosα

b

)2
}

.

According to Dietrich et al. (2013), one can represent the parameters σ1, σ2, � in terms
of the parameters a, b,α as follows:

σi = σi(α) = [V ((ξ , η) θi)]1/2 > 0, i = 1, 2

and

� = �(α) = �∗
2

sin(2α)

(
σ1(α)

σ2(α)
+ σ2(α)

σ1(α)

)

where

θ1 = θ1(α) =
(
cosα

sinα

)

, θ2 = θ2(α) =
(
cos(α + π

2 )

sin(α + π
2 )

)

and

�∗ = a2 − b2

a2 + b2
.
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Let us try now to geometrically understand the hypothesis H0 : σ 2
1 = σ 2

2 that is often
supposed to hold in the statistical literature. It follows from the representations

σ 2
1 = a2 cos2 α + b2 sin2 α and σ 2

2 = a2 sin2 α + b2 cos2 α

that hypothesis H0 means that

• either α ∈ {π
4 ,

3π
4
}

with arbitrary a,b
• or α /∈ {π

4 ,
3π
4
}

and a = b.

If a = b then � = 0 and � = σ 2I2n thus the density level sets of (ξ , η)T and (X,Y )T

are Euclidean circles. If α ∈ {π
4 ,

3π
4
}
then these level sets are arbitrary ellipses with main

axes belonging to the lines
{
(x, y)T ∈ R

2 : y = x
}
and

{
(x, y)T ∈ R

2 : y = −x
}
, and the

correlation attains any value from the interval (−1, 1). Thus, H0 is not focussing, or is
wavering, with respect to the parameters a, b,α and the shape of the density level ellipses
and might therefore not always being primarily of interest, from this geometric point of
view. If one presumes just the hypothesis

H∗
0 : a = b

then the sample distribution and with it the distributions of all statistics derived from this
sample vector are the same as in the axes-aligned and homoscedastic case.
Let us finally consider the following well known particular case of homoscedasticity. If

(X,Y )T ∼ �μ,� then the random vector

(ξ , η)T = D
(π

4

)
(X,Y )T = 1

2
(X + Y ,X − Y )T = 1

2
(U ,V )T

has the covariance matrix

� = D
(π

4

)
�DT

(π

4

)
= 1

2

(
σ 2
1 + σ 2

2 + 2�σ1σ2 σ 2
2 − σ 2

1
σ 2
2 − σ 2

1 σ 2
1 + σ 2

2 − 2�σ1σ2

)

.

Thus, if σ1 = σ2 = σ , say, then � = 2σ 2

(
1 + � 0
0 1 − �

)

.

4.3 Testing homoscedasticity of principal components

We are well motivated now for testing equality of scaling parameters in the ((a, b), p,α)-
parameterized model by checking the hypothesis H0 : a = b vs. the alternative HA : a �=
b. Throughout this section, let

α̂ =
{

α if α is known
mle(α) if α is unknown.

Let us further be given a concrete sample xi = (xi, yi)T , i = 1, . . . , n from indepen-
dent identically and according to �(a,b),p,(0,0),D(α) distributed random vectors. Then, the
likelihood function L(a, b,α) satisfies the equation

(ab)nL(a, b,α)/C2n
p

= exp
{

− 1
pap

n∑

1
|xi cosα + yi sinα|p − 1

pbp
n∑

1
| − xi sinα + yi cosα|p

}

.

Let us consider the first two of the three likelihood equations. The partial derivatives of
ln L with respect to a and b attain the value zero if a = â(α̂) and b = b̂(α̂), respectively,
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where

â(α)p = 1
n

n∑

1
|xi cosα + yi sinα|pand b̂(α)p = 1

n

n∑

1
|yi cosα − xi sinα|p,

what ever the value of α is. The resulting equation

L(â, b̂, α̂) = C2n
p e−2n/p

(
â(α̂)b̂(α̂)

)n

will be used later for constructing the likelihood ratio statistic. An angle α̂ solves the third
likelihood equation if

n∑

i=1
|xTi θ1(α̂)|p−2 (xTi θ1(α̂)

) (
xTi θ2(α̂)

)

n∑

i=1
|xTi θ1(α̂)|p

−

n∑

i=1
|xTi θ2(α̂)|p−2 (xTi θ2(α̂)

) (
xTi θ1(α̂)

)

n∑

i=1
|xTi θ2(α̂)|p

= 0.

