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Introduction
Adding new shape parameters to expand a parent distribution plays a fundamental role
to generate a larger family with a wide range of skewness and light or heavy tails. Sev-
eral mathematical properties of the extended family may be easily explored using linear
combination of exponentiated-G (“exp-G” for short) distributions. Further, this induc-
tion of parameters has been proved useful in investigating tail properties and also for
improving the goodness-of-fit of the generator family. The well-known generators are
the following ones: beta-G by Eugene et al. (2002), Kumaraswamy-G (Kw-G) by Cordeiro
and de Castro (2011), McDonald-G (Mc-G) by Alexander et al. (2012), gamma-G by
Zografos and Balakrishnan (2009), among others. Recently, several distribution genera-
tors have been proposed, for example, Alzaatreh et al. (2013) proposed the the T-X family
of distributions, Cordeiro et al. (2014) introduced the the Lomax generator, Cordeiro
et al. (2015) defined a new generalized Weibull family, Tahir et al. (2015) studied the odd
generalized exponential family, Nofal et al. (2016) proposed the generalized transmuted-
G family and Cordeiro et al. (2017) investigated the generalized odd log-logistic
family.

Zografos and Balakrishnan (2009) proposed a family of univariate distributions gener-
ated by gamma random variables with an additional shape parameter to a parent model.
For any baseline cumulative distribution function (cdf) G(x), and x € R, they defined the
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gamma-G family by the probability density function (pdf) f(x) and cdf F(x) (for ¢ > 0)

given by
1 —
ﬂ@=;®¢4%u—am}law (1)
and
_ _ —log[1-G(x)]
Py = Yo losl1 ZG@) _ 1 [ e @
T'(c) r Jo

respectively, where g(x) = dG(x)/dx, I'(c) = fooo t“~! e~!dt denotes the gamma function,
and y (¢, z) = foz t~1 e~tdt denotes the incomplete gamma function. The gamma-G fam-
ily has the same parameters of the G distribution plus an extra shape parameter c¢. The
increase of one parameter is the price to pay for adding more flexibility to the generated
model compared to G. For ¢ = 1, Eq. (1) becomes the density function g(x), which is a
positive point. The parameter ¢ can provide greater flexibility in the form of the generated
distribution and, consequently, it can be a very useful model for fitting positive data.

For a random variable X with pdf (1), we have X 2 G711 — e %), where Z ~
Gamma(c, 1). If c = 1, then Z ~ exp(1) and X 2 G~L(U), where U ~ U(0,1).

The Burr III (BIII) cumulative distribution is given by

X\ —o -B (x/s)‘” B
=1+ ()] =[] ?

where « > 0 and B > 0 are shape parameters and s > 0 is a scale parameter. The pdf
corresponding to (3) is given by

(4)

s = [ I

s(x/s)etl | 1+ (x/s)*

The BIII distribution has been used in various fields of sciences and its features exten-
sively analyzed. It appeared under the name of the Dagum (1977) distribution in studies of
income, wage and wealth distributions. For an excellent survey on its genesis and empiri-
cal applications, see Kleiber and Kotz (2003) and Kleiber (2008). It is known as the inverse
Burr distribution (see, e.g., Klugman et al. 1998) in the actuarial literature and as the
kappa distribution in the meteorological area (Mielke, 1973). This distribution has also
been employed in finance, environmental studies, survival analysis and reliability theory
(see Lindsay et al. 1996; Gove et al. 2008).

In this paper, we define and study the four-parameter gamma Burr III (GBIII) distribu-
tion by inserting (3) and (4) in the generator density (1). The GBIII density becomes

B «p (x/s)* 1P @ 1P\
S = s(x/s)*t1 T (c) [1 + (x/s)“] {_ log (1 B [1 + (x/s)a] -

The BIII pdfis a special case of (5) when ¢ = 1. The cdf of the GBIII distribution reduces

to
F(x) = L ¢,—logi1— [Wr (6)
“To\"T 8 T+@s ] [)




Cordeiro et al. Journal of Statistical Distributions and Applications (2017) 4:24 Page 3 of 15

Hereafter, we denote the GBIII random variable having pdf (5) by X ~ GBII(c, «, B, s).
The hazard rate function (hrf) of X is given by

@ ps™ /D [1+ /o] Y [ log (1= [14 @97 ")

h(x) = Fo—y (C, —log {1 -1+ (x/s)fa]*ﬂ})

(7)

Figure 1 displays some plots of the density and hrf of X for selected parameter
values, respectively. The hrf of X can be decreasing, unimodal and decreasing-increasing-
decreasing. The GBIII model can have either positive or negative skewness.

