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Abstract
We introduce rank-k-continuous axis-aligned p-generalized elliptically contoured
distributions and study their properties such as stochastic representations, moments,
and density-like representations. Applying the Kolmogorov existence theorem, we
prove the existence of random processes having axis-aligned p-generalized elliptically
contoured finite dimensional distributions with arbitrary location and scale functions
and a consistent sequence of density generators of p-generalized spherical invariant
distributions. Particularly, we consider scale mixtures of rank-k-continuous axis-aligned
p-generalized elliptically contoured Gaussian distributions and answer the question
when an n-dimensional rank-k-continuous axis-aligned p-generalized elliptically contoured
distribution is representable as a scalemixture of n-dimensional rank-k-continuous
p-generalized Gaussian distribution for a suitable mixture distribution of a positive
random variable. Based on this class of multivariate probability distributions, we
introduce scale mixed p-generalized Gaussian processes having axis-aligned finite
dimensional distributions being p-generalizations of elliptical random processes.
Additionally, some of their characteristic properties are discussed and approximates of
trajectories of several examples such as p-generalized Student-t and p-generalized
Slash processes having axis-aligned finite dimensional distributions are simulated with
the help of algorithms to simulate rank-k-continuous axis-aligned p-generalized
elliptically contoured distributions.

Keywords: Axis-aligned p-generalized elliptically contoured distributions, Density-like
representation, Kolmogorov consistency conditions, p-generalized spherically invariant
random processes, Scale mixtures of multivariate axis-aligned p-generalized elliptically
contoured Gaussian distributions, Simulation

1 Introduction
Random processes may be constructed and characterized in different ways. Apart from
constructions via families of random variables whose members satisfy, e.g., specific
autoregressive relations or are coefficients of specific series representations, the existence
of random processes can be studied following the fundamental existence theorem due to
Kolmogorov (1933). The explicit knowledge of the family of finite dimensional distribu-
tions (fdds) can be used then to establish some of the properties of the random process
by proving corresponding ones of the fdds. Basic technical problems to be solved this way
belong to multivariate distribution theory. In the present paper, Kolmogorov’s theorem
is used to prove the existence of real valued random processes having axis-aligned
p-generalized elliptically contoured (apec) fdds, thus being p-generalizations of elliptical
random processes having axis-aligned fdds.
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Well studied examples of random processes which can be constructed via Kolmogorov’s
existence theorem are real valued Gaussian processes with emphasis on the Brown-
ian motion, see Shiryaev (1996) and Schilling and Partzsch (2014). Apart from further
examples as random processes with independent values, random processes with inde-
pendent increments as well as Markov processes, spherically invariant random processes
being also known as elliptical random processes can be constructed this way. The latter
are introduced in Vershik (1964) as random processes consisting of quadratically inte-
grable random variables such that if two of them have the same variance, they follow the
same distribution. Corresponding characteristic functions and densities are determined
in Blake and Thomas (1968). Yao (1973) and Kano (1994) characterize spherically invari-
ant random processes by establishing that their families of fdds are what is called now
scale mixtures of Gaussian distributions having one and the same mixture distribution.
The notion of a scale mixture but is first introduced in Andrews and Mallows (1974)
and, independently, Wise and jun Gallagher (1978) show that an elliptical random pro-
cess can be represented as a product of a Gaussian process and a positive random variable
being independent of it. Additionally, in Huang and Cambanis (1979), the structure of
the space of all second order spherically invariant random processes is studied and used
to solve nonlinear estimation problems. Finally, based on the concepts of expansive and
semi-expansive sequences of elliptically contoured distributions and apart from analogue
representation theorems in Yao (1973) and Kano (1994), a formula to determine the cor-
responding mixture distribution of the family of fdds of a spherically invariant random
process is determined in Gómez-Sánchez-Manzano et al. (2006).
Besides a thematically assorted summary of several articles on the theory of spherically