An n-dimensional vector-algebraic reformulation of this equation is
⎡

⎢⎢
⎣

⎛

⎜
⎜
⎝

xT1 θ2(α̂)

...
xTn θ2(α̂)

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

xT1 θ1(α̂)

...
xTn θ1(α̂)

⎞

⎟⎟
⎠

⎤

⎥
⎥
⎦

p
∣∣
∣∣∣∣∣∣

⎛

⎜⎜
⎝

xT1 θ1(α̂)

...
xTn θ1(α̂)

⎞

⎟⎟
⎠

∣∣∣∣
∣∣∣∣

2

p

=

⎡

⎢
⎢
⎣

⎛

⎜⎜
⎝

xT1 θ1(α̂)

...
xTn θ1(α̂)

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

xT1 θ2(α̂)

...
xTn θ2(α̂)

⎞

⎟⎟
⎠

⎤

⎥
⎥
⎦

p
∣∣
∣∣∣∣∣∣

⎛

⎜⎜
⎝

xT1 θ2(α̂)

...
xTn θ2(α̂)

⎞

⎟⎟
⎠

∣∣∣∣
∣∣∣∣

2

p

where [ ., .]p denotes a semi-inner-product defined by

[ x, y]p =

n∑

i=1
xiyi|yi|p−2

|y|p−2
p

, x, y ∈ R
n.

For the theory and applications of semi-inner products we refer to Lumer (1961), Giles
(1967), Dragomir (2004) andHorváth et al. (2015).We just mention here that, for all x, y, z
from Rn, a ∈ R,

[ x + z, y]p =[ x, y]p +[ z, y]p , [ ax, y]p = a[ x, y]p , [ x, ay]p = a[ x, y]p ,

[ x, x]p ≥ 0, [ x, x]p = 0 iff x = 0, and [ x, y]p ≤[ x, x]1/2p [ y, y]1/2p .

In general, a semi-inner product is not symmetric and non-linear in the second argument.
With the notations ξi(α) = (

xT1 θi(α), . . . , xTn θi(α)
)T , i = 1, 2 and x(n) = (x1, . . . , xn),

y(n) = (y1, . . . , yn), α̂ solves the equation

[ ξ2(α̂), ξ1(α̂)]p
|ξ1(α̂)|2p

= [ ξ1(α̂), ξ2(α̂)]p
|ξ2(α̂)|2p

or
[
(cos α̂)y(n) − (sin α̂)x(n), (cos α̂)x(n) + (sin α̂)y(n)

]
p

|(cos α̂)x(n) + (sin α̂)y(n)|2p

=
[
(cos α̂)x(n) + (sin α̂)y(n), (cos α̂)y(n) − (sin α̂)x(n)

]
p

|(cos α̂)y(n) − (sin α̂)x(n)|2p
. (2)
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The Hessian matrix of ln L(a, b,α) at the critical point (a, b,α) = (â, b̂, α̂) is

HM =

⎛

⎜
⎜
⎝

− np
â2(α̂)

0 ε1

0 − np
b̂2(α̂)

ε2

ε1 ε2 ε3

⎞

⎟⎟
⎠

with

ε1 = ε1(α̂) = pn1+1/p [ ξ2(α̂), ξ1(α̂)]p
|ξ1(α̂)|3p

, ε2 = ε2(α̂) = −pn1+1/p [ ξ1(α̂), ξ2(α̂)]p
|ξ2(α̂)|3p

and

ε3 = ε3(α̂) = 2n + n(1 − p)
< ξ2(α̂), ξ1(α̂) >p

|ξ1(α̂)|pp
+ < ξ1(α̂), ξ2(α̂) >p

|ξ2(α̂)|pp
where

< η, ν >p=

n∑

1
|νi|p−2η2i

|ν|pp
, η, ν from Rn.

Obviously, �1 < 0 and �2 > 0 where

�1 = (− np
â2(α̂)

)and �2 = det
(− np

â2(α̂)
0

0 − np
b̂2(α̂)

)

.

