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Abstract
Although there have been fairly recent advances regarding inference for
three-dimensional rotation data, there are still many areas of interest yet to be
explored. One such area involves comparing the rotational symmetry of 3-D rotations.
In this paper, nonparametric inference is used to test if F1 = F2, where Fi is the degree
of rotational symmetry of distribution i, through a permutation test. The validity of the
developed permutation test is examined through a simulation study and the test is
applied to a small example in biomechanics.
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1 Introduction
Three-dimensional rotation data sets are commonly collected in the study of human
motion (Rancourt et al. 2000; Rivest et al. 2008; Haddou et al. 2010; Oualkacha and
Rivest 2012) and in materials science (e.g., crystal orientations in metals, Demirel et al.
2000; Wilson and Spanos 2001). Until recently, most developments regarding analysis of
3-D rotations used the matrix Fisher distribution as the underlying statistical distribution
(Khatri and Mardia 1977; Jupp and Mardia 1979; Prentice 1986; Mardia and Jupp 2000;
Rancourt et al. 2000). Recognizing the limitations of existing distributions for 3-D rota-
tions, Bingham et al. (2009) developed the Uniform Axis-Random Spin (UARS) class of
distributions, Bingham et al. (2012) developed the Preferred Axis-Random Spin (PARS)
class of distributions, and Oualkacha and Rivest (2009) developed a new model for sym-
metric axial directional data. While these recent works provide much more flexibility in
modeling 3-D rotations, their focus is on fitting the developed distributions to a single
data set. Further, there appears to be a disconnect between developments in the statistical
literature for 3-D rotations and what is easily understood and used by practitioners who
collect such data. For example, Pierrynowski and Ball (2009) point out that even standard
operations, such as finding mean rotations, are often incorrectly applied by movement
scientists.
The need for greater flexibility in modeling 3-D rotations, coupled with the need for

easily accessible inference procedures, has led to recent works on nonparamteric methods
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for 3-D rotation data. Stanfill et al. (2015) andWill and Bingham (2016) focus on estimat-
ing the central rotation through bootstrapping, while Bero and Bingham (2015) explore
permutation tests for comparing the central rotations in two data sets. Bingham (2015)
uses bootstrapping to quantify the spread in 3-D rotations and Eckrote and Bingham
(2017) develop a permutation test for comparing the spread in two data sets. These works
do provide techniques for analyzing 3-D rotation data that are easily implemented by
practitioners, but center and spread are not the only features that distinguish 3-D distri-
butions. Therefore, this paper aims to fill a gap by developing statistical techniques for
comparing the rotational symmetry of the distributions from which two data sets come.
This will provide a novel statistical approach for analyzing 3-D rotation data while also
providing useful tools for practitioners.
In Section 2 further details on the UARS and PARS classes of distributions for 3-D rota-

tions are provided. In Section 3 the permutation test for comparing symmetry in two 3-D
rotation data sets will be developed. In Section 4 a simulation study will be used to inves-
tigate the power of the permutation test under various conditions. Finally, in Section 5,
the permutation test will be used briefly in an application to compare movement around
the calcaneocuboid joint for a human, chimpanzee, and baboon.

2 Overview of distributions for 3-D rotations
In many applications involving 3-D rotation data, the rotational distributions used are
symmetric (or isotropic) so that they have rotationally invariant densities about a central
rotation. Mardia and Jupp (2000, p. 179) give a general definition of rotational symmetry
on the (p−1)-sphere, Sp−1 = {

x ∈ R
p : xTx = 1

}
, as having density functions of the form

f (x) = g
(
μTx

)
. The case of p = 4 corresponds to the space SO(3), the set of all 3 × 3

orthogonal rotation matrices. Qiu et al. (2014) give a thorough overview of rotationally
symmetric distributions on SO(3). As the authors show, existing rotationally symmet-
ric distributions that appear in the literature are part of the general class of isotropic
distributions on SO(3), the UARS distributions.
We first provide a brief overview of the UARS class of distributions. Although we con-

sider elements of SO(3) as 3×3matrices throughout this paper, they could equivalently be
expressed in terms of quaternions and Bingham et al. (2009) briefly discuss this represen-
tation of the UARS class. Let O ∈ SO(3) be a random rotation from a UARS distribution
with central rotation S. Then O = SP, where P is obtained by rotating the 3 × 3 identity
matrix, I3×3, about an axis U ∈ R

