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Abstract
The objective of this study was to test statistical features from the electroencephalogram
(EEG) recordings as predictors of neurodevelopment and cognition of Ugandan
children after coma due to cerebral malaria. The increments of the frequency bands of
EEG time series were modeled as Student processes; the parameters of these Student
processes were estimated and used along with clinical and demographic data in a
machine-learning algorithm for the prediction of children’s neurodevelopmental and
cognitive scores 6 months after cerebral malaria illness. The key innovation of this work
is in the identification of stochastic EEG features that can serve as language-independent
markers of the impact of cerebral malaria on the developing brain. The results can
enhance prognostic determination of which children are in most need of rehabilitative
interventions, which is especially important in resource-constrained settings such as
sub-Saharan Africa.
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1 Introduction
Cerebral malaria (CM) affects over half a million people annually and has high prevalence
in sub-Saharan Africa. Different sources indicate distinct mortality rates, but for children
it is above 40 percent (Idro et al. 2010). For those who survive, the sequelae could include
neurodevelopmental impairments and metabolic disturbances.
During CM the red blood cells are parasitized, most often by Plasmodium Falci-

parum. P. Vivax and P. Knowlesi are also known to cause severe malaria, but unlike
P. Falciparum they do not lead to coma (WHO 2014). Coma is the principal diag-
nostic difference between severe malaria and CM, with lumbar puncture ruling out
bacterial central nervous system (CNS) infection or other cause of coma beyond severe
malaria. CM is specific to P. Falciparum and is distinctive from other forms of malaria
because of the sequestration of infected red blood cells in the microvasculature of the
brain and compromise of the blood/brain barrier contributing to an immunopathogenic
inflammatory cascade. This cascade together with ischemic and metabolic effects cause
coma and often seizures during illness and contribute to the neuropathogenic basis of

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-018-0086-7&domain=pdf
http://orcid.org/0000-0001-7397-1033
mailto: mveretennikova@hse.ru
http://creativecommons.org/licenses/by/4.0/


Veretennikova et al. Journal of Statistical Distributions and Applications             (2018) 5:8 Page 2 of 12

subsequent neurological and neurocognitive sequelae (John et al. 2008). Since coma is
defined as prolonged unconsciousness and unresponsiveness (usually between 1 h and
4 weeks), clinical language-independent data provide the only opportunity to gauge the
extent to which brain injury may impact subsequent neurodevelopment and cognitive
function.
Today there is a number of different techniques for the statistical analysis of the brain.

Despite some limitations, EEG is still widely used as a noninvasive way to monitor
patients, predict seizure onsets and to determine the amount of activity in near-death
states. In Awal et al. (2016) the authors use EEG features to predict neurodevelop-
mental outcomes for term infants with hypoxic ischaemic encephalopathy (HIE). The
association between brain activity during coma and trauma outcomes was investigated
in Malagurski et al. (2017) and Juan et al. (2015). Statistical analysis of EEG has been
used to identify quasi-brain-death from coma (Li et al. 2014) and to confirm brain death
(Chen et al. 2008).
Much of the work on the analysis of EEG data has focused on classification (Kirch et al.

2015; Piryatinska et al. 2009; Temko et al. 2011) or prediction of seizures (Duncan et al.
2013) without specification of the model for the underlying stochastic process. The use
of spectral methods for the EEG time series, while popular, is problematic due to the evi-
dence of non-stationarity of the process (Ignaccolo et al. 2009). In this paper we propose
a stochastic model for the EEG time series, where for each frequency band the increment
process is assumed to be a Student process, realized as Lévy driven Ornstein-Uhlenbeck-
type process. The parameters of the Student marginal distribution are estimated and
entered into a machine learning algorithm to test their association with children’s neu-
rodevelopmental and cognitive scores 6 months after cerebral malaria illness. The use of
the Student distribution parameters markedly improves explained variation of neurode-
velopment and cognition compared to using only demographic and clinical characteristics
including plasma and cerebrospinal fluid biomarkers, or prediction based upon frequently
used traditional EEG features. Identification of biomarkers such as the parameters of
stochastic models for the EEG data has the potential to enhance diagnostic and prognostic
determination by complementing the very limited clinical expertise in neurologists able to
read and interpret EEG in resource constrained settings. Further, language-independent
markers of neurodevelopment and cognition based on stochastic features of EEG data can
complement the limited expertise available in sub-Saharan Africa for developmental and
cognitive evaluations.

