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Abstract

Quantile regression estimates conditional quantiles and has wide applications in the
real world. Estimating high conditional quantiles is an important problem. The regular
quantile regression (QR) method often designs a linear or non-linear model, then
estimates the coefficients to obtain the estimated conditional quantiles. This approach
may be restricted by the linear model setting. To overcome this problem, this paper
proposes a direct nonparametric quantile regression method with five-step algorithm.
Monte Carlo simulations show good efficiency for the proposed direct QR estimator
relative to the regular QR estimator. The paper also investigates two real-world
examples of applications by using the proposed method. Studies of the simulations
and the examples illustrate that the proposed direct nonparametric quantile regression
model fits the data set better than the regular quantile regression method.
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1 Introduction
It is important to study quantile regression to estimate high conditional quantiles in real-
world events Koenker (2005). Some extreme events can cause damages to society: stock
market crashes, pipeline failures, large flooding, wildfires, pollution, earth quakes and
hurricanes. We wish to estimate high conditional quantiles of a random variable y with
cumulative distribution function (c.d.f.) F(y) given a variable vector, x = (x1,x2, . . . ,xd),
and xp = (1, x1, x2, . . . , xd)T ∈ Rp where p = d + 1. The τ th conditional linear quantile is
defined by

Qy(τ |x) = Qy(τ |x1, x2, . . . , xd) = F−1(τ |x), 0 < τ < 1. (1)

The traditional quantile regression is concernedwith the estimation of the τ th conditional
quantile regression (QR) of y for given x which often sets a linear model as

Qy(τ |x) = xTp β(τ) = β0(τ ) + β1(τ )x1 + · · · + βd(τ )xd, 0 < τ < 1, (2)

where β(τ) = (β0(τ ),β1(τ ),β2(τ ), . . . ,βd(τ ))T .
For linear model (2), we estimate the coefficient β(τ) =

(β0(τ ),β1(τ ),β2(τ ), . . . ,βd(τ ))T ∈ Rp from a random sample {(yi, xi), i = 1, . . . , n},
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where xpi = (1, xi1, xi2, . . . , xid)T is the p-dimensional design vector and yi is the uni-
variate response variable from a continuous distribution with a c.d.f. F(y). Koenker and
Bassett (1978) proposed an L1-weighted loss function to obtain estimator ̂β(τ) by solving

̂β(τ) = arg min
β(τ)∈Rp

n
∑

i=1
ρτ (yi − xTpiβ(τ)), 0 < τ < 1, (3)

where ρτ is a loss function, namely

ρτ (u) = u(τ − I(u < 0)) =
{

u(τ − 1),u < 0;
uτ , u ≥ 0.

The linear quantile regression problem can be formulated as a linear program

min
(β(τ ),u,v)∈Rp×R2n+

{τ1Tn u + (1 − τ)1Tn v|Xβ(τ) + u − v = y},

where 1Tn is an n-vector of 1s,X denotes the n×p designmatrix, and u, v are n× 1 vectors
with elements of ui, vi, i = 1, . . . , n, respectively (Koenker, 2005).
In recent years, studies are looking for efficiency improvements of estimator (3) (Yu et

al. 2003; Wang and Li 2013; Huang et al. 2015; Huang and Nguyen 2017). The regular
linear quantile regression (2) needs the estimator ̂β(τ) in (3) for the estimated conditional
quantile curves. But this estimated conditional quantile curve may be restricted under the
model setting.
Many studies have used nonparametric method of quantile regression in recent years,

for example, Chaudhuri (2003), Yu and Jones (1991), Hall et al. (1999) and Yu et al. (2003).
Chapter 7 in Keoker (2005) proposed a local polynomial quantile regression (LPQR),
and other methods. Also we can see detailed discussions on theory, methodologies and
applications in Li and Racine (2007) and Cai (2013).
In order to overcome the limitation of the model setting in (2) in this paer we propose a

direct nonparametric quantile regression method which uses the ideas of nonparametric
kernel density estimation and nonparametric kernel regression. The proposed method is
not only different from most other existing nonparametric quantile regression methods,
it also overcome thecrossing problem of estimating quantile curves. We like to see if the
new method has an improvement relative to the regular linear quantile regression and
other nonparametric quantile regression methods, we will do two studies in this paper:
1. Monte Carlo simulations will be performed to confirm the better efficiency of the