Inverting F(x) = u, we obtain the quantile function (qf) of X as

—-1/8 -1/
Qu) =s Hl — exp(_Q—l(c, 1-— u))j| — 1} (8)

for 0 < u < 1, where Q™ 1(c, u) is the inverse function of Q(c,x) = 1 — y (¢, x)/ '(c); see,
for details, http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.
One can also use (8) for simulating GBIII variates: if U is a uniform random variable on
the unit interval (0, 1), then X = Q(U) will be a GBIII random variable.

The rest of the paper is outlined as follows. In Section Structural properties of the
GBIII distribution, we obtain some structural properties of the GBIII distribution and
estimate the model parameters by maximum likelihood. We propose a new regression
model based on the logarithm of this distribution in Section The log-gamma Burr III

regression model. Two applications to real data and a simulation study are addressed in

)

(©) (d)
Fig. 1 Plots of the GBIl density ((@) and (b)) and of the GBIl hrf ((c) and (d))
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Section Applications and simulation to prove empirically the flexibility of the new models.
Finally, some conclusions are offered in Section Conclusions.

Structural properties of the GBIIl distribution

In the following subsections, we obtain a linear representation for the density function
and a power series for the qf of the new distribution and estimate its parameters. These
expressions can be computed numerically in platforms such as MAPLE, MATHEMATICA,
Ox and R using a large number in the upper limit instead of infinity.

Linear representation

Here, we demonstrate that the GBIII density can be expressed as a linear combina-
tion of BIII densities. The binomial coefficient generalized to real arguments is given by
(;) = I'(x + 1)/[T(y + DI'(x — y + 1)]. For any real parameter ¢ > 0, the conver-
gent series holds (http://functions.wolfram.com/ElementaryFunctions/

Log/06/01/04/03/)

(—tk (s )p k

o k+1-c\ «
[—log[1 = Gaps@]} " = (c—1) Z ( + C) y TV G L G ()KL
k=0

j=0
)
where G()[,,g;,s(x)”k’1 = G, (crk-1)8s(*) and the constants p;; can be determined
recursively (for j > 0) as
(=D [mG+1) — k]
ik =k~ ke
Pk Z m+1) Djk—m
m=1
fork=1,2,...and pjo = 1.
For a real parameter ¢ > 0, we define
) (k+1 C) i ( I)H_kp]',k <k)
Tletbre-D & e-1-) \j/)
By using this result, the pdf f(x) can be expressed as a linear combination
oo
@ =) biGuethps®) (10)

k=0

where g, (c+4),s(*) denotes the BIII pdf in (4) with parameters o, (c + k)8 and s. So, se-
veral mathematical properties of the GBIII distribution can be obtained from those of the
BIII distribution using (10) in platforms such as MAPLE and MATHEMATICA.

Equation (10) holds for any real parameter ¢ > 0 and then some mathematical proper-
ties of the new model are valid in the same parameter space, where those properties of the
BIII model hold. Evidently, the integrals for the ordinary and incomplete moments and
generating function of X can also be computed numerically in Ox and R.
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Quantile expansion
We use throughout the paper an equation by Gradshteyn and Ryzhik (2000, Section 0.314)
for a power series raised to a positive integer n

00 ' n 00 '
(Z a; u’) = ch,l- u', (11)
i=0 i=0

where the coefficients ¢,,; (forn > 0and i = 1,2, ...) are determined from the recurrence

equation using any algebraic or numerical software

i
cni=(ao)™" Y [mn+1) =il amcnim

m=1
and ¢,0 = ay.
If V ~ Gammal(c, 1), the qf Qv (u) of V admits the power series

Qv(w) =Y m; [T(c+ 1 u)’s,
i=0

where mo = 0, m; = 1 and any coefficient m;11 (for i > 1) can be determined by the

cubic recurrence equation

1 iimstl
Mit1 { Z Z s—r—s+2)ymemsmi_r_gi

i+ D) —

L
—AG) Y rlr—c—(1—0@+2-7) mrml-m},
r=2

where A(i) = 0ifi < 2and A(i) = 1ifi > 2. The first few coefficients are my = 1/(c+1),
msz = (3¢ +5)/[2(c + 1)2(c + 2)],... Let my = 0 and define g; = m; I'(c + 1)@*tD/2
(fori=0,1,2...).