invariant random processes, numerous applications of these random processes such as
modelings of bandlimited speech waveform, of radar clutters, of radio propagation dis-
turbances and of equalization and array processing are dealt with in Yao (2003). Furthermore,
the author discusses simulations of trajectories of spherically invariant random processes
based on the work in Brehm and Stammler (1987), Conte et al. (1991), and Rangaswamy
et al. (1995). More recent applications deal with fading models from spherically invari-
ant random processes in Biglieri et al. (2015) and with MIMO radar target localiza-
tion and performance evaluation under spherically invariant random process clutter in
Zhang et al. (2017).
The notion of a scale mixture of Gaussian distributions is introduced in Andrews

and Mallows (1974) as the distribution of the product of a Gaussian variable and
an independent positive random variable. A multivariate generalization is given in
Lange and Sinsheimer (1993). Using numerous equivalent definitions, scale mix-
tures of Gaussian distributions are also studied in West (1987), Gneiting (1997),
Eltoft et al. (2006), Gómez-Sánchez-Manzano et al. (2006, 2008), and Hashorva
(2012). According to Andrews and Mallows (1974), Lange and Sinsheimer (1993), and
Gómez-Sánchez-Manzano et al. (2006), scale mixtures of Gaussian distributions
are special cases of elliptically contoured distributions and an elliptically con-
toured distribution is a scale mixture of a Gaussian distribution if and only if
the composition of its density generator and the square root function is com-
pletely monotone. Moreover, examples of scale mixtures of Gaussian distributions
are Pearson type VII distributions, power exponential distributions as well as Slash
distributions.
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Applications of scale mixtures of Gaussian distributions are given in the fields of nat-
ural images, insurances and quantitative genetic in Wainwright and Simoncelli (2000),
Choy and Chan (2003), and Gómez-Sánchez-Manzano et al. (2008). More recent appli-
cations are Gaussian scale mixture models for robust multivariate linear regression with
missing data in Ala-Luhtala and Piché (2016), testing homogeneity in a scale mixture of
Gaussian distributions in Niu et al. (2016), and adaptive robust regression with continu-
ous Gaussian scale mixture errors in Seo et al. (2017).
For any choice of p > 0, introducing the notion of a p-generalization of a spher-

ically invariant random process means the transition from spherically contoured to
ln,p-symmetric fdds, the transition from regular elliptically contoured to suitably intro-
duced p-generalized elliptically contoured distributions and the associated consider-
ation of suitable non-Euclidean instead of Euclidean geometries, respectively. To be
more specific, a well-known example is the n-dimensional p-generalized (spherical)
Gaussian distribution being introduced already in Subbotin (1923) and having the
probability density function (pdf)

f (x) =
⎛
⎝ p1−

1
p

2�
(
1
p

)
⎞
⎠

n

exp
{

−1
p

n∑
i=1

|xi|p
}
, x = (x1, . . . , xn)T ∈ R

n,

and p-generalized Weibull, Pearson type II and Pearson type VII distributions are dealt
with in Gupta and Song (1997). Additionally, a p-generalized spherical coordinate trans-
formation, a p-generalized surface content measure as well as numerous p-generalized
probability distributions and statistics such as p-generalized versions of the χ2-, Student
and Fisher distributions are considered in Richter (2007); Richter (2009).
The more general class of continuous ln,p-symmetric distributions is studied in

Arellano-Valle and Richter (2012), Kalke and Richter (2013), Müller and Richter (2016a,
b, 2017a, b) as well as several references given there. In the present paper, we introduce
a class of multivariate apec distributions containing both regular and singular distribu-
tions and covering the classes of continuous ln,p-symmetric and common axis-aligned
elliptically contoured distributions.
For a nonempty index set I ⊆ R, a Polish space (E, ρ) and a familyQ of probability mea-

sures on the product spaces
(
EJ ,BJ) for nonempty finite subsets J ⊆ I and the Borel sigma