2 Dataset and preprocessing
Data used in this analysis were collected during the observational study of the patho-
genesis of severe malaria (cerebral malaria (CM) and severe malarial anemia (SMA)) in
surviving children, along community control children from their households who did
not have a history of severe malaria (Bangirana et al. 2016). The study was performed
at Mulago National Referral and Teaching Hospital in Kampala, Uganda in 2008 − 2015.
Children with cerebral malaria, severe malarial anemia, or community control children
were enrolled if they were between 18 months and 12 years of age. Cerebral malaria
was defined as: 1) coma (Blantyre Coma Score [BCS] ≤ 2; 2) Plasmodium falciparum
on blood smear; and 3) no other known cause of coma (e.g., hypoglycemia-associated
coma reversed by glucose infusion, meningitis, or a prolonged postictal state). Children
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were enrolled after obtaining written informed consent in the local language from their
parent(s) and signed assent from children 7 years of age and older.
The observational study was approved by the Institutional Review Boards of the Mak-

erere University School of Medicine and the University of Minnesota. Data from CM
malaria children were included in this study as EEGs were done only for them and not
SMA or community control children. Data from community controls were used to cre-
ate the z-scores of neurodevelopmental and cognitive outcomes of the CM children as
described below.

2.1 EEG data

MATLAB software was used for the processing of the EEG data set that comprised the
standard 10–20 EEG recordings for 78 children with the sampling rate of 500 Hz and the
average record duration of 30 min. Persyst software (Persyst, Prescott, USA) was used to
remove artifacts due to breath, muscle movement and heartbeat from the raw EEG data.
For most children there were 19 channels, which means the electrodes were not located
very densely, so there was no necessity to use the average reference. Hence we’ve chosen
CZ to be the reference electrode to avoid the laterality bias. CZ is one of the predominant
choices for a reference (Teplan 2002). Then we used EEGLAB (Makeig andDelorme 2004)
to identify problematic channels based on properties of their voltage measurements, leav-
ing 16 channels for analysis and excluding three (PZ-CZ, C4-CZ, O2-CZ). Data for several
of the included 16 channels had substantial numbers of zero observations, which could
be due to poor connection between the electrode and the skin. For these channels we
extracted features described below with and without zeros, with the rationale that if a
feature resulted from an artifact and was not important, it would not be selected by the
machine learning algorithm.
We used Daubechies wavelets for splitting the clean signal into frequency bands.

Daubechies orthogonal wavelets have a number of vanishing moments, which is used as
an index for referencing, e.g. the standard notation Db4means Daubechies wavelet with 4
vanishing moments. Research indicates particular suitability of Db4 for statistical analysis
of EEG.We examined the relative average mean squared error (MSE) between the wavelet
signal approximation and the actual signal for different Daubechies wavelets. For these
data Db4 yielded the reconstruction error or order 10−9, which is sufficiently low. Also,
Db4 frequency band separation resulted in frequency intervals which are very close to
the traditional frequency ranges: delta, theta, beta, alpha and gamma bands (Daubechies
1992), see Table 1.
Due to occasional spikes and irregular patterns in the original time series, the idea was

not to split them into epochs as it is often done (Fraschini et al. 2016). We hypothe-
sized that some of the statistical features, such as the frequency of flat line measurements

Table 1 Frequency band correspondence

Traditional Db4 band’s central frequency

Delta 0 − 3.5 Hz 2.7 Hz

Theta 3.5 − 7.5 Hz 5.57 Hz

Alpha 7.5 − 13 Hz 11 Hz

Beta 13 − 30 Hz 22.3 Hz

Gamma > 30 Hz four subsequent bands
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relative to the whole EEG record, could be useful as explanatory variables for neu-
rodevelopment and cognition, whilst dividing the record into epochs would complicate
extraction of useful information.
Empirical studies show that a low activity level in the gamma frequencies is closely

related to the coma state (Chen et al. 2008), and generally, gamma band oscillations are
thought to be related to higher cortical functioning, such as consciousness, memory, per-
ception and learning (Uhlhaas et al. 2009). In Deng et al. (2015) it was shown that EEG
gamma band activity characteristics are associated with the outcomes of targeted tem-
perature management for brain recovery after cardiac arrest. On the other hand, it is also
advised to exclude the highest EEG gamma frequency bands from the analysis, because
it is most likely to be noise, rather than the real deterministic signal. In view of these
recommendations and the goal of this research to investigate stochastic features of EEG,
we excluded only the highest gamma band (D1), keeping the rest. Our rationale was that
if the other gamma bands (D2, D3, and D4 in Daubechies’ frequency band notation)
were indeed useless for the prediction of post-comatose neurodevelopmental and cog-
nitive scores, then this would be empirically determined in statistical algorithms for the
extraction of important features.