For m > 1, we define J,, = {(i,k),i + k = m;i,k = 0,1,2,...}. Then, we can rewrite the
GBIII ¢f from (8) as

_ -1/
2 (—DF (& . Q- )
0w =ef| 1= (Saer) |
k=0 i=0
Next, using Eq. (11), we obtain
_ —1/a
o~ D ki, h
— _ S~ T T 14 c _
Quy =s{[1->" o 1 ) (12)
k,i=0

where (for k > 0) dy o = qg and, fori=1,2...,dy; = (igo)~* ;zl[j(k+ 1) —i] qj dxi—j-
Further, we have

0]

kg 00
-y %'d’w W00 = S e,
k,i=0 ’ m=1

and then we rewrite Eq. (12) as

—1/a

00 -1/8
Qu) =s |:Z vmum/c:| -1 ,

m=1
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where (for m > 1)

00
B Z (_1)k+ldk,i
Vy = —
k,i=0
(k) E/m

We now consider the delta expansion given by

H@? =1+ % [HE) — 11",

n=1 """

where 1, = ]_[;’;01 (y — j). Based on this expansion, we can write Q(u) as

00 00 ny—1/a
Q(u)=s{zz<z vmum/C) } :

n=1 m=0
where vy = —1. Then, using again (11), we obtain
00 —1/a
Q) =s |:Z Sm um/ci| , (13)
m=0
where (for m > 0) s, = 20:1 % 8um>and (forn > 1) 8,1, = (m ) ! Z':l [p(n+1)—

] Vi 8ym—p, and 8,0 = vy
Hence, Eq. (13) reveals that the GBIII gf can be expressed as a power series raised to
—1/a. Let W(-) be any integrable function in a positive real line. We can write

00 1 ot —1/e
/ W(x) f(x)dx = / Wls [Z Sm um/c:| du. (14)
—00 0 =0

Equations (13) and (14) are the main results of this section since we can obtain from
them various GBIII mathematical quantities (moments, generating function, etc). In fact,
some of them follow by using the right integral for special W(-) functions, which are
sometimes simpler than if they are based on the left integral.

Maximum likelihood estimation

The maximum likelihood estimates (MLEs) enjoy desirable properties and can be used
when constructing confidence intervals. First-order asymptotic theory for these estimates
delivers simple approximations that may work well in finite samples. In this section, we
consider the estimation of the unknown parameters of the GBIII distribution by maxi-
mum likelihood. Let x1 - - - ,x, be a random sample from (5) and 8 = (c,a, 8,5)” be the
parameter vector. The log-likelihood function £(#) = log L(@) for 6 is given by

£(0) = —nlogT'(c) + nlogB + nloga + nalogs

—(@+ 1)) logxi—(B+1)Y [1 + (’;‘)_a]
i=1 i=1
n B
+(c—1)Zlog!—log[1—[1—<’;’) } “ (15)
i=1

Maximization of (15) can be performed by using well established routines like n1minb
or optimize in the R statistical package. The routines are able to locate the maximum in
all cases if we take different starting values for the parameters. However, it is desirable to
have reasonable starting values, which can be chosen using the estimates from the fitted
BIII distribution.

Page 6 of 15
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The MLEs in 6, say 8, can also be determined numerically as simultaneous solutions of
the equations 0£(0)/90 = 0. For interval estimation of the components in 8, we require
the observed information matrix for 6, say —i;(0) = {-L,y} (v = ¢a,B,s), whose
elements can be obtained from the authors upon request.

The log-gamma Burr lll regression model
Different forms of regression models have been studied in survival analysis. Among them,
the location-scale regression model (Lawless 2003) is distinguished since it is frequently
used in clinical trials. We propose a new location-scale regression model based on the log-
arithm of the GBIII random variable named the log-gamma Burr III (LGBIII) regression
model as a feasible alternative for modeling the four existing types of hazard rates.