field B on E with respect to ρ, if Q is projective on E, Kolmogorov’s existence theorem
states the existence of a random process having time set I and state space E such that its
family of fdds is equal toQ. The projectivity ofQ on E can be shown by checking the con-
sistency conditions in Kolmogorov (1956). This will be discussed for the particular case
E = R in “Sketch of proof” section. This way, we prove the existence of real valued ran-
dom processes having apec fdds. Such random processes are p-generalizations of elliptical
random processes having axis-aligned fdds. Moreover, for the special case of scale mixed
p-generalized Gaussian processes having axis-aligned fdds, basic properties such as char-
acteristic representations, stationary properties and specific closedness properties are
studied and certain approximates of their trajectories are simulated. Preparing for these
results, we prove firstly that an apec distribution can be represented by a scale mixture
of the apec Gaussian distribution if and only if its density-like generator composed with
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the pth root function, is completely monotone and secondly that the corresponding mix-
ture distribution is in a well defined way closely connected to the inverse Laplace-Stieltjes
transform of this composition.
The paper is structured as follows. In “The class of n-dimensional rank-k-continuous

axis-aligned p-generalized elliptically contoured distributions” section, n-dimensional
apec distributions are introduced as location-scale generalizations of continuous ln,p-
symmetric distributions, and some of their properties such as stochastic representations,
moments and pdf-like representations are discussed. Furthermore, the pdfs of bivariate
p-generalized spherical as well as of bivariate apec Gaussian distributions are visualized
for several values of p > 0. Our main result on the existence of p-generalizations of
elliptical random processes is presented in “Main result” section. A sketch of its proof
consisting of four basic steps is given in “Sketch of proof” section, and an approximate
simulation of the trajectories of the new random processes is discussed in “Simulation”
section. Examples illustrating the developed theory are studied in the fourth section. In
“Scale mixtures of apec Gaussian distributions” section, scale mixtures of multivariate
apec Gaussian distributions are introduced and some of their characteristic properties
such as stochastic representations, moments, specific conditional distributions, and their
connections to completely monotone functions are discussed. Random processes whose
families of fdds are families of scale mixtures of multivariate apec Gaussian distributions
with one and the same mixture distribution as well as some of their basic properties
are studied in “Scale mixed p-generalized Gaussian processes having axis-aligned fdds”
section. All proofs are given in “Proofs” section. For the sake of a better readability, the
proofs of certain results are prepared by proving certain particular cases first. An algo-
rithm to simulate arbitrary apec distributions and another one to particularly simulate
scale mixtures of apec Gaussian distributions with an explicitly known mixture distribu-
tion are presented in Appendix 7.1. The latter one is used in Appendix 7.2 to simulate
approximations of trajectories of p-generalized Student-t as well as p-generalized Slash
processes having axis-aligned fdds. Finally, we remark that all figures presented here are
made using the programMATLAB.

2 The class of n-dimensional rank-k-continuous axis-aligned p-generalized
elliptically contoured distributions

For each p > 0 and n ∈ N, we denote the p-functional in R
n by |x|p =

( n∑
i=1

|xi|p
) 1

p
,

x = (x1, . . . , xn)T ∈ R
n, and the ln,p-generalized surface content of the ln,p-unit sphere

Sn,p = {x ∈ R
n : |x|p = 1} by ωn,p,

ωn,p =
(
2�
(
1
p

))n

pn−1�
(
n
p

) .

Furthermore, a function g : [ 0,∞) →[ 0,∞) satisfying 0 < In(g) < ∞ is called a den-

sity generating function of an n-variate distribution where In(g) =
∞∫
0
rn−1g(r) dr. An

n-dimensional random vector X : � → R
n on a probability space (�,A,P) having the pdf

g
(|x|p

)
ωn,p In(g) , x ∈ R

n, is called continuous ln,p-symmetrically distributed with density generat-
ing function g. A density generating function g of a continuous ln,p-symmetric distribution
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satisfying In(g) = 1
ωn,p

is called a density generator (dg) and denoted by g(n,p). The pdf
of the continuous ln,p-symmetric distribution with dg g(n,p) is g(n,p)(|x|p

)
, x ∈ R

n, and
the corresponding probability law is denoted by �g(n,p) . With a view to the special cases
listed below, �g(n,p) may also be called n-dimensional continuous p-generalized spherical
distribution with dg g(n,p).
A well-known example of the latter type of probability distributions is the n-

dimensional p-generalized (spherical) Gaussian distribution Nn,p = �g(n,p)
PE

where

g(n,p)
PE (r) =

⎛
⎝ p1−

1
p
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⎞
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n

exp
{
−1
p
rp
}
, r ≥ 0.