2.2 Measures of neurodevelopment and cognition

Children had neurodevelopmental assessments (appropriate for those 5 years of age or
younger) or cognitive assessments (appropriate for children over 5 years of age) a week
after discharge from the hospital (or at enrollment for community control children) and
then at 6 and 12 months after enrollment. Data from the assessment at 6 month post-
enrollment were used for this analysis.
Neurodevelopmental assessment for children 5 years of age or younger.TheMullen

Scales of Early Learning (MSEL) (Mullen 1995) were used to quantify neurodevelop-
ment. MSEL is based on a comprehensive test assessing specific developmental domains:
visual reception, gross motor skills, fine motor skills, receptive language, and expres-
sive language. A composite score derived from standardized t-scores of the four domains
(excluding gross motor) provides a measure of g, the general measure of fluid intelligence.
Cognitive assessment for children over 5 years of age. The Kaufman Assessment

Battery for Children, second edition (KABC-II) (Kaufman and Kaufman 2004) evaluates
sequential and simultaneous processing, learning, reasoning, and crystallized intellectual
ability (knowledge). The knowledge subscale was not administered because it was not
suitable in this setting (Bangirana et al. 2009). Summation of scores for the domains of
sequential processing, simultaneous processing, learning, and planning yielded the Men-
tal Processing Index (MPI) which was the measure of overall cognitive ability in this age
group.
The United States of America (USA) norms were used to arrive at the MSEL composite

g score and the KABC-II MPI score, because using such norms to adjust for the child’s age
was necessary to compute these global measures. To obtain a single measure of neurode-
velopment or cognition for all children regardless of age, we computed the means and
standard deviations of the age appropriate measures, the MSEL composite or the KABC-
II MPI, among the community control children. Then for CM children the z-scores in
each age group were computed by subtracting the means and dividing by the standard
deviation of the community control children.
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2.3 Other measures

Home Observation for the Measurement of the Environment (HOME) (Bradley and
Caldwell 1979) is a composite measure designed to assess the quality and quantity of
stimulation that the child is exposed to in their home environment. A total HOME score
was generated by summing the number of “yes” responses to a checklist of items; higher
HOME scores indicate higher quality of home environment.
Demographic and anthropometric data included age, sex, height-for-age and weight-

for-age z-scores computed using the World Health Organization reference norms (Wold
Health Organization Growth Standards 2009). Socioeconomic status (SES) was assessed
using a checklist of material possessions, housing quality, cooking resources and water
accessibility. Clinical variables and biomarker panels from plasma and cerebrospinal fluid
were collected during each child’s hospitalization for CM.

3 Creating the feature matrices
3.1 Non-EEG features

The non-EEG features included demographic and anthropometric data, SES and HOME
scores, the Blantyre Coma Score, and plasma and cerebrospinal fluid biomarker panels,
for a total of 54 potential explanatory variables.

3.2 Commonly used EEG features

We have evaluated 362 EEG features that have been commonly used in the past analyses
of EEG data. Presence of seizures was reflected by binary variable that was defined using
Persyst software indicators (Persyst, Prescott, USA). Frequencies of peaks in the origi-
nal cleaned time series differing from the nearest measurements from both sides by 1/3,
1, 2 and 3 standard deviations were calculated and denoted by fp1/3, fp1, fp2 and fp3,
respectively. Proportion of flat line EEG for each of the 16 channels was evaluated for the
original cleaned time series.
For delta (a7), theta (D7), alpha (D6), beta (D5) and gamma (D4, D3, D2) frequency

bands for each channel, we calculated amplitude variances and Shannon time entropy
using wavelets (De Oliveira 2015; Smolentsev 2014). This version of entropy is defined in
MATLAB as

S (xi) = −
N−1∑

i=1
x2i log

(
x2i

)

where xi is the i-th measurement in the time series for the signal (MATLAB wavelet
packet). Relative frequency band energy was defined as the sum of wavelet coefficients
divided by the total sum of the coefficients for all the frequency bands (Smolentsev
2014, Chapter 3.10).
Hjorth complexity and mobility parameters (Hjorth 1970) were calculated for the entire

time series based on the second moment as well as the first and second order differences.