Let �3 = det(HM). If �3 < 0 then L(a, b,α) attains a local maximum at the point
= (a, b,α) = (â, b̂, α̂), see, e.g., Arens et al. (2013), Section 24.6. Under this assumption,
(â, b̂, α̂) = mle(a, b,α). Note that �3 < 0 if and only if

npε3(α̂) + a2(α̂)ε21(α̂) + b2(α̂)ε22(α̂) < 0. (3)

Thus, for finding mle(a, b,α), one has to solve (2) under the constraint (3).
If p = 2 then the semi-inner product [ ., .]p is symmetric, thus α̂ satisfies either the
equation [ ξ1(α̂), ξ2(α̂)]2 = 0, or |ξ1(α̂)|22 = |ξ2(α̂)|2. The first and second equations mean
that

α̂ = 1
2
arctan

2 cos∠(x(n), y(n))

|y(n)|2
|x(n)|2 − |x(n)|2

|y(n)|2
and α̂ = 1

2
arctan

|y(n)|2
|x(n)|2 − |x(n)|2

|y(n)|2
2 cos∠(x(n), y(n))

,

respectively, where ∠(ξ , η) denotes the angle between the vectors ξ and η, and
arctan(+(−)∞) = +(−)π/2.
We consider now the the H0-restricted likelihood function

L̃(a,α) = L|H0 = L(a, a,α)

and put

α̃ =
{

α if α is known
mle(α)|H0 if α is unknown.

The partial derivative of L̃ with respect to a attains the value zero if a = ã(α) where

ã(α)p = 1
2

(
â(α)p + b̂(α)p

)
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what ever the value of α is. Thus, for suitable choice of α̃, the maximum value of the
restricted likelihood function L̃ can be represented as

L̃(ã, α̃) = C2n
p e−2n/p

(ã2(α̃))n
.

An angle α̃ solves the second restricted likelihood equation iff it satisfies the equation
[
ξ1(α̃), ξ2(α̃)

]
p |ξ2(α̃)|p−2

p = [
ξ2(α̃), ξ1(α̃)

]
p |ξ1(α̃)|p−2

p

which can be reformulated as
[
(cos α̃)y(n) − (sin α̃)x(n), (cos α̃)x(n) + (sin α̃)y(n)

]
p|(cos α̃)x(n) + (sin α̃)y(n)|p−2

p

= [
(cos α̃)x(n) + (sin α̃)y(n), (cos α̃)y(n) − (sin α̃)x(n)

]
p| cos α̃)y(n) − (sin α̃)x(n)|p−2

p .

If p = 2 then every α̃ ∈[ 0, π
2 ) solves this equation. Our test statistic

Q = L̃(ã, α̃)

L(â, b̂, α̂)
=
(
â(α̂)b̂(α̂)

)n

(ã(α̃))2n

satisfies the representation

Qp/n

4
=

n∑

i=1
|xTi θ1(α̂)|p

n∑

i=1
|xTi θ2(α̂)|p

( n∑

i=1
|xTi θ1(α̃)|p +

n∑

i=1
|xTi θ2(α̃)|p

)2 .

The likelihood ratio decision rule means to reject H0 if for some suitably chosen t ∈
(0, 1) there holds Q < t.
We remark that the present statistic becomes the same as that in the axes-aligned p-
generalized elliptically contoured case in Section 3 if α̂ = α̃ ∈ {0, π

2
}
and μ1 = μ2 = 0.

Moreover, the present decision rule can be equivalently reformulated then as to rejectH0

if Tp = |Y[1]|pp
|Y[2]|pp attains sufficiently small or large values where

YT
[i] = θi(α)T

(
X1 X2 . . . Xn
Y1 Y2 . . . Yn

)

, i = 1, 2.

Example 1 • If α = 0 then θ1(α) = (1, 0)T and θ2(α) = (0, 1).
• If α is known (then α̂ = α̃ = α ) then the considered decision rule means in other words
to reject H0 for large values of

√
Rp + 1/

√
Rp where

Rp =

n∑

i=1

∣
∣xTi θ1(α)

∣∣p

n∑

i=1

∣
∣xTi θ2(α)

∣∣p
.