For visualizations of the pdf of this distribution for n ∈ {1, 2} and several p > 0, we
refer to Kalke and Richter (2013) and Müller and Richter (2015). The class of continuous
ln,2-symmetric distributions coincides with the class of n-variate continuous spherical
distributions and Nn,2 is the n-dimensional standard Gaussian distribution. Numerous
properties such as stochastic representations, moments, and marginal distributions and
several types of dgs are discussed inGupta and Song (1997), Richter (2009), Arellano-Valle
and Richter (2012), and Müller and Richter (2016a).
Let μ ∈ R

n be a constant vector and D = diag (d1, . . . , dn) an n × n diagonal matrix
having nonnegative diagonal entries and positive rank rk(�) = k. Moreover, let I1 =
{i1, . . . , ik} ⊆ {1, . . . , n} with |I1| = k and i1 < i2 < . . . < ik be the set of indices such that
di > 0 if i ∈ I1 and di = 0 if i ∈ I2 = {1, . . . , n}\I1. Let e(n)

i denote the ith unit vector inR
n

0n×n the n×n zero matrix, S1 = diag
(
di1 , . . . , dik

) ∈ R
k×k ,W1 =

(
e(n)
i1 · · · e(n)

ik

)
∈ R

n×k

andW2 ∈ R
n×(n−k) a matrix having columns e(n)

i for all i ∈ I2, then,

WT
1 DW1 = S1 and WT

2 DW2 = 0(n−k)×(n−k).

Let
√
S1 = diag

(√
di1 , . . . ,

√
dik
)
. The distribution of a random vector X satisfying

the stochastic representation

X d= μ + W1
√
S1Y where Y ∼ �g(k,p) (1)

is called an n-dimensional rank-k-continuous axis-aligned p-generalized elliptically con-
toured (kapec) distribution with location parameter μ, scaling matrix D and dg g(k,p) and
is denoted by AECn,p

(
μ,D, g(k,p)). For simplicity, the distribution of such random vector

X is just called apec distribution if its continuity and dimension as well as the rank of the
diagonal matrix parameter D are contextually clear or play only a minor role.
Here and in what follows, X d= Z and X ∼ 	 mean that the random vectors X and Z

follow the same distribution law and that the random vector X follows the distribution
law L(X) = 	 , respectively. In particular, for the special choice of μ and D to be the zero
vector 0n and identity matrix In×n in R

n, respectively, we have AECn,p
(
0n, In×n, g(n,p)) =

�g(n,p) . For the special case of p = 2, the class of AECn,2
(
μ,D, g(k,2))-distributions is iden-

tical with the class of common n-variate axis-aligned elliptically contoured distributions.
Furthermore, AECn,p

(
μ,D, g(k,p)

PE

)
is called n-dimensional kapec Gaussian distribution

and is denoted ANn,p(μ,D). The family of apec distributions with full rank scaling
matrices as well as their star-shaped extensions and certain aspects of their inferential
applications are studied in Richter (2014, 2016, 2017).
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Because of relation (1), a stochastic representation and properties of moments of n-
dimensional kapec distributions stated in Lemmata 2.1 and 2.2 follow immediately from
corresponding results of lk,p-symmetric distributions in Richter (2009) and Arellano-Valle
and Richter (2012).

Lemma 2.1 Let X ∼ AECn,p
(
μ,D, g(k,p)) where rk(D) = k. Then, the random vector X

satisfies the stochastic representation

X d= μ + R · W1
√
S1U(k)

p

where the random vector U(k)
p is k-dimensional p-generalized uniformly distributed on Sk,p,

R and U(k)
p are stochastically independent and R is a nonnegative random variable with

pdf

fR(r) = ωk,p rk−1g(k,p)(r)1[0,∞)(r), r ∈ R.

Lemma 2.2 Let X ∼ AECn,p
(
μ,D, g(k,p)) where rk(D) = k. Then, E(X) = μ if

Ik+1
(
g(k,p)) is finite and Cov(X) = σ 2

g(k,p)D if Ik+2
(
g(k,p)) is finite where the univariate

variance component σ 2
g(k,p) of �g(k,p) satisfies σ 2

g(k,p) = �
(
3
p

)
�
(
k
p

)

�
(
1
p

)
�
(
k+2
p

) ωk,p Ik+2(g(k,p)). The

components of X are independent if and only if g(k,p) = g(k,p)
PE .