3 by a random angle r ∈ (−π ,π ]. In this case of the
UARS class, r follows some circular distribution that is symmetric about 0 with spread
depending on parameter κ > 0, and U is uniformly distributed on the unit sphere. (See
Mardia and Jupp (2000) for details on spherical distributions.) Since larger values of κ

indicate less spread in the rotations, κ is referred to as a concentration parameter. This
distribution will be abbreviated as UARS(S, κ). See Bingham et al. (2009) for extensive
details on the UARS class, including an expression for the matrix P (page 1388, Eq. 2) and
the UARS(S, κ) density (page 1389, Eq. 4).
Bingham et al. (2012) develop a broad class of distributions that are not rotationally

symmetric (referred to here as nonsymmetric) by beginning with the symmetric UARS
class. A short overview of the PARS class is provided here, but extensive details can be
found in Bingham et al. (2012). Let P ∼UARS(S, κ) and let V be some fixed vector. Rotate
P around V by a random angle p ∈ (−π ,π ], where p follows some circular distribution
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that is symmetric about 0 with concentration parameter τ > 0. If the resulting matrix
is T, then ST is said to have PARS distribution with central rotation S, preferred axis of
rotationV, and concentration parameters κ and τ . This distribution will be abbreviated as
PARS(S, κ ,V, τ ). As Bingham et al. (2012) show, by introducing the extra rotation around
V, rotationally symmetric rotations are “smeared” to create nonsymmetric rotations.
For both the UARS and PARS classes of distributions, a particular distribution is spec-

ified by choosing the circular distribution(s) for the random angles r and p. Figure 1
shows data sets that have been generated from (a) the UARS distribution with cen-
ter at I3×3 and κ = 50, (b) the PARS distribution with center at I3×3, κ = 50, V =
(1/

√
3, 1/

√
3, 1/

√
3), and τ = 25, and (c) the PARS distribution with center at I3×3,

κ = 50, V = (1/
√
3, 1/

√
3, 1/

√
3), and τ = 10. The von Mises circular distribution

(see Bingham et al. 2009) has been used for both r and p. In each figure a 3 × 3 rotation
matrix is displayed as three points on the sphere, one representing each of the three per-
pendicular axes that correspond to the three columns in the matrix. The center at I3×3 is
represented by the axes at x, y, and z. We can see that smaller values of τ for the PARS dis-
tribution represent data that are more nonsymmetric in nature. The goal of this work is
to develop methods for determining if two data sets like the ones displayed in Fig. 1 come
from underlying distributions with different degrees of rotational symmetry. In the next
section a permutation test is developed to accomplish this.

3 Development of the permutation test
Suppose O1, . . . ,On and P1, . . . ,Pm are two 3-D rotation data sets of sizes n and m. To
begin, the mean rotation for each data set will be found. The mean rotation for a set of
3-D rotations,M, is a commonly used measure of center which is defined as the rotation
that maximizes trace(MTŌ), where Ō = 1

n
∑n

i=1Oi (Khatri and Mardia 1977; Leoń et al.
2006; Bingham et al. 2009a). Themean rotationM can be found by usingM = VW, where
Ō = V�W is the singular value decomposition of Ō. The mean rotations for the two data
sets under consideration will be denoted asMO andMP.
For each observation in O1, . . . ,On, there exists an axis AOi such that a rotation by

angle arccos[(trace
(
MT

OOi
) − 1)/2] about AOi will result in the mean MO. AOi can be

found by considering the axis part of the axis-angle representation ofMT
OOi, i = 1, . . . , n.

The axes between P1, . . . ,Pm and MP will also be found and are represented as APj,
j = 1, . . . ,m. Because rotationally symmetric distributions on SO(3) can be regarded as

Fig. 1 One hundred observations plotted around the center at I3×3 represented by the perpendicular x, y,
and z axes using (a) UARS with κ = 50, (b) PARS with κ = 50, V = (1/

√
3, 1/

√
3, 1/

√
3), τ = 25, (c) PARS

with κ = 50, V = (1/
√
3, 1/

√
3, 1/

√
3), τ = 10
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part of the UARS class (Qui et al. 2014), these axes will be uniformwhen considering sym-
metric distributions on SO(3). (See also Bingham et al. (2009); Mardia and Jupp (2000);
Watson (1983).)
In order to determine if the resulting axes are uniformly distributed, the quantity

R = 15n
2

⎡

⎣trace

⎛

⎝
(
1
n

n∑

i=1
AOiAT

Oi

)2
⎞

⎠ − 1
3

⎤

⎦ (1)

proposed by Mardia and Jupp (2000, p. 232) will be calculated for each set of axes
AO1, . . . ,AOn and AP1, . . . ,APm. Smaller values of R in (1) indicate uniform axes, trans-
lating to rotational symmetry on SO(3). We note that although the main focus of this
paper is to compare two data sets in terms of rotational symmetry using a permutation
test, the quantity R can be used to determine whether or not a single data set comes
from a distribution with rotational symmetry as well. Under uniformity of the axes, R has
approximately a χ2

5 distribution (Mardia and Jupp 2000). Thus we can test for rotational
symmetry of a single 3-D rotation data set by using R as a test statistic. A small simulation
study for this one-sample test is provided in Section 4.
To compare the rotational symmetry in two independent 3-D rotation data sets, the

absolute difference in R values can be calculated to serve as the test statistic for the per-
mutation test of H0 : F1 = F2 versus Ha : F1 �= F2, where Fi is the degree of rotational
symmetry of distribution i. The steps of the permutation are listed below.

