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Abstract
We consider a sequence of n, n ≥ 3, zero (0) - one (1) Markov-dependent trials. We
focus on k-tuples of 1s; i.e. runs of 1s of length at least equal to a fixed integer number
k, 1 ≤ k ≤ n. The statistics denoting the number of k-tuples of 1s, the number of 1s in
them and the distance between the first and the last k-tuple of 1s in the sequence, are
defined. The work provides, in a closed form, the exact conditional joint distribution of
these statistics given that the number of k-tuples of 1s in the sequence is at least two.
The case of independent and identical 0 − 1 trials is also covered in the study. A
numerical example illustrates further the theoretical results.
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1 Introduction
Run counting statistics defined on a sequence of binary (zero (0) - one (1)) ran-
dom variables (RVs), along with their exact and approximate distributions, have
been extensively studied in the literature. Their popularity is due to the fact that
such statistics appear as useful theoretical models in many research areas including
statistics (e.g. hypothesis testing), engineering (e.g. system reliability and quality con-
trol), biology (e.g. population genetics and DNA sequence analysis), computer science
(e.g. encoding/decoding/transmission of digital information) and financial engineering
(e.g. insurance and risk analysis).
In such applications, a key point is the understanding how 1s and 0s are distributed

and combined as elements of a 0 − 1 sequence (finite or infinite, memoryless or not) and
eventually forming runs of 1s or 0s which are enumerated according to certain counting
schemes. Each scheme defines how runs of same symbols or strings (patterns) of both
symbols are formed and consequently are enumerated. A counting scheme may depend
on, among other considerations, whether overlapping counting is allowed or not as well
as if the counting starts or not from scratch when a run/string of a certain size has been
so far enumerated.
The counting scheme as well as the intrinsic uncertainty of a 0 − 1 sequence are often

suggested by the applications. Probabilistic models, in common use, for the internal struc-
ture of a 0 − 1 sequence include the model of a sequence with elements independent
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of each other or a model for which it is assumed some kind of dependence among the
elements of it. The methods used to derive exact/approximating, marginal/joint probabil-
ity distributions include combinatorial analysis, generating functions, finiteMarkov chain
imbedding technique, recursive schemes as well as normal, Poisson and large deviation
approximations.
For extensive reviews of the recent literature on the distribution theory of

runs and patterns we refer to Balakrishnan and Koutras (2002) and Fu and
Lou (2003). Current works on the subject include, among others, those of Antzoulakos
and Chadjiconstantinidis (2001); Eryilmaz (2006, 2015, 2016, 2017); Eryilmaz and
Yalcin (2011); Johnson and Fu (2014); Koutras (2003); Koutras et al. (2016); Makri and
Psillakis (2015); Makri et al. (2013) and Mytalas and Zazanis (2013, 2014).
In this article we derive expressions for a conditional distribution of a trivariate statis-

tic. Its components denote the number of runs of 1s of length exceeding a fixed threshold
number, the number of 1s in such runs of 1s and the length of the minimum sequence’s
segment in which these runs are concentrated. The study is developed on a sequence
of two-state (0 − 1) Markov-dependent trials. The runs are enumerated according to
Mood’s (1940) counting scheme.
More specifically, the manuscript is organized as follows. In Section 2 we present some

preliminary material, including notation and definitions, necessary to develop our results
which are obtained in Section 4. In Section 3 we give a motivation along with a statement
of the aim of the work. A numerical example, showed in Section 5, clarifies the theoretical
results of Section 4. A discussion on the results as well as a note on a future work are given
in Section 6.
Throughout the article, for integers, n,m,

(n
m
)
denotes the extended binomial coefficient

(see, Feller (1968), pp. 50, 63), �x� stands for the greatest integer less than or equal to x
and δij denotes the Kronecker delta fuction of the integer arguments i and j. Further, for
α > β , we apply the conventions

∑β
i=α yi = 0,

∏β
i=α yi = 1,

∑β
i=α Y

(i) = O ≡
( 0 0
0 0

)
,

∏β
i=α Y

(i) = I ≡
( 1 0
0 1

)
, where yi and Y(i) are scalars and 2 × 2 matrices, respectively.