The justification for calling σ 2
g(n,p) the univariate variance component of �g(n,p) is given

by the following lemma with k = 1. Examples of σ 2
g(n,p) are given in Müller and Richter

(2016b). Let us remark that, according to Arellano-Valle and Richter (2012), for k =
1, . . . , n − 1, the marginal dg g(k,p)

(n) of an arbitrary k-dimensional marginal distribution of
�g(n,p) is

g(k,p)
(n) (r) = ωn−k,p

p

∞∫

rp

(
y − rp

) n−k
p −1 g(n,p)( p√y

)
dy, r ∈[ 0,∞),

where the variability of the choice of the k marginal variables is established by the
permutation invariance of �g(n,p) , see Müller and Richter (2016b).

Lemma 2.3 For k = 1, . . . , n − 1,

σ 2
g(k,p)
(n)

= σ 2
g(n,p) .

Denoting M∗
n =[ 0,π)×(n−2)×[ 0, 2π) and Mn =[ 0,∞) × M∗

n for n ≥ 2, let the ln,p-
spherical coordinate transformation SPH(n)

p : Mn → R
n be defined as in Richter (2007).

Note that SPH(n)
p is bijective a.e. in Mn and its inverse mapping as well as its Jacobian

are explicitly known. The next lemma combines and states more precisely some earlier
results and introduces a second stochastic representation of random vectors following the
distribution AECn,p

(
μ,D, g(k,p)).

Lemma 2.4 Let X ∼ AECn,p
(
μ,D, g(k,p)) where rk(D) = k. Then, the random vector X

satisfies the stochastic representation

X d= μ + W1
√
S1 · SPH(k)

p
(
R,	1, . . . ,	k−1

)
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where the nonnegative random variables R,	1, . . . ,	k−1 are mutually stochastic indepen-
dent having pdfs

fR(r) = ωk,p rk−1g(k,p)(r)1[0,∞)(r), r ∈ R,

f	i(ψi) = ωk−i,p
ωk−i+1,p

(sin(ψi))
k−i−1

(
Np(ψi)

)k−i+1 1[0,π)(ψi), ψi ∈ R, i = 1, . . . , k − 2,

f	k−1(ψk−1) = 1
ω2,p

1(
Np(ψk−1)

)2 1[0,2π)(ψk−1), ψk−1 ∈ R.

Here, Np(ψ) = (|sin(ψ)|p + |cos(ψ)|p)1/p and fZ denotes the pdf of Z.

While the distribution AECn,p
(
μ,D, g(n,p)) is regular and has a pdf, the distribution

AECn,p
(
μ,D, g(k,p)) is singular if rk(D) = k < n and may be characterized by a pdf-

like representation as it was done in Khatri (1968) and Rao (1973, pp. 527-528) in case
of singular normal distributions and in Arellano-Valle and Azzalini (2006, Appendix
C) in case of singular unified skew-normal distributions. To this end, let UWT

2
(μ) =

{x ∈ R
n : WT

2 x = WT
2 μ} be a k-dimensional affine subspace in R

n and λ
(k)
UWT

2
(μ) the

k-dimensional Lebesgue measure defined on UWT
2
(μ).

Lemma 2.5 Let X ∼ AECn,p
(
μ,D, g(k,p)) where rk(D) = k. Then, the distribution of X

has pdf-like representation

1√
di1 · . . . · dik

g(k,p)
(∣∣∣
√
S1

−1
WT

1 (x − μ)

∣∣∣
p

)
, x ∈ R

n, (2)

and

WT
2 X = WT

2 μ P − a.s. (3)

where the function given in (2) is interpreted as pdf in the space UVT
2
(μ) in which the whole

probability mass of X is concentrated according to Eq. 3.