new direct QR estimator relative to the regular QR estimator and a nonparametric LPQR.
2. The new proposed method will be applied to two real-world examples of extreme

events and compared with the linear model in Huang and Nguyen (2017).
In Section 2, we propose a direct nonparametric quantile regression estimator. A rel-

ative measure of comparing goodness-of-fit for quantile models is given in Section 3. In
Section 4, the results ofMonte Carlo simulations generated fromGumbel’s second kind of
bivariate exponential distribution Gumbel (1960) show that the proposed direct method
produces high efficiencies relative to existing linear QR and LPQRmethods. In Section 5,
the regular linear quantile regression and the proposed direct quantile regression are
applied to two real-life examples: the Buffalo snowfall and CO2 emission examples in
Huang and Nguyen (2017). The study of these examples illustrate that the proposed direct
nonparametric quantile regression model fits the data better than the existing linear
quantile regression method.
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2 Proposed direct nonparametric quantile regression
In this paper, for generality, we ignore the idea of the linear model (2).We obtain a direct
estimator for true conditional quantile in (1):

̂Qy(τ |x) = ̂Qy(τ |x1, x2, . . . , xd) = ̂F−1(τ |x),
by using local conditional quantile estimator ξi(τ |xi) = Qy(τ |xi) based the ith point of
given random sample,

{

(yi, xi), i = 1, . . . , n
}

, for xi = (x1i, x2i, . . . , xdi)T .

We construct the following a five-step algorithm of a direct nonparametric quantile
regression:
Step 1: Estimate the conditional density of y for given x = (x1,x2, . . . ,xd) using a kernel

density estimation method (Silverman 1986; Scott 2015):

̂f (y|x) =
̂f (y, x)
ĝ(x)

, (4)

wherêf (y, x) is an estimator of the joint density of y and x, and ĝ(x) is an estimator of the
marginal density of x.
A d-dimensional kernel density estimator from a random sample Xi =

(X1i,X2i, . . . ,Xdi), i = 1, 2, . . . , n, from a population x = (x1,x2, . . . ,xd) for joint density
g(x),is given by

ĝ(x) = 1
nhd

n
∑

i=1
K

{

x − Xi
h

}

,

where h > 0 is the bandwidth and the kernel function K(x) is a function defined for
d-dimensional x = (x1, x2, . . . , xd) which satisfies

∫

Rd
K(x)dx = 1.

Fukunaga (1972) suggested using

ĝ(x) = (det S)−1/2

nhd

n
∑

i=1
k

{

(x − Xi)TS−1(x − Xi)

h2

}

,

where S is the sample covariance matrix of the data, K is the normal kernel, the function
k is

k(u) =
(

1
2π

)d/2
exp

(

−u
2

)

, k(xTx) = K(x) = (2π)−d/2 exp
(

−1
2
xTx

)

.

A plug-in selector of the bandwidth h > 0 will be given by (Silverman 1986, p. 85) as

hopt =
{∫

t2K(t)dt
}−2/(d+2) {∫

K(t)2dt
}1/(d+4) {∫

(∇2g(x)
)2 dx

}−1/(d+4)
n−1/(d+4),

(5)

If a multivariate normal kernel is used for smoothing the normal distribution data with
unit variance,

hopt =
{

4
d + 2

}1/(d+4)
n−1/(d+4).

Step 2: Estimate the conditional c.d.f. of y given x :

̂F(y|x) =
∫ y

−∞
̂f (y|x)dy.
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Step 3: Estimate the local conditional quantile function ξ(τ |x) of y given x by inverting
an estimated conditional c.d.f.̂F(y|x).