2 Preliminaries
2.1 Run counting statistics

Let {Xt}nt=1, n ≥ 1, be the first n trials of a binary (0−1) sequence of RVs, Xt = xt ∈ {0, 1}.
A run of 1s, is a (sub)sequence of {Xt}nt=1 consisting of consecutive 1s, the number of
which is referred to as its length, preceded and succeeded by 0s or by nothing.
Given a fixed integer k, 1 ≤ k ≤ n, a k-tuple of 1s is a run of 1s of length k or more. In

the paper we will deal with the following statistics defined on a 0 − 1 {Xt}nt=1. For details
see, e.g. Makri et al. (2015) and the references therein.
(I) Gn,k denoting the number of k-tuples of 1s, 1 ≤ k ≤ n. In particular, Gn,1

denotes the number of 1-tuples of 1s, i.e. it represents the number Rn ≡ Gn,1 of
all runs of 1s in the sequence. Using the convention X0 = Xn+1 ≡ 0, we can
define Gn,k as

Gn,k =
n∑

i=k
En,i, 1 ≤ k ≤ n, (1)
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where

En,i =
n∑

j=i
Jj, Jj = (

1 − Xj−i
) (
1 − Xj+1

) j∏

r=j−i+1
Xr .

(II) Sn,k denoting the number of 1s in the Gn,k k-tuples of 1s; i.e. Sn,k represents the sum
of lengths of the Gn,k k-tuples of 1s, 1 ≤ k ≤ n. In particular Sn,1 represents the number
of all 1s in the sequence; hence, the number of 0s, Yn, in the sequence is Yn = n − Sn,1.
Sn,k is formally defined as

Sn,k =
n∑

i=k
iEn,i, 1 ≤ k ≤ n. (2)

Readily, kGn,k ≤ Sn,k .
(III) Ln, n ≥ 1, denoting the length of the longest run of 1s in the sequence. By setting

�n = {i : Gn,i > 0, 1 ≤ i ≤ n},
we have that

Ln = max{k : k ∈ �n}, if�n �= ∅; 0, otherwise. (3)

Readily Ln < k iff Gn,k < 1.
(IV) For Gn,k ≥ 1, 1 ≤ k ≤ n, Dn,k denotes the distance (number of trials) between

and including the first 1 of the first k-tuple of 1s and the last 1 of the last k-tuple of 1s
in the sequence. If there is only one k-tuple of 1s in the sequence then Dn,k denotes its
length. That is,Dn,k represents the size (length) of the minimum (sub)sequence of {Xt}nt=1
in which all Gn,k k-tuple of 1s are concentrated. In particular, Dn,1 represents the length
of the minimum segment of the sequence containing all Rn runs of 1s or in other words all
Sn,1 1s appearing in the sequence. ForGn,k ≥ 1, 1 ≤ k ≤ n,Dn,k can be formally defined as

Dn,k = U(2)
n,k − U(1)

n,k + 1, (4)

where

U(1)
n,k = min{j : Ij = 1, 1 ≤ j ≤ n − k + 1},

U(2)
n,k = max{j : Ij−k+1 = 1, k ≤ j ≤ n},

Ij =
j+k−1∏

r=j
Xr , 1 ≤ j ≤ n − k + 1.

Readily, Dn,k = Sn,k = Ln, if Gn,k = 1 and Dn,k > Sn,k > Ln, if Gn,k > 1.
(V) For Gn,k ≥ 1, 1 ≤ k ≤ n, set Vn,k = (Dn,k ,Gn,k , Sn,k). This is the RV we focus on in

the article.
Example: By way of illustration consider the trials 1110001100010001010011101

111001001001001 numbered from 1 to 40. Then, L40 = 4 and V40,1 = (40, 11, 19),
V40,2 = (28, 4, 12), V40,3 = (28, 3, 10), V40,4 = (4, 1, 4).

2.2 Internal structure’s models

A general enough model for the internal structure of a 0 − 1 {Xt}nt=1, n ≥ 2, is that of the
first n trials of a homogeneous 0−1Markov chain of first order (HMC1). On such amodel
we will develop our results. Accordingly, we next state the necessary notation/definitions.
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Let {Xt}t≥1 be a HMC1 with state space A = {0, 1}, one step transition probability
matrix

P = (pij) =
(
p00 p01
p10 p11

)

,

with

pij = P
(
Xt = j | Xt−1 = i

)
, i, j ∈ A,

∑

j∈A
pij = 1, i ∈ A, t ≥ 2 (5)

and probability distribution vector at time t

p(t) =
(
p(t)
0 , p(t)