If X is a random variable having the GBIII density function (5), we define Y = log(X).
The pdf of Y obtained by replacing s = e* and « = 1/0 is given by

peol— () [ ee(3) 1 [ [ ee(s) 7

o
ol(¢) 1+ exp (y ;L) log 11 o ( ) )

(16)

c—1

fo) =

where y € R, u € R is the location parameter, ¢ > 0 is the scale parameter, and ¢ > 0
and B > 0 are shape parameters. We refer to Eq. (16) as the LGBIII distribution, say
Y ~ LGBIl(c, B,0, ). The density of the random variable Z = (Y — u)/o follows

from (16).
The survival function of Y is
- B
1 exp(=F)
S)=1——yle—logf1-| —— " . (17)
v NEM ¥ [1+exp(yaﬂ)

In many practical applications, parametric models with explanatory variables are used
to estimate univariate survival functions for censored data. A parametric model that pro-
vides a good fit to lifetime data tends to yield more precise estimates for the quantities of
interest. Based on the LGBIII density, we propose a linear location-scale regression model
linking the response variable y; and the explanatory variable vector v = (Vi1,...,Vip) as

y,'zvl»Tr—i—oz,',i:l,...,n, (18)

where the random error z; has density function (16) with ¢ = Oand o = 1, T =
(t1,..., rp)T, o > 0,c¢ > 0and B > 0 are unknown parameters. The parameter u; = ViTT
is the location of y;. The location parameter vector p = (11, ..., )T is represented by
a linear model ¢ = Vt, where V = (vy,...,v,)? is a known model matrix. The LGBIII
regression model (18) opens new possibilities for fitting many different types of data. For
example, it contains as sub-model the log-Burr IIT (LBIII) regression model when ¢ = 1.
Consider a sample (y1,v1), -, (¥n, vy) of n independent observations, where each
random response is defined by y; = min{log(x;),log(c;)}. We assume non-informative
censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which y; is the log-lifetime or log-censoring,
respectively. Conventional likelihood estimation techniques can be applied here. The log-

likelihood function for 8 = (¢, 8,0,77)7 from model (18) is given by /(8) = Y ;;(0) +
ieF
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> lfc) (0), where [;(8) = log[f ()], lfc) (0) = log[ S(y»)], f(3) is the density (16) and S(y;)

ieC
is the survival function (17) of Y;. The total log-likelihood function for  reduces to
16) = rlog ( f( )) Zz, +B+DY z—(B+1)) log[l+exp(z)]
ieF ieF
exp(z) )ﬁ
+(c—-1 log{—log|l—| ————
( );‘ gi g{ <1+eXp(zi)

exp(z) 1P
+Z°gir(> ( log{l_[wexp(z»] })] 19)

where z; = (y; — viT 7)/0 and r is the number of the uncensored observations (failures).
The MLE @ can be evaluated by maximizing (19). We use the NLMixed procedure in SAS
to obtain 9. Initial values for T and o are taken from the fitted LBIII regression model
(with ¢ = 1). We can fit the LBIII model to the uncensored observations only and then
take the parameter estimates as initial values to fit the LGBIII regression model.

The estimated survival function for y; follows from the fitted LGBIII model (z; = (y; —

L expz) 17

Under first-order asymptotic theory, the (p 4 3) x (p+ 3) asymptotic covariance matrix

vff)/&) as

Ssé B,6,7h) =

K@)~ of 5, where K (@) is the expected information matrix for 8, can be approximated by
the inverse of the observed information matrix —i(O). The elements of this matrix can be
computed numerically to construct approximate confidence intervals for the parameters
in 0. We can use likelihood ratio (LR) statistics for comparing some sub-models with the
LGBIII model in the classical way.

Applications and simulation

Application of GBIl to cigarettes data

In order to illustrate the estimation results in Section 3, we work with carbon monoxide
measurements made in several brands of cigarettes in 1994. The data have been collected
by the Federal Trade Commission (FTC), which is an independent agency of the United
States Government, whose main mission is the promotion of consumer protection.