̂ξ(τ |x) = ̂Qy(τ |x) = inf{y : ̂F(y|x) ≥ τ } = ̂F−1(τ |x).
It is difficult to compute a global inverse function ̂ξ(τ |x) of the kernel estimated

conditional c.d.f.̂F(y|x)which has many terms. To avoid the the computational global dif-
ficulties, we estimate the local conditional quantile point ξi(τ |xi) of y given xi by inverting
̂F(y|xi) at the ith data point (yi, xi):

̂ξi(τ |xi) = ̂Qy(τ |xi) = inf{y : ̂F(y|xi) ≥ τ } = ̂F−1(τ |xi), i = 1, 2, . . . , n. (6)

Thus, we have n points
(

xi,̂ξi(τ |xi)
)

, i = 1, 2, . . . , n.
Step 4: We propose a direct nonparametric quantile regression estimator for the

τ th conditional quantile curve of x by using Nadaraya-Watson (NW) nonparametric
regression estimator (Scott, 2015, p. 242) on

(

xi,̂ξi(τ |xi)
)

, i = 1, 2, . . . , n :

QD(τ |x) = ̂ξ(τ |x) =

n
∑

i=1
Kh {x − Xi}̂ξi(τ |xi)
n
∑

j=1
Kh

{

x − Xj
}

=
n

∑

i=1
Whx(x,Xi)̂ξi(τ |xi), 0 < τ < 1,

(7)

whereWhx(x,Xi) is called an equivalent kernel, and h = (h1, . . . , hd),

Whx(x,Xi) = Kh {x − Xi}
n
∑

j=1
Kh

{

x − Xj
}

, i = 1, 2, . . . , n,

where

Kh {x − Xi} = 1
nh1 . . . hd

d
∏

j=1
K

(x − xij
hj

)

, i = 1, . . . , n,

where K is the kernel function, and hj > 0 is the bandwidth for the j th dimension.
The new point of (7) is that it uses Step 3’s (6) numerical results: n points

(

xi,̂ξi(τ |xi)
)

, i = 1, 2, . . . , n, to estimate a conditional mean curve of the τ th quantile
function based on these n points, then smoothes these n points out.
In this paper, for the kernel regression, we use K which is the standard normal

kernel. Similar as formula (5), we use the optimal bandwidth for the jth dimension
(Silverman 1986, p.40),

hj,opt =
{∫

t2K(t)dt
}−2/5 {∫

K(t)2dt
}1/5 {∫

(∇2ĝj(xj)
)2 dxj

}−1/5
n−1/5, j=1, . . . , d,

(8)

where ĝj(xj) is the estimated the jth dimensional marginal density of xj in x =
(x1, x2, . . . ,xd), n is the sample size of the random sample in (4).
Step 5: Check all procedures, and make any necessary adjustments.

3 Comparison of goodness-of-fit on quantile regressionmodels
In order to compare the regular QR estimator in (3) and the direct nonparametric QR esti-
mator in (7), we extend the idea of measuring goodness-of-fit by Koenker and Machado
(1999). We suggest using a Relative R(τ ), 0 < τ < 1, which is defined as
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Relative R(τ ) = 1 − VD(τ )

VR(τ )
, −1 ≤ R(τ ) ≤ 1, where (9)

VD(τ ) =
∑

yi≥QD(τ |xi)

τ

n
∣

∣yi − QD(τ |xi)
∣

∣ +
∑

yi<QD(τ |xi)

(1 − τ)

n
∣

∣yi − QD(τ |xi)
∣

∣ ,

where QD(τ |xi) is obtained by (7), and

VR(τ ) =
∑

yi≥xTi ̂β(τ)

τ

n

∣

∣

∣yi − xTi ̂β(τ)

∣

∣

∣ +
∑

yi<xTi ̂β(τ)

(1 − τ)

n

∣

∣

∣yi − xTi ̂β(τ)

∣

∣

∣ ,

where ̂β(τ) is given by (3).

4 Simulations
For investigating the proposed direct nonparametric quantile regression estimator in (7),
in this Section, Monte Carlo simulations are performed. We generate m random sam-
ples with size n each from the second kind of Gumbel’s bivariate exponential distribution
Gumbel (1960) which has a non-linear conditional quantile function of y given x in (11).
It has c.d.f. F(x, y) and density function f (x, y) in (10):

F(x, y) = (1 − e−x)(1 − e−y)(1 + αe−(x+y)), x ≥ 0, y ≥ 0, α > 0, (10)

f (x, y) = e−(x+y)(1 + α(2e−x − 1)(2e−y − 1)), x ≥ 0, y ≥ 0, α > 0.

The conditional density of y for given x is

f (y|x) = e−y(1 + α(2e−x − 1)(2e−y − 1)), x ≥ 0, y ≥ 0, α > 0.