1

)
,

with

p(t)
i = P(Xt = i), i ∈ A,

∑

i∈A
p(t)
i = 1, t ≥ 1. (6)

Readily, because of the homogeneity of {Xt}t≥1, it holds

p(t) = p(t−1)P = p(1)Pt−1, t ≥ 2; p(1), t = 1 and Pt−1 =
(
p(t−1)
ij

)
, t ≥ 2,

with

p(t)
i = p(t)e

′
i, i ∈ A, t ≥ 1,

p(t−1)
ij = P(Xt−1+m = j | Xm = i) = eiPt−1e

′
j, i, j ∈ A, t ≥ 2, m ≥ 1, (7)

where e′
i is the transpose (i.e. the column vector) of the row vector ei, i ∈ A, with e0 =

(1, 0) and e1 = (0, 1).
In particular, for p01 + p10 �= 0, i.e. P �= I, it holds

Pt−1 = (p01 + p10)−1
{(

p10 p01
p10 p01

)

+ (1 − p01 − p10)t−1
(

p01 −p01
−p10 p10

)}

, t ≥ 2,

(8)

p(t)
0 = p(1)

0 (1 − p01 − p10)t−1 + p10 (p01 + p10)−1 [
1 − (1 − p01 − p10)t−1] , t ≥ 1.

(9)

The setup of a 0 − 1 HMC1 {Xt}nt=1, n ≥ 2, covers the case of a 0 − 1 sequence of
independent and identically distributed (IID) RVs, too. This is so, because a 0− 1 {Xt}nt=1,
n ≥ 2, IID sequence with

P(Xt = 1) = 1 − P(Xt = 0) = p1, 1 ≤ t ≤ n, (10)

is a particular HMC1 with

pij = 1 − p1, j = 0; p1, j = 1, i ∈ A, p(t−1)
ij = pij, i, j ∈ A, t ≥ 2,

p(t)
1 = p1 = 1 − p(t)

0 , 1 ≤ t ≤ n. (11)
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2.3 A combinatorial result

In combinatorial analysis which will be used in Section 4, the following result, recalled
fromMakri et al. (2007), is useful. The coefficient

Hm(α, r, k) =

⌊
α

k+1

⌋

∑

j=0
(−1)j

(
m
j

)(
α − (k + 1)j + r − 1

α − (k + 1)j

)
, (12)

represents the number of allocations of α indistinguishable balls into r distinguishable
cells where each of the m, 0 ≤ m ≤ r, specified cells is occupied by at most k balls.
Equivalently, it gives the number of nonnegative integer solutions of the linear equation
x1 + x2 + . . . + xr = α with the restrictions, form ≥ 1, 0 ≤ xij ≤ k, 1 ≤ j ≤ m, for some
specificm-combination {i1, i2, . . . , im} of {1, 2, . . . , r}, and no restrictions on xjs, 1 ≤ j ≤ r,
form = 0.
Moreover, Hr(α, r, k) is Riordan’s (1964, p. 104) coefficient

C(α, r, k) =

⌊
α

k+1

⌋

∑

j=0
(−1)j

(
r
j

)(
α − (k + 1)j + r − 1

α − (k + 1)j

)
. (13)

3 Motivation and aim of the work
In a study of a 0 − 1 sequence {Xt}nt=1, n ≥ 3, it is reasonable for one to be interested
in the probabilistic behavior of RV Vn,k = (Dn,k ,Gn,k , Sn,k). This happens because jointly
its components provide a more refined view of the internal clustering structure of the
sequence than the information extracted by each one alone.
Interpreting a k-tuple of 1s as a cluster of consecutive 1s of size at least k,Dn,k represents

the size of the minimum segment of {Xt}nt=1 in which Gn,k clusters of size at least k and at
most Ln are concentrated. The overall density ofGn,k clusters, with respect to the number
of 1s in them, as well as of the minimum concentration segment is evaluated by Sn,k . Large
values ofDn,k suggest that theseGn,k clusters spread over the interval between the left and
the right side of the sequence whereas small values ofDn,k indicate rather that the clusters
are concentrated in a segment of the sequence of small size leaving the rest part(s) of the
sequence empty of such clusters.
In addition to this information, a large value of Sn,k paired with a small value ofGn,k indi-