3.3 New stochastic features

After splitting the EEG time series into frequency bands using Daubechies wavelets, for
each frequency band we constructed the histograms for the increment process at different
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time blocks, and evaluated sample means and variances. The histograms were consis-
tently approximately bell-shaped but with peaks higher and tails heavier than normal
(Fig. 1).
The means were consistently close to zero, and the variances ratios for different time

blocks fell within a rule of thumb range of [0.25, 4] (Montgomery 2012). Based on these
empirical features, we selected a modeling approach that uses a stationary stochastic pro-
cess for the increments of time series. To reflect the leptokurtic distribution seen in the
data, we propose a stationary Student process as a model for the increments of the EEG
time series for each frequency band. The symmetric scaled Student marginal distribution
has the density

fν,δ(x) = �
(

ν+1
2

)

δ
√

π�
(

ν
2
)

(
1 +

(
x − μ

δ

)2
)− ν+1

2

, x ∈ R, (1)

ν > 0 is degrees of freedom, δ > 0 is a scale parameter, μ ∈ R is location parameter. We
denote this distribution by Tμ,δ,ν . The expectation exists when ν > 1, the variance exists
when ν > 2, and generally the n-th central moment exists when ν > n.
There are several processes with the Student marginal distribution (Heyde and

Leonenko 2005), of which we chose the Lèvy driven Ornstein-Uhlenbeck (OU)-type
process as the process with the least restrictive potential parameter range. We have con-
sidered Student diffusion process (Leonenko and Suvak 2010) as another possible model.
However, the mean reversion term needs to be included in the stochastic differential
equation (SDE) defining a stationary Student diffusion process. Thus the mean has to
exist, restricting the parameter range to ν > 1. The parameter estimates based on these
data did not support such restriction across all channels. The Student OU type process
provides a flexible model for the increments of the EEG data, and is the solution of SDE
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dX(t) = −λX(t)dt + dY (λt), t ≥ 0 (2)

where {Y (t), t ≥ 0} is the background driving Lévy process (BDLP). This process is
defined by specifying the distribution of Y (1) through the cumulant transform

log eiζY (1) = iζμ − δ|ζ |Kν/2−1(δ|ζ |)
Kν/2(δ|ζ |) , ζ ∈ R, ζ �= 0, (3)

where Ks is the modified Bessel function of the third kind:

Ks(x) = 1
2

∫ ∞

0
us−1 exp

[
1
2
x
(
u + 1

u

)]
du, x > 0, s ∈ R.

Since the Student distribution is self-decomposable, the distribution of Y (1) is infinitely
divisible, and the Student OU-type process exists, as formally stated in the following
Theorem (Heyde and Leonenko 2005).

Theorem 1 There exists a strictly stationary stochastic process {X(t), t ≥ 0} that has
the marginal Tμ,δ,ν distribution with the density function (1). The process solves SDE (2)
for any λ > 0. The BLDP {Y (t), t ≥ 0} has the cumulant transform (3). The solution is
given by

Xt = e−λtX0 + e−λt
∫ t

0
eλsdY (λs).

Note that parametrization in (2) is such that the marginal distribution of the Student
OU-type process X(t) does not depend on λ. If ν > 1, then the first moment of the
marginal distribution exits, and EX(t) = μ. If ν > 2, then the correlation function exists
and depends only on the parameter λ, namely for 0 < s < t

corr(X(s),X(t)) = e−λ(t−s).

In this work we used the first-order properties of the process X(t) reflected by the
parameters of the marginal distribution. We set μ = 0 based on the empirical evidence
as all histograms were centered on zero with virtually no variability in this respect among
EEG channels.We used quasi-likelihood estimation (Heyde 1997) to evaluate the parame-
ters ν and δ of the stationary Student process. It was possible to use this approach because
of the specification of the distribution. A general method for estimation of the tail param-
eter (ν in this case) without specifying the marginal distribution is discussed in Grahovac
et al. (2015) and could be used in other applications. Quasi-likelihood estimation was
performed for the lowest four frequency bands for 15 channels, resulting in 120 features.
Additional 30 features were derived by repeating the parameter estimation for 15 chan-
nels delta frequency band containing excess zeros potentially due to the disconnection
of the electrode from the skin. Note that in this set of features there is no CZ-CZ chan-
nel at all. The estimated 150 parameters were used as features in the matrix of potential
explanatory variables for the neurodevelopment and cognition 6 months post CM illness.
We refer to these features as stochastic features since they were derived based on the
proposed stochastic process model.