The conditional c.d.f. of y for given x is

F(y|x) = e−y(α(2e−x − 1)(1 − e−y) − 1) + 1, x ≥ 0, y ≥ 0, α > 0.

The true τ th conditional quantile function of y given x of (10) is

ξ(τ |x)=Qy(τ |x)= ln
(

2α(2e−x − 1)
α(2e−x−1)−1+√

(α(2e−x−1)+1)2 − 4ατ(2e−x − 1)

)

, (11)

x ≥ 0, α > 0, 0 < τ < 1.

Letting α = 1, the c.d.f. in (10) is in Fig. 1.
We use three quantile regression methods:
1. The regular quantile regression QR(τ |x) estimation based on (3):

QR(τ |x) = ̂β0(τ ) + ̂β1(τ )x. 0 < τ < 1 (12)

2. The first-order linear polynomials Quantile Regression (LPQR) QLP(τ |x) (Chaud-
huri 1991, Keoker 2005, Yu and Jones 1998), for z in a neighborhood of x,

QLP(τ |x) = â0(τ , x) + â1(τ , x)(z − x). 0 < τ < 1, (13)

where
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Fig. 1 The c.d.f. of Gumbel’s Second kind of bivariate exponential distribution with α = 1

â(τ , x) = arg min
β(τ)∈Rp

n
∑

i=1
ρτ (yi−a0(τ , x)−a1(τ , x)(xi−x))K

(

x − xi
h

)

, 0 < τ < 1,

here a(τ , x) = (a0(τ , x), a1(τ , x))T , h and K are the bandwidth and kernel function. the
LPQR can be computed by the R package ‘quantreg’ Koenker (2018).
3. The direct nonparametric quantile regression QD(τ |x) estimation based on (7)

QD(τ |x) =
n

∑

i=1
Whx(x,Xi)̂ξi(τ |xi), 0 < τ < 1, (14)

where ̂ξi(τ |xi) is obtained by (6), Whx(x,Xi) is given by (7).
For each method, we generate size n = 100,m = 100 samples. QR,i(τ |x), QLP,i(τ |x) and

QD,i(τ |x), i = 1, 2, . . . ,m, are estimated in the ith sample. Let α = 1 in (11). Then the
true τ th conditional quantile is

ξ(τ |x) = Qy(τ |x) = ln
(

2e−x − 1
e−x − 1 + √

e−2x − τ(2e−x − 1)

)

, x ≥ 0, α > 0, 0 < τ < 1.

(15)

The simulation mean squared errors (SMSEs) of the estimators (12), (13) and (14) are:

SMSE(QR(τ |x)) = 1
m

m
∑

i=1

∫ N

0
(QR,i(τ |x) − Qy(τ |x))2dx; (16)

SMSE(QLP(τ |x)) = 1
m

m
∑

i=1

∫ N

0
(QLP,i(τ |x) − Qy(τ |x))2dx, (17)

SMSE(QD(τ |x)) = 1
m

m
∑

i=1

∫ N

0
(QD,i(τ |x) − Qy(τ |x))2dx, (18)

where the true τ th conditional quantile Qy(τ |x) is defined in (15). N is a finite x value
such that the c.d.f. in (10) F(N ,N) ≈ 1. We take N = 6 and the simulation efficiencies
(SEFFs) are given by
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Table 1 Simulation Mean Square Errors (SMSEs) and Efficiencies (SEFFs) of Estimating
Qy(τ |x),m = 100, n = 100,N = 6.

τ 0.95 0.96 0.97 0.98 0.99

SMSE(QR(τ |x)) 22.091 26.632 28.982 42.725 73.340

SMSE(QLP(τ |x)) 8.160 9.667 11.074 15.080 23.734

SMSE(QD(τ |x)) 5.161 6.630 6.552 8.850 11.596

Efficiency

SEFF(QLP(τ |x)) 2.7072 2.7449 2.6171 2.8332 3.0901

SEFF(QD(τ |x)) 4.2804 4.0169 4.4234 4.8278 6.3246

SEFF(QLP(τ |x)) = SMSE(QR(τ |x))
SMSE(QLP(τ |x)) , SEFF(QD(τ |x)) = SMSE(QR(τ |x))