Note that, for i = 1, . . . , n,

D(α)xi ∼ �(a,b),p,(0,0),I2

where I2 denotes the 2 × 2-unit matrix. The statistic Rp has therefore independently of
the actual value of the angle of rotation α the same p-generalized Fisher distribution
as the likelihood ratio statistic in Section 3. Thus, in this case, rotational dependence is
without influence onto the null distribution of the likelihood ratio statistic for proving
H0 : σ 2

1 = σ 2
2 , or not.
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Remark Since the purpose is to test whether H0 or not, when there is a correlation
between two groups, one might like to consider testing the significance of correlation
structure prior to testing H0 or not. In the present situation where is no rotational cor-
relation, this would mean to test whether the shape-scale parameter satisfies H̃0 : p = 2
or not. Searching the literature the author was not aware of a significance test for this
hypothesis, see for example in González-Farías et al. (2009), Yu et al. (2012), Purczynski
and Bednarz-Okrzynska (2014) and Pascal et al. (2017).

5 The semi-inner product [ ., .]p appears also in estimating location
Many authors were dealing with estimating parameters of the p-power exponen-
tial distribution. Without aiming completeness, and without going into any details,
we refer to Stacy and Mihram (1965), Harter (1967), Rahman and Gokhale (1996),
Varanasi and Aazhang (1989), Do and Vetterli (1988), Mineo and Ruggieri (2005),
González-Farías et al. (2009), Saatci and Akan (2010).
It is well known from the Gauss-Markov theorem that orthogonal projections play a
fundamental role in estimating parameters in the theory of linear models. The notion
of an orthogonal projection is closely connected with that of a scalar product. If the
standard Gaussian distribution is the sample distribution in Rn then it is natural to use
the Euclidean norm for several statistical calculations. This norm is generated by the
Euclidean scalar product in Rn × Rn. If the density of the sample vector X(n) is, for some
p ≥ 1,

fX(n)
(x) =

n∏

i=1

Cp
σ

exp
{
−|xi − μ|p

pσ p

}
, x = (x1, . . . , xn)T ∈ Rn

then it is natural to work with the norm |.|p which is not generated by an inner product if
p �= 2,

fX(n)
(x) =

(Cp
σ

)n
exp

{

−|x − μ1n|pp
pσ p

}

, x ∈ Rn, 1n = (1, . . . , 1)T ∈ Rn.

It is known, however, that this norm is generated by the semi-inner product [ ., .]p con-
sidered in Section 4, |x|p =[ x, x]1/2p . The present section is aimed to verify that this
semi-inner product plays also a role in estimating the location parameter of a p-power
exponential distribution. Let L(μ) = fX(n)

(x). Maximizing Lwith respect toμ is equivalent
to minimizing the function

f (μ) = |x − μ1n|pp, μ ∈ R.

Let x(1) ≤ . . . ≤ x(n) be the ordered values of the concrete sample vector x =
(x1, . . . , xn)T . Given μ, there exists a natural number n1 such that

f (μ) =
n1∑

i=1
(μ − x(i))

p +
n∑

i=n1+1
(x(i) − μ)p.

Thus, f ′(μ) = p(f1(μ) − f2(μ))where

f1(μ) =
∑

x(i)<μ

(μ − x(i))
p−1 and f2(μ) =

∑

x(i)>μ

(x(i) − μ)p−1.

If p ∈ (1,∞), the functions fi, i = 1, 2 are monotonously increasing/decreasing
if i = 1/i = 2, respectively. Moreover, these functions are continuous, and satisfy
f1(x(1)) = 0, f1(x(n)) > 0 and f2(x(n)) = 0, f2(x(1)) > 0. Thus there exists a uniquely
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determined μ̂ such that (μ̂, f1(μ̂)) = (μ̂, f2(μ̂)) is the intersection point of the curves
{
(μ, f1(μ)) : μ ∈[ x(1), x(n)]

}
and

{
(μ, f2(μ)) : μ ∈[ x(1), x(n)]

}
. Based upon a bisection

algorithm, μ̂ can be numerically calculated and is the solution of the equation f ′(μ) =
0|μ=μ̂, i.e.

n∑

i=1
|xi − μ̂|p−1sign(μ̂ − xi) = 0. (4)

Example 2 If p = 2 then (4) reads as

−
n1∑

i=1

(
x(i) − μ̂

)+
n∑

i=n1+1

(
x(i) − μ̂

)
(−1) = 0,

thus μ̂ = x̄n.