Lemma 2.5 can be read as follows. For X ∼ AECn,p
(
μ,D, g(k,p)), the orthogonal

projection Y = �UWT
2

(μ)(X) of X into the subspace UWT
2
(μ), and any event B ∈ Bn,

P(X ∈ B) = P
(
Y ∈

(
B ∩ UWT

2
(μ)
))

= 1√
di1 · . . . · dik

∫

B

g(k,p)
(∣∣∣
√
S1

−1
WT

1 (x − μ)

∣∣∣
p

)
λ

(k)
UWT

2
(μ)(dx) (4)

meaning that the probability measure induced by the random vector X, PX =
AECn,p

(
μ,D, g(k,p)), is absolutely continuous with respect to λ

(k)
UVT

2
(μ). Thus, (2) is the

Radon-Nikodym derivative of PX with respect to the Lebesgue measure λ
(k)
UVT

2
(μ) on the

subspace UWT
2
(μ) of Rn. Because of (4), g(k,p) might be called density-like generator of

AECn,p
(
μ,D, g(k,p)) if k < n. In particular, if rk(D) = n, then W1 = In×n and W2 is not

defined. Hence, Eq. 3 is not applicable and the function in (2) is the common pdf of the
distribution AECn,p

(
μ,D, g(n,p)). An example is illustrated in Fig. 1.

At the end of this section, our consideration will be slightly extended in order to cover
the case k = rk(D) = 0 or, equivalently, D = 0n×n. To this end, AECn,p

(
μ, 0n×n, g(0,p)) is
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defined to be the Dirac distribution at μ ∈ R
n where g(0,p) is just a symbol to maintain

previous notations.
While each finite dimensional distribution (fdd) of an elliptical process is elliptically

contoured, in the next section the existence of random processes will be shown whose
families of fdds consist of apec distributions.

3 Generalized elliptical random processes
3.1 Main result

In order to state our main result, we call a sequence g(p) = (g(k,p))
k∈N of dgs of continuous

lk,p-symmetric distributions consistent if the following condition is satisfied for any k ∈ N

and almost all (x1, . . . , xk)T ∈ R
k ,

∞∫

−∞
g(k+1,p)

(∣∣∣(x1, . . . , xk , xk+1
)T∣∣∣

p

)
dxk+1 = g(k,p)

(∣∣(x1, . . . , xk)T
∣∣
p

)
. (5)

For the particular case of this definition if p = 2, we refer to Kano (1994). Moreover,
for any nonempty subset I of R, any functions m : I → R and S : I →[ 0,∞), and any
sequence g(p) = (

g(k,p))
k∈N of dgs of continuous lk,p-symmetric distributions, let the

family
⋃
n∈N

⋃
{t1,...,tn}⊆I

|{t1,...,tn}|=n

{
AECn,p

(
μ,D, g(k,p)

)
: μ = (m(t1), . . . ,m(tn))T ,

D = diag (S(t1), . . . , S(tn)) , k = rk(D)
}

of apec distributions having dgs from g(p) and location and scale functions m and S,
respectively, be denoted by AECIg(p) (m, S). Note that strict positivity of S yields a family
AECIg(p) (m, S) containing only regular distributions. In difference to this, allowing S to
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be nonnegative, the family AECIg(p) (m, S) consists both of regular and singular distribu-
tions. In particular, the univariate member of this family corresponding to t ∈ I such that
S(t) = 0 is AEC1,p

(
m(t), 0, g(0,p)), i.e. an univariate kapec distribution with k = 0.

Theorem 4.1 If g(p) is consistent, thenAECIg(p) (m, S) is projective on R.

Corollary 3.1 According to the Kolmogorov existence theorem, for any nonempty subset
I of R, functions m : I → R and S : I →[ 0,∞), and consistent sequence g(p), Theorem 4.1
yields the existence of a real-valued random process having AECIg(p) (m, S) as its family of
fdds.

A random process defined according to Theorem 4.1 and Corollary 3.1 is called random
process having apec fdds with location and scale functions m and S, respectively, and
sequence g(p) of dgs of continuous lk,p-symmetric distributions. Such random process is
denoted by AECPp

(
m, S; g(p)).