cates the existence of clusters of 1s of a large size and therefore a trend whereas the same
value of Sn,k paired with a large value of Gn,k indicates rather a distribution of clusters of
small size in the (sub)sequence in which they are concentrated.
Therefore, based on the former interpretation, the motivation for the study as well as

the usefulness of the statisticVn,k = (Dn,k ,Gn,k , Sn,k) is apparent. In the sequel, we assume
that Gn,k ≥ 2 in order to have at least two k-tuples of 1s in the sequence and accordingly
the distance Dn,k is not a degenerate one. Moreover, this assumption is a common one
in an application area of Dn,k ; e.g., in detecting pattern (tandem or non-tandem direct)
repeats in DNA sequences (Benson 1999).
For 1 ≤ k ≤ n, set

Mn,k = {Gn,k ≥ 2}, αn,k = P
(
Mn,k

)
(14)

and for n ≥ 3, 1 ≤ k ≤ �(n − 1)/2�, define
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�n,k = {(d,m, s) : 2k + 1 ≤ d ≤ n, 2k ≤ s ≤ d − 1, 2 ≤ m ≤ min (�s/k�, d − s + 1)}
(15)

and for (d,m, s) ∈ �n,k ,

hn,k(d,m, s) = P
(
Vn,k = (d,m, s),Mn,k

)
,

vn,k(d,m, s) = P
(
Vn,k = (d,m, s) | Mn,k

) = hn,k(d,m, s)/αn,k . (16)

The paper provides exact closed form expressions for αn,k , hn,k(d,m, s) and eventually
for vn,k(d,m, s) when Vn,k is defined on a 0 − 1 HMC1/IID. The expressions are obtained
via combinatorial analysis.
More specifically, closed formulae are established for the first time for hn,k(d,m, s), 1 ≤

k ≤ �(n − 1)/2�, when Vn,k is defined on a 0 − 1 HMC1 with given P and p(1). Since,
the general frame of HMC1 covers as a particular case IID sequences, the so implied
expressions for vn,k(d,m, s) are alternative to those obtained for vn,k(d,m, s), 1 ≤ k ≤
�(n − 1)/2�, by Makri et al. (2015) for IID sequences.
Moreover, for n ≥ 3, 1 ≤ k ≤ �(n − 1)/2�, 2k + 1 ≤ d ≤ n, let

fn,k(d) = P
(
Dn,k = d | Mn,k

)
.

Therefore, since

fn,k(d) =
d−1∑

s=2k

min(�s/k�,d−s+1)∑

m=2
vn,k(d,m, s) = α−1

n,k

d−1∑

s=2k

min(�s/k�,d−s+1)∑

m=2
hn,k(d,m, s),

(17)

hence, the work provides closed form expressions for determining fn,k(d) for HMC1 and
IID 0 − 1 {Xt}nt=1. These expressions are alternative to those derived, for IID sequences,
by Makri et al. (2015) for 1 ≤ k ≤ �(n − 1)/2� as well as to those obtained, for HMC1, by
Arapis et al. (2016) for k = 1 and by Arapis et al. (2017) for 1 ≤ k ≤ �(n − 1)/2�.

4 Results
In a 0 − 1 sequence {Xt}nt=1, n ≥ 2, for 0 ≤ y ≤ n, 0 ≤ r ≤ �(n + 1)/2� and (i, j) ∈ {0, 1}2,
define

B(i,j)
n (y, r) = {X1 = i,Xn = j,Yn = y,Gn,1 = r},

π
(i,j)
n (y, r) = P(B(i,j)

n (y, r)).

Accordingly, for a HMC1 {Xt}nt=1, n ≥ 2, with given P and p(1), it holds

π
(i,j)
n (y, r) =

(
p(1)
1

)i (
1 − p(1)

1

)1−i
py−r−1+i+j
00 (1 − p00)r−i (1 − p11)r−j pn−y−r

11 , (18)

for 2− (i+ j) ≤ y ≤ n− (i+ j), 1− δy,0 − δy,n + δi+j,2 ≤ r ≤ min{n− y, y− 1+ i+ j} and
π

(i,j)
n (y, r) = 0, otherwise.
Consequently, π(i,j)

n (y, r), for a 0 − 1 IID sequence, reduces to

π
(i,j)
n (y, r) = πn(y) = pn−y

1 (1 − p1)y, 0 ≤ y ≤ n. (19)
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Theorem 1 For n ≥ 3, (d,m, s) ∈ �n,1, 0 < p(1)
1 < 1, it holds

hn,1(d,m, s) =
(
s − 1
m − 1

)(
d − s − 1
m − 2

)
π

(1,1)
d (d − s,m)εn(d) (20)

where εn(d) = 1, if n = d; pn−d−2
00

{
p10p00 + p(1)

0 (p(1)
1 )−1p01

[
(n − d − 1)p10 + p00

]}
, if

n ≥ d + 1.