1. Calculate the statistic in Eq. (1) for each data set, giving RO and RP , respectively.
Calculate θobs = |RO − RP|, which will serve as the observed test statistic.

2. Permute the data by combining the two data sets and randomly reassigning n
observations to the first set and m to the second. Calculate θperm = |RO − RP|, the
permuted test statistic, based on the permuted data.

3. Repeat step 2. a large number (say 10,000) of times.
4. Let the p-value be the fraction of times that the permuted test statistic is greater

than the observed test statistic; p-value = # of times θperm>θobs
# of permutations .

The permutation test developed above is demonstrated here for two cases. In Fig. 2a, the
two simulated data sets (in white and black) appear to have similar degrees of rotational

Fig. 2 Plot of two simulated 3-D rotation data sets (each with n = m = 50) with rotational symmetries that
(a) are not significantly different and (b) are significantly different
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symmetry. When applying the permutation test above, these data sets resulted in a test
statistic of 0.325 and a p-value of 0.844. In Fig. 2b, the simulated data sets have symmetries
that differ by a greater amount, with the points in white being more symmetric than the
points in black. These data sets gave a test statistic of 5.798 and a p-value of 0.005, indi-
cating a significant difference in the distributional symmetry. From these two examples,
it can be seen that the p-value decreases as expected when the data sets have symmetries
that appear to differ more. In the next section the adequacy of the 3-D permutation test
for rotational symmetry is examined further by performing a simulation study.

4 Exploring power through simulations
First, a small set of simulations were done to test for rotational symmetry in the one-
sample case. 3-D rotation data sets were simulated from PARS distributions using sample
sizes of n = 20 and 100 and concentration parameters of κ = 5 and 100. The central rota-
tion was fixed at the identity matrix and the preferred axis of rotation V was generated
from the uniform distribution on the sphere for each simulation. The second concentra-
tion parameter τ was set at either 1, 5, 10, or 50. Smaller values of τ indicate a higher
degree of nonsymmetry in the PARS class. The quantity R from (1) was used as the test
statistic for testing a null hypothesis of rotational symmetry. Under rotational symmetry,
R ∼ χ2

5 (Mardia and Jupp 2000, p. 232). For each combination of n, κ , and τ , 1000 PARS
data sets were simulated and used in the test. The proportion of times the test correctly
rejected the null of rotationally symmetry was found, with results in Table 1. As expected,
power increases as τ decreases and the underlying distribution becomes less symmet-
ric. Power is also higher for the distribution with less spread (κ = 100) and the larger
sample size.
A more extensive simulation study was done to examine the effectiveness of the permu-

tation test developed in the last section by considering the power of the test to correctly
reject a null of equal degree of rotational symmetry for two distributions. A first 3-D rota-
tion data set was simulated from the nonsymmetric Preferred Axis-Random Spin (PARS)
distribution (Bingham et al. 2012) with rotations r and p from the von Mises distribu-
tion. The central rotation was fixed at the identity matrix, since choice of center does not
have a bearing on the rotational symmetry. For this PARS(I3×3, κ ,V, τ ) data set, V was
generated from the uniform distribution on the sphere, κ was chosen to be 5, 20, 50, or,
100, and τ was varied from very small (0.01) to very large (500), with this range reflecting
less symmetric to more symmetric, respectively. Sample sizes of n = 20, 50, or 100 were
used. Using the same values of κ and n, a second data set was simulated from the rota-
tionally symmetric von Mises version of the Uniform Axis-Random Spin distributions,
vM-UARS(I3×3, κ) (Bingham et al. 2009).
For each combination of n, κ , and τ , 1000 different samples were simulated from each of

the vM-UARS(I3×3, κ) and PARS(I3×3, κ ,V, τ ) distributions. For each of the 1000 cases,

Table 1 Power of the one-sample test for rotational symmetry

τ = 50 τ = 10 τ = 5 τ = 1

n = 20, κ = 5 0.014 0.091 0.234 0.602

n = 100, κ = 5 0.156 0.703 0.822 0.960

n = 20, κ = 100 0.363 0.662 0.759 0.876

n = 100, κ = 100 0.898 0.950 0.964 0.972
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the rotational symmetries of the two data sets were compared using the permutation test
with 1000 permutations per test, and the power was calculated as the fraction of times that
the permutation test correctly rejected the null hypothesis of similar symmetries (using
a significance level of 0.05). It is expected that smaller values of τ should result in higher
power, because a PARS data set with less symmetry is being compared to a symmetric
vM-UARS data set. Thus, power was plotted against 1/τ and Fig. 3 shows the results for
each choice of κ and n.
Each plot shows that the power of the test increases as 1/τ increases and as n increases.