We consider now two cases excluded so far.

Example 3 In the case p = 1,

f ′(μ) =
n∑

i=1
sign (μ − xi) =

⎛

⎝
∑

x(i)<μ

1 −
∑

x(i)>μ

1

⎞

⎠ ,

thus f ′(μ̂) = 0 iff �
{
xi < μ̂

} = �
{
xi > μ̂

}
where � {. . .} means the number the event

written between the brackets occurs. For odd n, μ̂ = x[n/2]+1, and for even n, every μ̂ from
[ x[n/2], x[n/2]+1] satisfies this condition, thus μ̂ is the sample median.

Example 4 In the case p = ∞, we first define the notion |.|∞.
(a) Let f (μ) = max {|x1 − μ|, . . . , |xn − μ|} and i∗ such that f (μ) = |xi∗ − μ|. Then

|x(n) − μ1n|p = |xi∗ − μ|
⎛

⎜
⎝1 +

∑

i�=i∗
|xi − μ|p

|xi∗ − μ|p

⎞

⎟
⎠

1/p

where
⎛

⎜
⎝1 +

∑

i�=i∗
|xi − μ|p

|xi∗ − μ|p

⎞

⎟
⎠

1/p

≥ 1 and

⎛

⎜
⎝1 +

∑

i�=i∗
|xi − μ|p

|xi∗ − μ|p

⎞

⎟
⎠

1/p

≤ n1/p → 1, p → ∞.

By definition,

|x(n) − μ1n|∞ = lim
p→∞ |x(n) − μ1n|p.

(b) If for some i∗ there holds |xi∗ − μ̂| = max
{|x1 − μ̂|, . . . , |xn − μ̂|} then μ̂ is maximum

likelihood estimator of μ. The number σ̂ = max |xi − μ̂| is the smallest number satisfying
−σ̂ ≤ xi − μ̂ ≤ σ̂ , ∀i, thus x(n) − σ̂ ≤ μ̂ ≤ x(1) + σ̂ . The smallest possible σ̂ satis-
fies 2σ̂ ≥ x(n) − x(1), thus σ̂ = (x(n) − x(1))/2. It follows that μ̂ = (x(n) + x(1))/2 =
midrange {x1, . . . , xn}.
With

f ′′(μ̂) = p(p − 1)
n∑

i=1
|xi − μ̂|p−2 > 0 if p > 1,
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it follows in the general setting that the uniquely determined solution μ̂ of the equation
(4) is a relative maximum point of the likelihood function L, thus μ̂ = mle(μ). This means
that

∑

xi<μ̂

|xi − μ̂|p−2(μ̂ − xi) =
∑

xi>μ̂

|xi − μ̂|p−2(xi − μ̂)

or, equivalently,

μ̂

n∑

i=1
|xi − μ̂|p−2 =

n∑

i=1
xi|xi − μ̂|p−2.

Thus, on the one hand, μ̂ solves the oscillating fixed point equation

μ̂ =

n∑

i=1
xi|xi − μ̂|p−2

n∑

i=1
|xi − μ̂|p−2

.

On the other hand, it follows that μ̂ = mle(μ) satisfies the equation

0 =[ 1n, x − μ̂1n]p (5)

which means that μ̂ = x̄n if p = 2. Under suitable assumptions upon the convergence of μ̂
and the limit μ∗ = lim

n→∞ μ̂, it follows

lim
n→∞ n−2/p[ 1n, x − μ̂1n]p = E(X − μ∗)|X − μ∗|p−2

(E|X − μ∗|p)(p−2)/p ,

thus lim
n→∞ n−2/p[ 1n, x − μ̂1n]p = 0 can be reformulated as

EX|X − μ∗|p−2 − μ∗E|X − μ∗|p−2 = 0. (6)

6 Simulation of star-shaped distributed random vectors
6.1 Preliminary remarks

It may be of interest to determine exact distributions of the statistics dealt with in
Sections 2-5. To this end, one might use various analytical tools like, e.g., a geometric
measure representation as a starting point of explicit analytical derivations.
As an alternative to such derivations, we present here simulation methods which allow to
generate stochastic approximations of statistical distributions.
Let (X1,j,Y1,j)T , . . . , (Xn,j,Yn,j)T , j = 1, . . . ,N be independent samples of independent
random vectors following the rotational dependent p-generalized elliptically contoured
density f(X,Y ) defined in Section 4.1., and let further