Proof For d = 3, . . . , n−2, i = 2, 3, . . . , n−d, s = 2, 3, . . . , d−1,m = 2, 3, . . . , min{s, d−
s + 1} an element of the event 	i,d,m,s = {U(1)

n,1 = i,Dn,1 = d,Rn = m, Sn,1 = s} is a 0 − 1
sequence of length n with probability

p(1)
0 pi−2

00 p01
[
π

(1,1)
d (d − s,m)

(
p(1)
1

)−1
]
p10pn−i−d

00 .

Fix i. Then the number of elements of the event 	i,d,m,s is
( s−1
m−1

)(d−s−1
m−2

)
, since the num-

ber of allocations of s 1s inm runs of 1s is
( s−1
m−1

)
and the number of allocations of d− s 0s

inm − 1 runs of 0s is
(d−s−1
m−2

)
, so that

P
(
	i,d,m,s

) =
(
s − 1
m − 1

)(
d − s − 1
m − 2

)
p(1)
0 p01

[
π

(1,1)
d (d − s,m)

(
p(1)
1

)−1
]
p10pn−d−2

00 .

We use similar reasoning for the rest cases. Then summing with respect to i we get the
result.

For a sequence {Xt}nt=1 of 0 − 1 IID RVs, hn,1(d,m, s) reduces to the explicit formula
given in the next Corollary.

Corollary 1 For n ≥ 3, (d,m, s) ∈ �n,1, 0 < p1 < 1, it is true that

hn,1(d,m, s) = (n − d + 1)
(
s − 1
m − 1

)(
d − s − 1
m − 2

)
ps1(1 − p1)n−s. ♦ (21)

In order to derive for HMC1, in the forthcoming Theorem 2, hn,k(d,m, s), 5 ≤ 2k+ 1 ≤
n, we next recall, in Lemma 1, a result from (Makri et al.: On the concentration of runs of
ones of length exceeding a threshold in a Markov chain, submitted).

Lemma 1 For (i, j) ∈ {0, 1}2, n ≥ 2, set λ
(i,j)
n,k (x) = P(Gn,k = x,X1 = i,Xn = j), x = 0, 1.

Then, it holds that:
(I) For 2 ≤ k ≤ n − 2 + i + j,

λ
(i,j)
n,k (0) =

n−(i+j)∑

y=1

y−1+i+j∑

r=i+j

(
y − 1

r − i − j

)
C(n − y − r, r, k − 2)π(i,j)

n (y, r),

λ
(i,j)
n,k (1) = π

(i,j)
n (0, 1)δ2,i+j+

n−k∑

y=1

y−1+i+j∑

r=1
r
(

y − 1
r − i − j

)
Hr−1(n−y−r−k+1, r, k−2)π(i,j)

n (y, r).

(22)

(II) For k > n − 2 + i + j,

λ
(i,j)
n,k (0) =

(
p(1)
1

)i (
1 − p(1)

1

)1−i
p(n−1)
ij ,

λ
(i,j)
n,k (1) = 0. (23)
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Theorem 2 For n ≥ 5, 2 ≤ k ≤ �(n − 1)/2�, (d,m, s) ∈ �n,k, 0 < p(1)
1 < 1, it holds

hn,k(d,m, s)=p2k−2
11

(
p(1)
1

)−1n−d+1∑

i=1
�
(α)

i−1,k�
(β)

n−d−i+1,k

m+
⌊
d−s−m+1

2

⌋

∑

r=m

d−s−r+m∑

y=r−1
γd,m,s(y,r)π(1,1)

d−2k+2(y,r),

(24)

where

�
(α)

n,k = p(1)
1 , for n = 0; p(n)

0 p01, for 1 ≤ n ≤ k; p01
[
λ

(0,0)
n,k (0) + λ

(1,0)
n,k (0)