By comparing the four plots, it can also be seen that power increases as the data are less
spread (i.e. larger values of κ). These relationships between power and the varied quanti-
ties are all as to be expected. As 1/τ increases the rotational symmetry of the simulated
data sets are less alike, making the test more powerful. As both sample size increases and
as the data become less spread, the test becomes more powerful. In the cases of n = 20
with smaller values of κ , power of only approximately 0.5 is achieved. This is because in
small data sets exhibiting a high degree of spread, it is much harder to identify the dis-
tribution as being either symmetric or nonsymmetric, resulting in the test detecting a
difference in symmetries less often. Since all of the features of power seen through the
simulation study match what is expected, the permutation test for rotational symmetry is
performing as desired in terms of power.
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Fig. 3 Plots of power versus 1/τ for (a) κ = 5, (b) κ = 20, (c) κ = 50, and (d) κ = 100
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Additionally, simulations were conducted to investigate the Type I error rate for the
permutation test. For these simulations, the two data sets were generated from the same
distribution, so that we would expect the test to not result in rejection of the null hypoth-
esis. The permutation test was done with 1000 permutations and repeated 100 times for
each scenario. The simulated Type I error rate was then calculated as the proportion of
the times (out of 100) that the p-value was less than or equal to 0.05. Results for both the
UARS and PARS (with τ = 0.01, 10, and 500) distributions are provided in Table 2 for
various choices of n and κ . All values are close to the desired 0.05, showing that the per-
mutation test also behaves as expected when the two distributions under consideration
are the same.

5 Brief Application to Calcaneocubiod joint rotation data
Since it has been verified that the 3-D permutation test performs as desired when it comes
to both power and Type I error rate, the test will be applied to calcaneocuboid joint data.
The data used here were collected by Professor Thomas Greiner, Physical Therapy, at
the University of Wisconsin-La Crosse. Infra-red emitting diodes were attached to the
calcaneous and cuboid bones of the foot in a human, baboon, and chimpanzee. Load was
applied to the knee while the subjects had their foot flat on the floor. The rotation of the
calcaneocuboid joint between the two bones was recorded. Although 125 measurements
were collected over time as the load was applied, these observations will be assumed to
be independent and identically distributed for the purposes of illustration.
The data were collected with the goal of comparing the species’ movement around

the joint with respect to its variability and rotational symmetry, with it being hypothe-
sized that there would be differences appearing among all species. Eckrote and Bingham
(2017) found significant differences in variability for the baboon and chimp and for the
human and baboon. We test for differences in degree of rotationally symmetry here. The
permutation test for comparing rotational symmetry was conducted pairwise for human
versus chimpanzee, human versus baboon, and chimpanzee versus baboon, with 1000
permutations used per test. All three of the permutation tests resulted in a p-value of
approximately 0, suggesting that there is a difference in the rotational symmetry for all
three comparisons, as hypothesized. This also matches the result of Bingham et al. (2012)
where confidence intervals for the parameter τ in the PARS distribution were investigated
for overlap. While the inference of Bingham et al. (2012) only applied to a single sample
at a time, the permutation test considered here allows for direct comparison of two data
sets through a single test, making it preferred for this type of application.

6 Conclusion
Although applied to a small example in biomechanics, the permutation test developed
here has applications reaching beyond just the study of movement in skeletal mammals.

Table 2 Simulated type I error rates

UARS PARS, τ = 0.01 PARS, τ = 10 PARS, τ = 500

n = 20, κ = 5 0.06 0.05 0.07 0.06

n = 100, κ = 5 0.05 0.04 0.06 0.08

n = 20, κ = 100 0.08 0.09 0.04 0.05

n = 100, κ = 100 0.04 0.08 0.07 0.09
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Data in the form of 3-D rotations are found in multiple disciplines, making techniques
for comparing symmetry in these data sets important. Since the test developed here is
nonparametric, it can be used in situations where one of the few 3-D rotation distribu-
tions does not provide an adequate fit to the data. Its nonparametric nature also allows
it to be easily implemented, making it accessible to practitioners who collect 3-D rota-
tion data. Thus, the 3-D permutation test for rotational symmetry is valuable not only for
statisticians, but also for those who work with 3-D rotation data in practice.
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