Tj = T
(
(X1,j,Y1,j)T , . . . , (Xn,j,Yn,j)T

)
, j = 1, . . . ,N

be a sample of i.i.d. copies of a real valued statistic T. For sufficiently large N, the
probability P(T < t) can be stochastically approximated by the relative frequency
1
N

N∑

i=1
I(−∞,t)(Ti). To this end, we present an acceptance-rejection method for simu-

lating random vectors (Xi,j,Yi,j)T in Section 6.2, and a generalized polar method in
Section 6.3. This will be done even under the muchmore general assumption that (X,Y )T

follows an arbitrary star-shaped distribution. This class includes that of p-generalized
elliptically contoured distributions. For approaches to general distribution classes see
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Fernández et al. (1995), Arnold et al. (2008), Kamiya et al. (2008), Sarabia and Gómez-
Déniz (2008), Balkema and Nolde (2010). A geometric representation of star-shaped
distributions is given in Richter (2014).
We refer to the letter paper for main notions and recall that (X,Y )T allows the stochas-
tic representation X d= R · U where R and U are stochastically independent, R is
a non-negative random variable, and the singular random vector U follows the star-
generalized uniform distribution ωS on the Borel σ -field B(S) of the star-sphere S being
the topological boundary of a suitably defined star body K,

ωS(A) = OS(A)

OS(S)
, A ∈ B(S).

For the distribution considered in Section 4.1, K can be chosen as a rotated through
the origin axes-aligned p-generalized ellipsoid, K = DT (α)B(a1,a2),p, and OS means the
corresponding star-generalized surface content measure.

6.2 Dependent p-generalized acceptance-rejection method

General aspects of acceptance-rejection or simply rejection methods are studied in Kalke
and Richter (2013) and applied there to the p-generalized rejecting polar method. Platon-
ically generalized uniformly distributed and polyhedral star-shaped distributed random
vectors are generated this way in Richter and Schicker (2014, 2016a) as well as Richter
and Schicker 2016b, respectively. If the star-spheres are represented in a certain analytical
way, Nolan (2016) aims to exploit the geometric measure representation approximatively
in a sense, not yet explicitly defined. Here, we demonstrate how to generate in four steps
star-shaped distributed vectors.
Step 1. To start with, let Ci, i = 1, . . . , d be positive constants, C(d) = (C1, . . . ,Cd)

T and
0(d) = (0, . . . , 0)T ∈ Rd. We denote by

(0(d),C(d)) = (0,C1) × . . . × (0,Cd)

an axes-aligned d-dimensional rectangle and by O ∈ Rd×d an orthogonal matrix. Using
the further notation

O(0(d),C(d)) = {
Ox : x ∈ (0(d),C(d))

}
,

we assume that the random vectors ξn, n = 1, 2, . . . follow the uniform distribution on
O(0(d),C(d)), and are independent. Because the vectorO−1ξn follows the productmeasure
of uniform distributions on univariate intervals,U(0,C1) × . . .×U(0,Cd), it can immediately
be simulated.
Step 2. Let the acceptance region

A ∈ B(d)∩[O(0(d),C(d))]

be a star body having the origin as an interior point. According to Remark A.1 in Kalke
and Richter (2013), the stopping time

τA = inf {n ∈ N : ξn ∈ A}
is almost surely finite if P(ξ1 ∈ A) > 0. The following lemma says that the stopping
element

ξτA =
∞∑

n=1
I{τA=n}ξn
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is uniformly distributed in the acceptance region A, ξτA ∼ UA.

Lemma 1 The stopping element ξτA satisfies the equation

P(ξτA ∈ M) = UA(M) for allM ∈ B(d) ∩ [O(0(d),C(d))
]
.