]
, for n ≥ k+1,

�
(β)

n,k = 1, for n = 0; p10, for 1 ≤ n ≤ k; p10(p(1)
0 )−1

[
λ

(0,0)
n,k (0) + λ

(0,1)
n,k (0)

]
, for n ≥ k+1

(25)

and

γd,m,s(y, r)=
(
y − 1
r − 2

)(
r − 2
m − 2

)(
s − mk + m − 1

m − 1

)
C(d − y − s − r + m, r − m, k−2). (26)

Proof For 1 ≤ r1 ≤ r2 ≤ n let Yr1,r2 , Rr1,r2 , Lr1,r2 , Sr1,r2,k , Dr1,r2,k , Gr1,r2,k be RVs defined
on the subsequence Xr1 ,Xr1+1, . . . ,Xr2 of {Xt}nt=1. Form ≥ 2 define the event


r1,r1+d−1(d, s,m, y, r)

= {Dr1,r1+d−1,k = d,Gr1,r1+d−1,k = m, Sr1,r1+d−1,k = s,Yr1,r1+d−1 = y,Rr1,r1+d−1 = r}.

An element of this event is a 0 - 1 sequence of length d, starting and ending with a 1, for
which yj’s and zj’s, representing the lengths of the failure and success runs, respectively,
satisfy the conditions:

(a) y1 + y2 + . . . + yr−1 = y, yj ≥ 1, 1 ≤ j ≤ r − 1.
(b) z1 + zi1 + zi2 + . . . + zim−2 + zr = s, zj ≥ k, j ∈ {1, i1, i2, . . . , im−2, r}, for some specific

combination {1, i1, i2, . . . , im−2, r} of {1, 2, . . . , r − 1, r} among the
( r−2
m−2

)
ones.

(c) zim−1 + zim + . . . + zir−2 = d − y − s, 1 ≤ zij ≤ k − 1,m − 1 ≤ j ≤ r − 2, for
{im−1, . . . , ir−2} ∈ {1, 2, . . . , r} − {1, i1, i2, . . . , im−2, r}.

Fix i1, i2, . . . , im−2. Then the number of such sequences, i.e. the number of solutions of
the system (a)-(c), is

(
y − 1
r − 2

)
C(d − y − s − r + m, r − m, k − 2)

(
s − mk + m − 1

m − 1

)

and each such sequence has probability

p(1)
1 pk−1

11 (p(1)
1 )−1π(1,1)

d−2k+2(y, r)p
k−1
11 = p2k−2

11 π
(1,1)
d−2k+2(y, r).

Hence,

P(
r1,r1+d−1(d, s,m, y, r)) = p2k−2
11 π

(1,1)
d−2k+2(y, r)

(
r − 2
m − 2

)(
y − 1
r − 2

)(
s − mk + m − 1

m − 1

)

×C(d − y − s − r + m, r − m, k − 2).
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For k + 2 ≤ i ≤ n − k − d,m ≥ 2, we have that

P
(
U(1)
n,k = i,Dn,k = d,Gn,k = m, Sn,k = s,Yi,i+d−1 = y,Ri,i+d−1 = r

)

= P
{ [

(L1,i−1 < k,Xi−1 = 0) ∩ [(X1 = 0) ∪ (X1 = 1)]
] ∩ 
i,i+d−1(d, s,m, y, r)

∩ [
(Li+d,n < k,Xi+d = 0) ∩ [(Xn = 0) ∪ (Xn = 1)]

] }

=
[
λ

(0,0)
i−1,k(0) + λ

(1,0)
i−1,k(0)

]
p01

×
(
p(1)
1

)−1
P

(

i,i+d−1(d, s,m, y, r)

)
p10

[
λ

(0,0)
n−i−d+1,k(0) + λ

(0,1)
n−i−d+1,k(0)

]
/p(1)

0

=
[
λ

(0,0)
i−1,k(0) + λ

(1,0)
i−1,k(0)

]
p01

(
p(1)
1

)−1
p2k−2
11 π

(1,1)
d−2k+2(y, r)

×
(
r − 2
m − 2

)(
y − 1
r − 2

)(
s − mk + m − 1

m − 1

)

×C(d − y − s − r + m, r − m, k − 2)p10
(
p(1)
0

)−1 [
λ

(0,0)
n−i−d+1,k(0) + λ

(0,1)
n−i−d+1,k(0)

]
.