The data can be found at http://www.econdataus.com/cigrs94.html and
contain # = 384 observations. We analyze the carbon monoxide (CO), measured in
milligrams per cigarette, from several cigarette brands. We fit the GBIII, BIII and other
sub-models to these data by the method of maximum likelihood. We also fit two more
models to the current data: the beta Burr III (BBIII) (Gomes et al. 2013) and beta Weibull
(BW) (Lee et al. 2007) distributions. The MLEs of the parameters, their standard errors
(SEs) and the Akaike Information Criterion (AIC) for the fitted models are listed in
Table 1. The required numerical evaluations are implemented using the nlminb func-
tion of the R language. When the GBIII model (5) is evaluated at ¢ = 1, 8 = 1 it gives rise
to the log-logistic (LL) model. For « = 1 and ¢ = 1, we have as a special case the expo-
nentiated log-logistic (ELL) model. From the figures in Table 1, we note that the smallest
AIC value corresponds to the GBIII model.
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Table 1 MLEs of the model parameters for the cigarettes data, the corresponding SEs (given in
parentheses) and the AIC measure

Model o B s c b y AlC

GBIl 17.0973 0.0282 1.4992 26338 - - 336.827
(0.1153) (0.0006) (0.0028) (0.0287) - -

Bill 184311 0.1069 1.6511 1 - - 938.113
(0.1482) (0.0010) (0.0015) ) - -

LL 3.7222 1 1.1094 1 - - 4554549
(0.0092) ) 0.0014 ) - -

ELL 1 3.6292 0.2635 1 - - 1022.258
¢ 0.0269 0.0023 ©) - -

BBIII 28.7468 0.5810 1.5547 0.1143 04787 - 348.247
(0.5524) (0.0190) (0.0042) (0.0041) (0.0131) -

BW 5.0892 - - 04410 3.8626 2.0235 368.887
(0.0321) - - (0.0037) (0.1545) (0.0166)

A comparison of the new distribution with three of its sub-models using LR statistics
is described in Table 2. These statistics indicate that the new distribution is the most
adequate model to these data.

The plots of the fitted densities of the GBIII distribution and its sub-models along with
the fitted densities of the BBIIl and BW models are displayed in Fig. 2. They reveal that the
GBIII distribution provides a better fit to the current data than those of the other models.

The measures of skewness and kurtosis for the GBIII distribution are, respectively, -
0.3001116 and 0.05107192.

Further, we apply the Cramér-von Mises (W*) and Anderson—Darling (A*) goodness-
of-fit statistics in order to verify which model yields the best fit to these data. These
statistics are described by Chen and Balakrishnan (1995). In general, the smaller the val-
ues of these statistics indicates a better fit. The values of W* and A* for six fitted models
to the current data are listed in Table 3. The figures in this table reveal that the GBIII
model provides the best fit among the fitted models.

Some computing issues and a simulation study

As mentioned before, the optimization for estimating the parameters can be performed by
minimizing the negative log-likelihood and, for that, we use the n1minb function of the
R language. Optimization can also be tackled through simulated annealing (Kirkpatrick
et al. 1983) using the optim function of the R. Reasonable starting values are chosen
such that the estimated pdf of a sub-model fits well the histogram of the data. We now
discuss some estimation issues related to the GBIII distribution. Mékeldinen et al. (1981),
in their Theorem 2.1, have established conditions for existence and uniqueness of the
MLEs. However, proving that the likelihood function satisfies those conditions is a very
hard task that could be addressed in a separate paper.

Table 2 LR tests for the cigarettes data

Model Hypotheses Statistic LR p-value
GBIl vs BIlI Ho :a=1vsH;:Hyis false 10.79832 0.0010159
GBIll'vs LL Ho:c= B =1vsH; :Hyisfalse 189.9402 0.0000000

GBIllvs ELL Ho:c=a =1vsH; :Hpisfalse 587.5724 0.0000000
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Fig. 2 Fitted densities of the GBIl Blll and other distributions for the carbon monoxide contents in cigarettes
of different brands. Source: Federal Trade Commission (2000)

We conduct a Monte Carlo simulation study to assess the finite sample behaviour of the
MLEs of the GBIII parameters. Random samples from the GBIII model are obtained using
the qf given by (8). We consider as the true parameter values the average between two
parameter vector estimates obtained for the cigarettes data when two different starting
points where chosen. Even though those starting points differ substantially, the estimates
do not.

Let = (o, B,s,¢) = (17.11192,0.02785, 1.49817, 2.64952) be the true parameter vec-
tor. For each simulated sample, we estimate the true parameter vector using as starting
points the so-called initial point 1 and initial point 2, which correspond to the estimated
vectors of @ of the sub-models 1 and 2 given in Table 1. The results are obtained from
k = 500 replicates for each of the sample sizes » = 50, 100, 500, 1,000 and 5,000. For a
specified sample size and k = 500 estimated values obtained using one of the two referred
starting values, we evaluate the average of those estimated vectors and the square root
mean squared errors (SRMSEs). Afterwards, we take the averages of the results obtained
using each of the starting points to produce Table 4. As we can observe from the figures in
this table, the estimated expected vector does approach the true vector, but the SRMSEs
decrease slowly.