4 Data analysis
Three feature matrices X with 78 rows each, one containing 54 non-EEG features
(columns), the second containing 362 traditional EEG features, and the third containing
150 new stochastic EEG features, were prepared as described above for the entry into
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a machine learning algorithm to predict the neurodevelopmental and cognitive scores
of children surviving cerebral malaria. Out of 54 columns for non-EEG features 20 had
at least 19 missing values. The maximum number of empty entries in a column of the
non-EEG part of the feature matrix was 23. The pattern of missing data could not be
assumed to be missing at random (MAR), because some of the data were missing due
to clinical reasons. Therefore we used imputation method that is not dependent upon
the MAR assumption. Soft Impute is a matrix completion method based on Singular
Value Decomposition (SVD) of a matrix (Mazumder et al. 2010). Application of this algo-
rithm requires the following assumption to hold: the rank of the approximating matrix
rank(Z) << min(n, p), which is reasonable in our case. This assumption makes sense
due to the nature of features, which may be grouped by correlation into a smaller number
of clusters due to inherent synchrony between channels. We present the central lemma
behind this method for completeness.

Lemma 1 Suppose the matrix Wm×n has rank r. The solution to the optimization
problem

min
Z

(
1
2
‖W − Z‖2F + λ‖Z‖∗

)
(4)

is given by Ẑ = Sλ(W ), where Sλ(W ) = UDλVT, with Dλ = diag[ (d1 − λ, · · · , (dr − λ)+],
where UDVT is the SVD of W, D = diag[ d1, · · · , dr], and t+ = max(t, 0).

Here ‖A‖F is the Frobenius norm of a matrix A, whilst ‖A‖∗ is the sum of the singular
values of the matrix A. In our case, in computing the Frobenius norm in (4) we only look
at the pairs of indices (i, j), for which there are no missing values. The algorithm imple-
mented in SoftImpute iteratively updates the matrix Z through the use of this lemma,
until convergence is reached in approximating the matrix of interest. R was used for the
imputation of missing values.
Machine learning was performed using the Elastic Net technique that solves the

following optimization problem:

min
β̄

⎛

⎜⎝
n∑

i=1

⎛

⎝yi −
p∑

j=1
βjxij

⎞

⎠
2

+ α × l1
p∑

j=1
|βj| + 0.5 × α × (1 − l1)

p∑

j=1
β2
j

⎞

⎟⎠ , (5)

Elastic Net was chosen because it is more suitable than the Least Absolute Shrinkage
and Selection Operator (LASSO) in face of multicollinearity (Oyeyemi et al. 2015), which
we expected among the selected features. There are two hyper-parameters, and leave-
one-out cross validation (LOOCV) was used to select the optimal pair. We have also
used LOOCV for the estimation of the mean squared error in the prediction models pro-
duced by the algorithm. The Elastic Net algorithm was implemented using Python 3 with
Anaconda.
The non-parametric missForest technique for matrix completion (Stekhoven and

Bühlmann 2012) is based on averaging over a random forest of regression trees and was
used for additional validation of the results. Trees were built based on observed and
bootstrapped parts of the training data set.
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5 Results
5.1 Imputations

We have run over a grid of different parameter values for α, considering powers of 10,
starting with α = 0.00001 and finishing with α = 1000, whilst for the l1 ratio coefficient
we considered 7 possible values starting with 0.0001 and finishing with 1. In all models,
setting the regularization parameter λ = 100 in SoftImpute gave better mean squared
error (MSE) than other values of λ and resulted in the least complex model, after applying
the Elastic Net following the matrix completion. This value is used in reporting of the
results.

5.2 Results from elastic net for three sets of features

Table 2 summarizes the results of applying the regression methods listed in the previous
section.
The lowest LOOCV MSE of 0.15 was obtained with α = 0.001, l1 ratio= 0.5 in the

objective function subject to minimization:

1
2 ∗ 78

‖y − Xw‖22 + α ∗ l1 ratio ∗ ‖w‖1 + 0.5 ∗ α ∗ (1 − l1 ratio) ∗ ‖w‖22 (6)

with leave-one-out cross-validation. This combination of α and l1 ratio was the best
across combinations described in the Section 4.
Similarly to the result for the matrix with 150 features after SoftImpute, using the ran-

dom forest technique for matrix completion and again, those features in the top 5 in
feature importance by Breiman were for the channels FP2-CZ, O1-CZ, F7-CZ, T6-CZ,
whilst F8-CZ and T6-CZ appearedmost often in the top 12 non-zero coefficients by abso-
lute value. So this result almost copies the outcome with the Elastic Net after SoftImpute