By similar reasoning we get the remaining cases of i, i.e. 1 ≤ i ≤ k+1 and n−d+1−k ≤
i ≤ n − d + 1. Then summing with respect to i, y and r we get the result.

Having found hn,k(d,m, s), we next proceed to obtain vn,k(d,m, s). In accomplishing
it, the required probabilities αn,k for HMC1 are recalled, in Lemma 2, from Arapis
et al. (2016) for k = 1, and they are computed via Lemma 1 for 2 ≤ k ≤ �(n − 1)/2�.

Lemma 2 For n ≥ k ≥ 1, the probability αn,k, for HMC1, is computed via the
expressions:
(I) For k = 1,

αn,1 = 1 − pn−3
00

{
p00 (1 + (n − 2)p01) + (n − 1)(n − 2)

2
p(1)
0 p201

}
, if p00 = p11

and

αn,1 = 1 − p(1)
0 pn−1

00 − pn−2
11

(
p(1)
1 + p(1)

0 p01
)

− p00
(
p(1)
0 p01 + p(1)

1 p10
) pn−2

11 − pn−2
00

p11 − p00

−p(1)
0 p01p10

pn−1
11 − pn−2

00
[
p11 + (n − 2) (p11 − p00)

]

(p11 − p00)2
, if p00 �= p11. (27)

(II) For 2 ≤ k ≤ n,

αn,k = 1 −
∑

(i,j)∈{0,1}2

[
λ

(i,j)
n,k (0) + λ

(i,j)
n,k (1)

]
. (28)

Theorem 3 For n ≥ 3, 1 ≤ k ≤ �(n − 1)/2�, (d,m, s) ∈ �n,k, 0 < p(1)
1 < 1, the PMF

vn,k(d,m, s) for a HMC1, with given P and p(1), is calculated by

vn,k(d,m, s) = α−1
n,khn,k(d,m, s), (29)

where αn,k and hn,k(d,m, s) are provided by Lemma 2 and Theorems 1 (for k = 1) and 2
(for 2 ≤ k ≤ �(n − 1)/2�), respectively.

Remark 1 For IID sequences, in implementing Theorem 3, one has to take into consider-
ation Eqs. (10) - (11), (19) and (21). Moreover, for speeding up calculations, one has to set
πn(y) in front of the inner summation in (22).
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5 A numerical example
In this example we compute some indicative numerics concerning two model (i.e. HMC1
and IID) 0 − 1 sequences {Xt}nt=1 which are considered in the paper. The common length
of these was taken small, i.e. n = 8, so that the required computations can also be carried
out by a hand/pocket calculator and thus it is possible to gain insight in the formulae
developed in Section Results, and also because of space limitations. The sequences that
have been used are as follows. Table 1: An IID sequence with p1 = 0.5. Table 2: A HMC1
sequence with p00 = p11 = 0.9, p(1)

1 = 0.5.
Both tables depict for k = 1, 2, 3, v8,k(d,m, s), (d,m, s) ∈ �8,k and f8,k(d), 2k+1 ≤ d ≤ 8

illustrating the numeric values of the involved probabilities. v8,k(d,m, s) and f8,k(d) were
computed via Eqs. (29) and (17), respectively.

6 Discussion and further study
In this article we have derived exact closed form expressions for PMF vn,k(d,m, s), n ≥ 3,
1 ≤ k ≤ �(n−1)/2�, (d,m, s) ∈ �n,k , of the RVVn,k | Mn,k defined on a 0−1 sequence of
homogeneous Markov-dependent trials. The method used is a combinatorial one relied
on results exploiting the internal structure of such a sequence.
As it is noticed in the Introduction the application domain of runs contains a diverse

range of fields. Indicative potential ones are next discussed.