Proof It follows from

P(ξτA ∈ M) = P
( ∞⋃

n=1

{
τA = n, ξn ∈ M

})

= P(ξ1 ∈ M)[ 1 + P(ξ1 /∈ A) + P2(ξ1 /∈ A) + . . . ]

that

P(ξτA ∈ M) = P(ξ1 ∈ M)[ 1 + P(ξ1 /∈ A)

1 − P(ξ1 /∈ A)
]

Example 5 For simulating a random vector following a p-generalized elliptically con-

toured distribution law, put A = OBa,p with Ba,p =
{

x ∈ Rd :
d∑

i=1
| xiai |p ≤ 1

}

, and Ci ≥
ai > 0, i = 1, . . . , d, a = (a1, . . . , ad)T .

Example 6 For simulating norm or antinorm contoured distributed vectors one can
chose the acceptance region A = {

x ∈ Rd : ||x|| ≤ 1
}
, where ||.|| is an arbitrary norm or

antinorm and the constants Ci > 0 are chosen such that A ⊂ O[ 0(d),C(d)].

Example 7 If A = P is a star-shaped polyhedron having the origin as an interior
point, one can check whether a point belongs to A using the various representations of the
Minkowski functional of A given in Richter and Schicker (2016b).

Example 8 If A is as described in Nolan (2016), check the condition given there.

Step 3. It is well known that if A is a star-shaped subset of Rd having the origin as an
interior point then the Minkowski functional hA(x) = inf {λ > 0 : x ∈ λA} , x ∈ Rd is well
defined. A normalization of the stopping element based upon this functional is used in the
following lemma.
Step 4. Lemma 2 The random element X∂A = ξτA/hA(ξτA) follows the star-generalized

uniform distribution on S = ∂A = {
x ∈ Rd : hA(x) = 1

}
, X∂A ∼ ωS for short.

Proof Let M̃ ∈ Bd ∩ ∂A and sector(M̃) = {
λx : x ∈ M̃, 0 ≤ λ ≤ 1

}
. Then

P(X∂A ∈ M̃) = P(ξτA ∈ sector(M̃)) = UA(sector(M̃))
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Example 5, continued. The Minkowski functional of the set Ba,p = O−1A is hO−1A(x) =

|x|a,p =
(

d∑

i=1
|xi|p

)1/p

and, with S = ∂Ba,p,

OS(M̃) =
∫

{
(x1,...,xd−1):(x1,...,xd)T∈M̃}

d(x1 . . . xd−1)

(1 −
d−1∑

1
| xiai |)1/p

, M̃ ∈ Bd ∩ Ea,p.

Example 6, continued. For arbitrary norm or antinorm ||.||, hA(x) = ||x||, and for all
M̃ ∈ Bd ∩ S, S = {x : ||x|| = 1} ,

OS(M̃) =
∫

{
ϑ=(x1,...,xd−1):(ϑ ,xd(ϑ))T∈M̃}

hK∗(N(ϑ))dϑ

where K∗ is the unit ball of the norm ||.||∗ being dual to the norm ||.|| in the first case, and
the antipolar set of K = {x : ||x|| ≤ 1} in the second one. Moreover, N(ϑ) is the outer/inner
normal vector to S at the point (ϑ , xd(ϑ)),N(ϑ) = (grad xd(ϑ),−1)T .

Remark 1 Let NonNegSim denote the set of all non-negative random variables for which
there is known a simulation method. Extensive overviews of simulation algorithms for
non-uniform random variables are given in Rubinstein (1981) and Devroye (1986). If
R ∈ NonNegSim is independent of X∂A where X∂A is a star-generalized uniformly on
the star sphere ∂A distributed random vector then the random vector RX∂A follows a
star-shaped distribution centered at the origin, �A say.

As to summarize, Steps 1-4 together constitute an acceptance-rejection algorithm for
simulating random vectors following a star-shaped distribution law.

Example 9 In case of a distribution having a density generating function, g say, the
cumulative distribution function of R = R(g) is

FR(g)(r)= 1
I(g)OA(∂A)

r∫

0

ρd−1g(ρ)dρ where I(g) =
∞∫

0

rd−1g(r)dr,

thus R(g) can be simulated accordingly. To this end, let U be uniformly distributed on (0, 1),
then F−1

R(g)(U)
d= R(g).

Remark 2 If a density generating function g satisfies the equation

OA(∂A)I(g) = 1

then it is called a density generator.Methods of estimating a density generator are described
in Liebscher and Richter (2017).