SMSE(QD(τ |x)) ,

where SMSE(QR(τ |x)), SMSE(QLP(τ |x)) and SMSE(QD(τ |x)) are defined in (16), (17) and
(18), respectively.
Table 1 shows that all of the SEFF(QD(τ |x)) are larger than 1 when τ = 0.95,. . . , 0.99.
Figure 2 compares the SMSE(QR(τ |x)), SMSE(QLP(τ |x)) with the SMSE(QD(τ |x)) for

τ = 0.95, . . . , 0.99. It demonstrates that all SMSE(QD(τ |x)) have smaller values than both
SMSE(QLP(τ |x)) and SMSE(QR(τ |x)), thus, the simulation results show that the proposed
estimator QD(τ |x) is more efficient relative to the regular linear estimator QR(τ |x) and
nonparametric local polynomial estimator QD(τ |x).
Next, we compare QD(τ |x) and QR(τ |x) in Figs. 3 and 4.
Figure 3 shows the boxplots of QR(τ |x) and QD(τ |x) for τ = 0.95, 0.97, and 0.99.(The

true conditional quantiles are in blue line). The QD(τ |x) has much smaller variance than
QR(τ |x)s.
Figure 4 shows the average curves of the 100 estimated τ = 0.95th quantile curves of

QR(τ |x) (in blue dash line) and that of QD(τ |x) (in red solid). The average QD(τ |x) curve
is much closer than QR(τ |x) to the true quantile curve (in green dash).

Fig. 2 a SMSE(QD(τ )) is the red solid line, SMSE(QLP(τ )) is the green dash-dot line, SMSE(QR(τ |x)) is the blue
dash line. b SEFF(QD(τ |x)) is the red solid line, SEFF(QLP(τ |x)) is the green dash-dot line,SEFF(QR(τ |x)) ≡ 1 is
blue dash line
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Fig. 3 Box plots for (a) τ = 0.95th quantile curves; (b) τ = 0.97th quantile curves; (c) τ = 0.99th quantile
curves. The true conditional quantile lines are in blue

From the overall results of the simulation, we can conclude that Table 1 and Figs. 2, 3,
and 4 show that for τ = 0.95, . . . , 0.99, the proposed direct estimator QD(τ |x) in (7) is
more efficient relative to the regular regressionQR(τ |x) in (2) and a nonparametric LPQR
in (13).

5 Real examples of applications
In this section, we apply the following two regression models to the Buffalo snowfall and
CO2 emission examples in Huang and Nguyen (2017):
1. The regular quantile regression QR(τ |x) in model (2) using estimator ̂β(τ) in (3);
2. The direct nonparametric quantile regression QD(τ |x) in (7).

5.1 Buffalo snowfall example

Huang and Nguyen (2017) used the following linear second order polynomial quantile
regression model for this example (National Weather Service Forecast Office 2017):

Qy(τ |x) = β0(τ ) + β1(τ )x + β2(τ )x2,

Fig. 4 In n = 100,m = 100, τ = 0.95 simulations, the true Quantile-green dash; average regular QR-blue
dash; average direct QD-red solid
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Table 2 Buffalo Daily Snowfalls (cm) at High Quantiles Using QR and QD

τ = 0.97 τ = 0.99

Temperature (◦C) QR QD QR QD

-15 37.38 25.49 105.46 60.64

-10 33.19 30.23 87.95 62.98

-5 30.98 33.33 72.08 56.54

0 30.73 29.89 57.86 54.56

5 32.47 33.27 45.29 52.39

10 36.17 37.34 34.36 43.04

where y represents the total snowfall (cm) and x represents the maximum temperature
(◦C).
In this paper we use the proposed five-step algorithm in Section 2 to obtain the new

direct nonparametric quantile estimator QD(τ |x) in (7). We compare the new estimator
QD(τ |x)with the regular quantile estimatorQR(τ |x) in Huang andNguyen (2017). Table 2
and Fig. 5 show the difference of values of two estimators. Figure 5a, b and c show the
scatter plot of the daily snowfall vs. maximum temperature with the fitted QR, and QD