Table 1 0 − 1 IID sequence with p1 = 0.5

s m d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

v8,1(d,m, s)

2 2 0.02739726 0.02283105 0.01826484 0.01369863 0.00913242 0.00456621

3 2 0.04566210 0.03652968 0.02739726 0.01826484 0.00913242

3 0.01826484 0.02739726 0.02739726 0.01826484

4 2 0.05479452 0.04109589 0.02739726 0.01369863

3 0.04109589 0.05479452 0.04109589

4 0.00913242 0.01369863

5 2 0.05479452 0.03652968 0.01826484

3 0.05479452 0.05479452

4 0.01826484

6 2 0.04566210 0.02283105

3 0.04566210

7 2 0.02739726

f8,1(d) 0.02739726 0.06849315 0.12785388 0.20547945 0.28310503 0.28767123

v8,2(d,m, s)

4 2 0.18518519 0.09259259 0.07407407 0.05555556

5 2 0.18518519 0.07407407 0.07407407

6 2 0.11111111 0.05555556

3 0.01851852

7 2 0.07407407

f8,2(d) 0.18518519 0.27777778 0.25925925 0.27777778

v8,3(d,m, s)

6 2 0.40000000 0.20000000

7 2 0.40000000

f8,3(d) 0.40000000 0.60000000
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Table 2 0 − 1 HMC1 sequence with p00 = p11 = 0.9, p(1)
1 = 0.5

s m d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

v8,1(d,m, s)

2 2 0.00914441 0.00872875 0.00831310 0.00789744 0.00748179 0.03366804

3 2 0.01745750 0.01662619 0.01579488 0.01496357 0.06733609

3 0.00010263 0.00019500 0.00027710 0.00166262

4 2 0.02493929 0.02369233 0.02244536 0.10100413

3 0.00029250 0.00055421 0.00374089

4 0.00000114 0.00001539

5 2 0.03158977 0.02992715 0.13467217

3 0.00055421 0.00498786

4 0.00002053

6 2 0.03740894 0.16834021

3 0.00415655

7 2 0.20200826

f8,1(d) 0.00914441 0.02618626 0.04998121 0.07946192 0.11361346 0.72161274

v8,2(d,m, s)

4 2 0.02225160 0.02081956 0.01806565 0.08228685

5 2 0.04163913 0.03569068 0.16259088

6 2 0.05353602 0.24091210

3 0.00099141

7 2 0.32121613

f8,2(d) 0.02225160 0.06245869 0.10729236 0.80799735

v8,3(d,m, s)

6 2 0.06896552 0.31034483

7 2 0.62068966

f8,3(d) 0.06896552 0.93103448

Encoding, compression and transmission of digital information calls for the under-
standing the distributions of runs of 1s or 0s. Such a knowledge helps in analyzing, and
also in comparing, several techniques used in communication networks. In such net-
works 0 − 1 data ranging from a few kilobytes (e.g. e-mails) to many gigabytes of greedy
multimedia applications (e.g. video on demand) are highly encoded, decoded and even-
tually proceeded under security. For details, see e.g., Sinha and Sinha (2009), Makri and
Psillakis (2011a) and Tabatabaei and Zivic (2015).
An area where the study of runs of 1s and 0s has become increasingly useful is the

field of bioinformatics or computational biology. For instance, molecular biologists design
similarity tests between two DNA sequences where a 1 is interpreted as a match of the
sequences at a given position and everything else as a 0. Moreover, the probabilistic anal-
ysis of such sequences according to the form, the length and the number of detected
patterns as well as of the positions and the lengths of the segments of the sequence
in which they are concentrated, probably suggests a functional reason for the inter-
nal structure of the examined sequence. The latter facts might be useful in suggesting
a further investigation of the underline sequence(s) by biologists. See, e.g. Avery and
Henderson (1999), Benson (1999) and Nuel et al. (2010).
Another active area where run statistics, in particular Gn,k and Sn,k , have interesting

statistical applications is that connected to hypothesis testing; e.g., in tests of randomness.
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For a systematic study of such a topic, we refer among others, the works of Koutras and
Alexandrou (1997) and Antzoulakos et al. (2003).
Accordingly, it is reasonable for one to use the exact expressions obtained for

vn,k(d,m, s) in applications like the ones mentioned above. This is so, because this dis-
tribution, as a joint one, is more flexible than each one of its marginals which have been
used in such applications. See, e.g. Lou (2003), Makri and Psillakis (2011b) and Arapis
et al. (2016).
Moreover, in handling 0 - 1 sequences of a large length, with dependent or not

elements, a Monte - Carlo simulation, based on Eqs. (1) - (4) would be a useful tool
in obtaining approximate values for vn,k(d,m, s). In addition, the general approximating
methods, suggested by Johnson and Fu (2014), might be helpful in deriving approximate
values for fn,k(d).
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