In Fig. 3, we compare the GBIII density for the true vector and the correspond-
ing estimated expected vectors obtained for the cases when the sample sizes are
50, 100, 500, 1, 000 and 5,000, when we use the initial points 1 and 2. Regarding the consis-
tency of the GBIII parameter estimators, Fig. 3 shows that when the sample size increases,
the estimated vector tends to the true parameter vector, regardless of the initial values
used in the estimation procedure. However, as mentioned before, the convergence seems
rather slow.

In order to provide some empirical evidence about the asymptotic distribution of the
MLEs of the GBIII density, we simulate 5,000 samples of size 10,000 from the GBIII

Table 3 Goodness-of-fit statistics

Distribution W+ A*

GBIl 0.23988 1.46001
BIlI 0.30316 1.83086
LL 247901 13.86572
ELL 5.53160 30.68406
BBIIl 0.29278 1.75430
BW 0.66758 3.89611




Cordeiro et al. Journal of Statistical Distributions and Applications (2017) 4:24

Page 11 of 15

Table 4 Monte Carlo results: means and SRMSEs (in parentheses) of ﬁ Sand

Parameter o B S c

True values 17.11192 0.02785 149817 2.64952

n=>50 20.60594 0.06942 1.51430 256537
(10.48504) (0.09636) (0.12745) (1.55388)

n =100 19.09881 0.04589 1.50674 261276
(8.89715) (0.05139) (0.09234) (1.04975)

n =500 17.38320 0.03260 1.50329 2.59845
(1.77489) (0.01378) (0.04358) (0.48186)

n=1,000 17.22701 0.03018 1.49953 2.63054
(1.27852) (0.00780) (0.03029) (0.31852)

n = 15,000 17.16906 0.02872 1.50008 263229
(0.49828) (0.00329) (0.01300) (0.14757)

model evaluated at the true vector. Figure 4 displays the histograms of the correspond-
ing 5,000 estimates of the parameters. Each curve represents the normal density with the
mean and standard deviation parameters fixed, respectively, at the average and sample
standard deviation of the 5,000 parameter estimates. The vertical dotted lines represent
the true parameter values. We can note, for each of the parameters, that the normal
model provides a good approximation of the distributions of the parameter estimates.
In summary, the simulations confirm that the GBIII estimators are consistent and their
distributions can be approximated by the normal distribution in accordance with the
first-order likelihood theory.

An application of the LGBIII regression model

In this section, we fit the LGBIII regression model defined in Section 3 to a data set
obtained from a study carried out at the Department of Entomology of the Luiz de
Queiroz School of Agriculture, University of Sdo Paulo, which aims to assess the longevity
of the mediterranean fruit fly (ceratitis capitata). The need for this fly to seek food just
after emerging from the larval stage has permitted the use of toxic baits for its manage-
ment in Brazilian orchards for at least fifty years. This pest control technique consists
of using small portions of food laced with an insecticide, generally an organophosphate,
that quickly kills the flies, instead of using an insecticide alone. Recently, there have
been reports of the insecticidal effect of extracts of the neem tree leading to proposals
to adopt various extracts (aqueous extract of the seeds, methanol extract of the leaves
and dichloromethane extract of the branches) to control pests such as the mediterranean

Fig. 3 Plots of the GBIll density for increasing sample sizes and different starting points
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Fig. 4 Histograms of the estimated parameters of the GBIIl density based on the simulation of 5,000 samples
of size 10,000 and 6 = (a, B,5,¢) = (17.11192,0.02785,1.49817,2.64952). The normal curves approximate
the distributions of the MLEs. The vertical dotted lines represent the true parameter values

fruit fly. The experiment was completely randomized with eleven treatments, consisting
of different extracts of the neem tree, at concentrations of 39, 225 and 888 ppm. After
preliminary statistical analysis, these eleven treatments were allocated into two groups,

namely:

e Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract of
seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of leaves
(MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract of branches (DMB)
(39 ppm).

e Group 2: MEL (39 ppm); DMB (225ppm) and DMB (888 ppm).