Fig. 5 For Buffalo snowfall example, data − blue, n = 316, (a) Regular QR− dash; (b) Direct QD− solid; (c)
Both of the Regular QR and Direct QD in a plot at τ = 0.95 in black, τ = 0.97 in green and τ = 0.99 in red
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Fig. 6 Relative Rτ of QD relative to QR for the Buffalo snowfall example

quantile curves at τ = 0,95, 0.97 and 0.99. It is interesting to see that theQD curves appear
to follow the data patterns closer than the QR curves.
Table 2 lists the estimated Buffalo snowfall quantile values at a given maximum tem-

perature for τ = 0.97 and 0.99. It demonstrates that when quantiles are at high τ , the QD
gives greater variety of snowfall predictions than theQR. The relationship of snowfall and
max-temperature is not necessarily linear.
Figure 6 and Table 3 show the values of the Relative R(τ ) in (9) for given τ =

0.95, . . . , 0.99.We note that R(τ ) > 0 which means that VD(τ ) < VR(τ ) andQD is a better
fit to the data than QR.
Figure 5c shows that the proposed direct nonparametric quantile regression QD pre-

dicts that for moderate temperatures, such as 5◦C to 10◦C, it is likely to have smaller
but varied snowfalls in Buffalo than the regular QD predicts. For temperature over
10◦C, the QD predicts a much higher value snow amount than the regular QR pre-
dicts. On another side, for very low temperatures, such as − 15◦C to 0◦C, the QD
and QR both predict more likely to have extreme heavy snowfalls that may cause
damage. Thus prediction of heavy snowfalls is related to cold weather forecasts. But
the prediction snowfalls related to temperature from the QD is not as a simple lin-
ear relationship as QR predicts. We also note that lots of snow occurred between
-5◦C to 0◦C; the predictions form the QD are reflecting this fact and give varied
predictions.

5.2 CO2 emission example

Huang and Nguyen (2017) used the linear quantile regression model for this example:

Qy(τ |x1, x2) = β0(τ ) + β1(τ )x1 + β2(τ )x2,

where y represents CO2 emission (tonnes) per capita, x1 represents ln of gross domestic
product (GPD) (US $), per capita and x2 represents ln of electricity consumption (E.C.)
(kilowatts) per capita (Carbon Dioxide Information Analysis Centre (2017)).
Similar as in the Buffalo Snowfall example in Subsection 5.1, we use the proposed five-

step algorithm in Section 2 to obtain the new direct nonparametric quantile estimator

Table 3 Relative R(τ ) Values for the Buffalo Snowfall Example

τ = 0.95 τ = 0.96 τ = 0.97 τ = 0.98 τ = 0.99

Relative R(τ ) 0.0359 0.0346 0.0324 0.0903 0.1206
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Fig. 7 3D Plots for CO2 Emission, data − blue, n = 123, (a) Regular QR− green at τ = 0.97; (b) Direct QD−
red at τ = 0.97; (c) Regular QR−green and Direct QD−red in a plot at τ = 0.97

Fig. 8 2D plots for CO2 Emission, data − blue, n = 123, (a) Regular QR (in dash) and direct QD (in solid) of the
CO2 emission vs ln(GDP) when the country’s E.C. is 2980.96 kilowatts at τ = 0.97 (green) and 0.99 (red). (b)
Regular QR (in dash) and direct QD (in solid) of the CO2 emission vs ln(E.C.) when the country’s GDP is
$13,359.73 at τ = 0.97 (green) and 0.99 (red)
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Table 4 CO2 Emission per capita at high quantiles given ln(GDP) estimators QR and QD

τ = 0.97

ln of GDP per capita ($) QR QD

7.5 15.2181 8.8737

8 18.0437 10.1949

8.5 20.8693 11.7828

9 23.6950 14.4143

9.5 26.5206 19.0458

10 29.3462 24.0338

10.5 32.1718 27.9596

11 34.9975 31.1097

11.5 37.8231 30.7696

12 40.6487 31.2366

2980.96 Kilowatts of Electricity Consumed per capita

QD(τ |x) in (7).We compare the new estimator QD(τ |x) with the regular quantile estima-
torQR(τ |x) in Huang and Nguyen (2017). Figures 7, 8 and Tables 4, 5 show the differences
of the values of two estimators. Figure 7a shows the 3D scatter plot of CO2 emission vs
ln(GDP) and ln(EC) with the fitted regularQR surface at τ = 0.97. Figure 7b shows the 3D
scatter plot of CO2 emission vs ln(GDP) and ln(EC) with the fitted direct QD surface at
τ = 0.97. Figure 7c shows the 3D scatter plot with both the regular QR (green) and direct
QD (red) quantile surfaces of CO2 emission vs the ln(GDP) and ln(E.C.) at τ = 0.97. It is
interesting to see the difference between the QR and QD quantile surfaces.
We may see the QR and QD quantile curves more cleanly in 2D plots. Figure 8a shows