6.3 Dependent p-generalized polar method

The classical polar method is due to Box and Muller (1958). If the acceptance rate of the
algorithm described in the previous section is not large enough, or for some other reason,
one might seek for a direct star-generalization of the polar method. We just mention here
that there are different particular methods for directly generating the star-generalized
uniform distribution on a star sphere. For the p-generalized polar method, e.g., such
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method has been established in Kalke and Richter (2013) and applied in Richter (2015a).
The independent coordinate representation of general two-dimensional norm contoured
distributions which is the basis for a norm-generalization of the polar method is proved
in Richter (2015b).
Below, we describe an algorithm for an (a, p,O)-generalization of the polar method of
Box and Muller where a = (a1, . . . , ad)T , ai > 0, i = 1, . . . , d; p > 0 and O is an orthogo-
nal d×d-matrix. To this end, we assume that a random vector X = (X1, . . . ,Xd)

T follows
an axes-aligned p-generalized elliptically contoured distribution having density generat-
ing function g and vector of scaling parameters a, X ∼ �g,Ba,p . Let further Y = OX + ν

denote a transformation vector, with an orthogonal d × d-matrix O and ν ∈ Rd, and put

h0(r) = C0rd−1g(r)I(0,∞)(r)

and, for φi ∈[ 0,π), i = 1, . . . , d − 2,φd−1 ∈[ 0, 2π),

hi(φi) = Ci
(sin(ai,ai+1;p)(φi))d−i−1

N2
(ai,ai+1;p)(φi)

where the generalized trigonometric functions sin(ai,ai+1;p)(φi), cos(ai,ai+1;p)(φi) and the
normalizing functions N(ai,ai+1;p)(φi) are defined in Richter (2014). With suitably cho-
sen constants Ci, the functions hi are the densities of independent random variables
R,�1, . . . ,�n−1 jointly satisfying the stochastic representation X = RU where

U1 = a1 cos(a1,a2;p)(�1),U2 = a2 sin(a1,a2;p)(�1) cos(a2,a3;p)(�2), . . . ,

Ud = ad sin(a1,a2;p)(�1) . . . sin(ad−2,ad−1;p)(�d−2) sin(ad−2,ad−1;p)(�d−1),
(7)

cf. Definition 4 in the same paper.

Step 1 Start the algorithm by generating a non-negative random number R according
to the density h0.
Step 2 Generate random numbers �1, . . . ,�d−2 from [ 0,π) and �d−1 from [ 0, 2π)

following the densities h1, . . . , hd−2 and hd−1, respectively.
Step 3 Carry out transformation (7).
Step 4 Return Y = OR(U1, . . . ,Ud)

T + ν.

This algorithm generates a random vector Y following the p-generalized elliptically con-
toured distribution law �g,a,p,ν,O, see Theorem 4 and Remark 11 in Richter (2014). The
particular case d = 2, a1 = a2 = 1 has been dealt with in Kalke and Richter (2013).
Finally, we notice that X ∼ �g,a,p,0d ,Id = �g,Ba,p,0d .

7 Discussion
Comparing mvv-c with pcv-r models led to some new aspects in testing equality of
variances or scaling parameters. Effects of rotational dependence are outlined. A new
geometric interpretation of certain likelihood equations is given in terms of a semi-
inner product. Based upon the present results for the more specific models dealt with in
Sections 2-5, it could be of some interest to re-consider in the future the more general
model in Wilcox (2015) and to possibly draw some new conclusions for this model. Our
results might further stimulate a comparison of simulation methods, e.g. for particular
cases being in the intersection of the work in Nolan (2016) and in Richter and Schicker
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(2016a, b). To this end, one would particularly have to determine theMinkowski function-
als of the sets considered in Nolan (2016) and then to compare the approximative simu-
lation method there with the exact method presented in Richter and Schicker (2016a,b).
Challenging questions are opened for deriving new exact statistical distributions, e.g. of
�X/�Y , from dependent sample distributions, and to compare these results with corre-
sponding simulation results. As another open problem it remains to combine rotational
and lp-dependence. Consequences the latter notion has for the derivation of exact dis-
tributions of certain statistics have been studied in Müller and Richter (2015, 2016a,b).
There, the effects caused by the deviation of a density generating function from that of
the p-power exponential law are studied in various situations.
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