For more details, see Silva et al. (2013). The response variable in the experiment is
the lifetime of the adult flies in days after exposure to the treatments. The experimental
period is set at 51 days, so that the numbers of larvae that survived beyond this period are
considered as censored data. The total sample size is n = 72, because four observations
are lost. Therefore, we use the following variables: #;-lifetime of ceratitis capitata adults in
days, §;-censoring indicator, v;;-sex of the larvae and v;3-group (0=group 1, 1=group 2).
Next, we present results by fitting the regression model

Yi=To+ T1vi1 + Tavia + 0%,

Table 5 MLEs of the parameters from the LGBIIl and LBIIl regression models fitted to the entomology
data, the corresponding SEs (given in parentheses), p-values in [.] and the AIC, CAIC and BIC statistics

Model c B o 70 T 1) AIC CAIC BIC
LGBIlI 0.1722 1.7304 0.1685 34935 —0.0567 —0.2830 2737 2742 2926
(0.0161) (0.2708) (0.0244) (0.0624) (0.0534) (0.0574)
[<0.001] [0.2890] [<0.001]
LBl 1 04016 0.2199 34048 0.0402 —0.3410 3388 3392 3546

- (0.0807) (0.0286) (0.0835) (0.0843) (0.0888)
[<0.001] [0.6339] [0.0002]
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Table 6 LR statistic w for the entomology data

Model Hypotheses w p-value
LGBIIl vs LBIII Ho :c = 1vsH : Hoyis false 67.1 < 0.00001

where the random variable z; has the LGBIII density (16) (with 4 = 0and o = 1) for i =
1,...,72. The MLEs of the model parameters are evaluated using the NLMixed procedure
in SAS. Iterative maximization of the log-likelihood function (19) starts with initial values
for B and o taken from the fit of the LBIII regression model with ¢ = 1,ie. 8 = 04,0 =
0.2, 7o = 3.4, 11 = 0.04 and 7o = —0.3. Table 5 lists the MLEs of the model parameters.
The values of the AIC, CAIC and BIC statistics are smaller for the LGBIII regression
model when compared to those values for the LBIII regression model.

A comparison of the new distribution with its LBIII sub-model using the LR statistic w
is presented in Table 6. The value of w indicates that the LGBIII distribution provides a
better fit to these data than the null model.

We note from the fitted LGBIII regression model that x; is not significant at 5%. So, the
final model is given by

Yi =70+ Tavia + 07Z;.

The MLEs of the parameters in the final model are listed in Table 7.

Note again that the values of the AIC, CAIC and BIC statistics are smaller for the LGBIII
regression model when compared to those values for the LBIII regression model. In order
to assess if the model is appropriate, the plots comparing the empirical survival function
and the estimated survival function by the LGBIII regression model, see Eq. (20), are
displayed in Fig. 5. Based on these plots, it is evident that the LGBIII model provides a
superior fit.

Conclusions

Providing a new class of distributions is always precious for statisticians. There has been
an increased interest in developing generalized classes of distributions by adding a single
shape parameter to a baseline distribution. There is no doubt that some of these classes
have attracted several applied researchers. Following this idea, Zografos and Balakrishnan
(2009) introduced a gamma-generated family of distributions by adding an extra posi-
tive shape parameter to a baseline model. In this paper, we study some mathematical
properties of the new four-parameter gamma Burr III distribution based on the gamma-
generated family. We prove empirically that the proposed distribution can provide a better
fit than important generated models such as the beta Burr III (Gomes et al. 2013) and

Table 7 MLEs of the parameters from the LGBIIl and LBIIl regression models fitted to the entomology
data, considering only the significant variables, the corresponding SEs (given in parentheses),
p-values in [.] and the AIC, CAIC and BIC statistics

Model c B o 70 15} AIC CAIC BIC
LGBIIl 6.3762 0.005080 0.1157 29722 —0.1864 256.3 256.6 272.0
(1.6458) (0.0062) (0.0136) (0.0843) (0.0664)
[<0.001] [0.0056]
LBl 1 0.4084 0.2218 34173 —0.3402 3371 3373 3496
- (0.0791) (0.0279) (0.0791) (0.0886)

[<0.001] [0.0002]
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Fig. 5 Estimated survival function by fitting the LGBIII regression model and empirical survival for
entomology data

beta Weibull (Lee et al. 2007) distributions. Finally, we propose a new log-gamma Burr III
regression model and illustrate its importance by means of one application to a real data
set.
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