the 2D scatter plot of CO2 emission vs ln(GDP) when the country’s E.C. is 2980.96 kilo-
watts with the fitted regular QR and direct QD curves at at τ = 0.97. Figure 8b shows
the 2D scatter plot of CO2 emission vs ln(E.C.) when the country’s GDP is $13,359.73
with the fitted regular QR and direct QD curves at at τ = 0.97. We note that the QR
and QD quantile regression curves appear to fit the data. In general, the QD curves
follow the data patterns closer than QR quantile lines, and the QD produces different
estimated CO2 emissions than the QR estimated at high quantiles. In Fig. 7, it is inter-
esting to see that the QD conditional quantile surfaces are not linear as the linear planes
of the QR.
Tables 4 and 5 provide details of the estimated high quantiles about countries’ CO2

emission at τ = 0.97 when the countries consume 2980.96 kilowatts of electricity and
have a GDP of $13,359.73, respectively.

Table 5 CO2 emission per capita at high quantiles given ln(E.C.) estimators QR and QD

ln of Electricity Consumption τ = 0.97

per capita (kilowatts) QR QD

0 6.9775 7.1919

2 11.8632 7.2759

4 16.7490 24.6924

6 21.6348 9.5560

8 26.5206 15.9569

10 31.4064 31.5634

12 36.2921 39.6481

GDP per capita of 13, 359.73
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Fig. 9 Relative R(τ ) of QD relative to QR for the CO2 emission example

Figure 9 and Table 6 show the Relative R(τ ) in (9), for τ = 0.95, . . . , 0.99. All values of
Relative R(τ ) are larger than 0, which signifies that VD(τ ) < VR(τ ) and it also suggests
that the direct quantile regression estimator QD is a better fit to the CO2 emission data
than the regular quantile regression estimator QR.
Over all, it is interesting to see that the proposed direct estimator QD gave more vari-

ety of predictions than the QR on CO2 emissions relative to gross domestic product and
amounts of electricity produced. The relationships are not necessarily linear and model
free. We expect that the predictions from QD may be more reasonable. The predictions
may benefit prevention of further damages of CO2 emissions to the environment.

6 Conclusions
After the above studies, we can conclude:
1. This paper proposes a new direct nonparametric quantile regression method which

is model free. It uses nonparametric density estimation and nonparametric regression
techniques to estimate high conditional quantiles. The paper provides a computational
five-step algorithm which overcomes the limitations of the estimation in the linear
quantile regression model and some other nonparametric quantile regression methods.
2. The Monte Carlo simulation works on the second kind of Gumbel’s bivariate expo-

nential distribution which has a nonlinear conditional quantile function. The simulation
is different from the bivariate Pareto distribution which has a linear conditional quantile
function, in Huang and Nguyen (2017). The simulation results confirm that the proposed
new method is more efficient relative to the regular quantile regression estimators and a
local polynomial nonparametric estimator.
3. The proposed new direct nonparametric quantile regression can be used to predict

extreme values of snowfall and CO2 emission examples in Huang and Nguyen (2017). The
proposed direct quantile regression QD estimator gives a variety of predictions which fits
data very well. The prediction of relationships are not simply just linear. We expect that
the predictions from QD may be more reasonable than the regular quantile regression
predictions. The new estimator may benefit prevention of further damages of the extreme
events to human and the environment.
4. The proposed direct nonparametric quantile regression provides an alternative way

for quantile regression. Further studies on the details of this method are suggested.

Table 6 Relative R(τ ) values for CO2 emission example

τ = 0.95 τ = 0.96 τ = 0.97 τ = 0.98 τ = 0.99

Relative R(τ ) 0.3480 0.3612 0.3494 0.2895 0.2151
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