Table 2 Elastic Net - best results, after Soft Impute with λ = 100

Feature set LOOCV MSE Number of nonzero
coefficients

Sample features with non-zero
coefficients

54 anthropomentic,
socio-economic, and
medical non-EEG features

0.3982 15 Weight, hemoglobin level, weight,
BCS, the HOME score, white blood
cell count, cerebrospinal fluid levels
of interleukin (IL)-1 receptor antagonist
(RA), IL-6, RANTES (an acronym for
Regulated on Activation, Normal T
Expressed and Secreted), IL-8, and
plasma levels of vascular endothelial
growth factor and von Willebrand
factor.

362 traditional EEG
features in frequency
bands

0.5285 62 Features include: fp2 in T6-CZ,
FZ-CZ and P4-CZ, fp1 F4-CZ, wave
energy for theta in channel T5-CZ,
variance in theta for FP2-CZ, variance
in alpha frequency band for T5-CZ.

150 stochastic features
for increment processes in
frequency bands

0.1511 85 12 coefficients have the absolute
values over 0.5. Top 5 coefficients
are for the channels FP2-CZ, O1-CZ,
T6-CZ, FZ-CZ. Channels F8-CZ and
T6-CZ appear most often among
the 12 top coefficients by absolute
value, 4 and 3 times respectively.
Four of the top 12 are for fitting a
stochastic process model for the a7
frequency band.
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with λ = 100 and yields a marginally different Elastic Net LOOCV MSE value. This was
anticipated and confirms validity of the matrix completion method for such data.

6 Conclusions
We conclude that stochastic modeling brings a noticeable improvement in explaining the
variation in neurodevelpmental and cognitive outcomes of children 6 months after sur-
viving cerebral malaria. Stochastic features alone do an even better job than the tested
sets of medical non-EEG or traditional EEG features which are not based on stochastic
models for the underlying time series.
Regarding medical non-EEG biomarkers, only tumor necrosis factor alpha (TNF-alpha)

in cerebrospinal fluid but not in plasma was predictive of 6-month later cognitive scores
of children older than 5 years, but not of neurodevelopment of younger children (Shabani
et al. 2017). So our finding of TNF-alpha not being among top predictors is in line with the
developing literature on the role of biomarkers collected at the time of acute illness in pre-
dicting later neurodevelopment and cognition in children. This paper extends the results
of Shabani et al. (2017) to testing more than one biomarker using modern statistical and
probabilistic methods. We have identified biomarkers that can be further considered in
future research as potentially important prognostic factors for neurodevelopment and
cognition.
Regarding the traditional EEG features, their performance in explaining the variation

in neurodevelopmental and cognitive outcomes was inferior to that of anthropomet-
ric, socio-economic, and non-EEG medical features. This finding may be due to the
fact that these features are not based on underlying stochastic models. For example, the
traditional computation of Shannon’s entropy build into software assumes that the under-
lying stochastic process is stationary, which could be reasonable in some populations
(Piryatinska et al. 2009), but is at odds with other literature (Ignaccolo et al. 2009).
Whether or not the underlying stochastic process is stationary in a given population is an
empirical question that needs to be addressed in methodology of analyzing EEG data. For
the population of Ugandan children in coma from cerebral malaria, we have found that
the assumption of stationarity of the time series was unreasonable, while for the incre-
ment process it was. Further, stochastic modeling for the increment process had clear
advantages, as seen from our results.
When considering the stochastic features for the increment process, the combination

of channels for which the stochastic features proved to be particularly useful is FP2-CZ,
01-CZ, T6-CZ, FZ-CZ. Parameters from channels located on the right side dominated
the most important features. Taken as a group, these locations are associated with visual
and attention processes that are related to visual-spatial simultaneous processing working
memory. It would be interesting to see if these channels also arise as important in relation
to child neurodevelopment and cognition in other infectious diseases that could affect the
brain.
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and fp3: Frequencies of peaks in the original cleaned time series differing from the nearest measurements from both
sides by 1/3, 1, 2 and 3 standard deviations were calculated; HOME: Home observation for the measurement of the
environment; Hz: Hertz; KABC-II: Kaufman assessment battery for children, second edition; LOOCV MSE: Leave-one-out
cross-validation mean squared error; MAR: Missing at random; MPI: Mental processing index; MSEL: Mullen scales of early
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value decomposition; TNF-alpha: Tumor necrosis factor alpha
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