3.2 Sketch of proof

Because of the complexity of the proof of Theorem 4.1, we first give a sketch of its prin-
cipal ideas. For the outline of details of proof, we refer to “Proof of Theorem 4.1” section.
The first step and fundamental argument to prove Theorem 4.1 and thus the existence of
the random processes according to Corollary 3.1 is to show that the familyAECIg(p) (m, S)
satisfies Kolmogorov’s consistency conditions. Let the set of all finite and nonempty sub-
sets of I be denoted by H(I), H(I) = {J ⊆ I : J �= ∅, |J| < ∞}. According to Kolmogorov
(1956), a family Q = {

QJ
}
{J∈H(I)} of probability measures on

(
R

|J|,B|J|), J ∈ H(I), is
projective on R if the following two conditions are satisfied:

1) For all t1, . . . , tn, tn+1 ∈ I being pairwise distinct and A(n) ∈ Bn,

Q{t1,...,tn,tn+1}
(
A(n) × E

)
= Q{t1,...,tn}

(
A(n)

)
. (6)

2) For all t1, . . . , tn ∈ I, A(n) ∈ Bn being pairwise distinct and every permutation π of
{1, . . . , n},

Q{t1,...,tn}
(
A(n)

)
= Q{tπ(1),...,tπ(n)}

(
A(n)

π

)
(7)

where A(n)
π = {(xπ(1), . . . , xπ(n))

T : (x1, . . . , xn)T ∈ A(n)
}
.

These two conditions are traditionally formulated using the notion of ordered sets
which are assumed to have different elements, i.e. the sets {t1, t2} and {t2, t1} differ from
each other if t1 �= t2, whereas (7) is not required in case of considering unordered sets,
see Shiryaev (1996, p. 168).
Condition (6) ensures that specific marginal distributions of elements of the family Q

are elements of this family, too. Proving (6) for the family given in Theorem 4.1 will be
done in steps two and three. Since both of them are connected with transitions from joint
to marginal distributions, we will use the notion of marginal dgs g(m,p)

(k) ,m = 1, . . . , k − 1,
according to “The class of n-dimensional rank-k-continuous axis-aligned p-generalized
elliptically contoured distributions” section. Additionally, let g(k,p)

(k) = g(k,p). Making use of
the marginal dg, in step two an equivalent formulation of (5) is given in the next lemma.
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Lemma 3.1 A sequence g(p) = (
g(k,p))

k∈N of dgs of continuous lk,p-symmetric distribu-
tions is consistent if and only if for any k ∈ N

g(k,p)
(k+1) = g(k,p) a.e. in[ 0,∞).

As a consequence, a sequence g(p) of dgs of continuous lk,p-symmetric distributions
is consistent if and only if for any k ∈ N the marginal dg g(k,p)

(k+1) corresponding to the
(k + 1)th element g(k+1,p) of g(p) coincides with the kth element g(k,p). In the third step,
form ≤ n,m-dimensional marginal distributions of n-dimensional apec distributions are
shown to be m-dimensional apec distributions with suitably modified vector and matrix
parameters and transitions to marginal dgs.

Lemma 3.2 Forμ = (μ1, . . . ,μn)
T ∈ R

n and D = diag (d1, . . . , dn) having nonnegative
diagonal entries and rank k ≥ 0, let X = (X1, . . . ,Xn)T ∼ AECn,p

(
μ,D, g(k,p)). Further,

let m ∈ N with m ≤ n, J = {j1, . . . , jm} ⊆ {1, . . . , n} with j1 < . . . < jm, and XJ =(
Xj1 , . . . ,Xjm

)T the corresponding m-dimensional subvector of X. Then,

XJ ∼ AECm,p
(
μJ ,DJ , g

(kJ ,p)
(k)

)

where μJ = (μj1 , . . . ,μjm
)T, DJ = diag

(
dj1 , . . . , djm

)
, and kJ = rk(DJ) ≥ 0.

In the final step four, condition (7) ensures that the considered family of probability
distributions is big enough in a suitable sense. Its proof in case of Q = AECIg(p) (m, S) is
based on the next lemma on distributions of specific linear transformations of random
vectors following an apec distribution.

Lemma 3.3 Let X ∼ AECn,p
(
μ,D, g(k,p)) with rk(D) = k ≥ 0. Then, for every (n ×

n)-permutation matrix M and every b ∈ R
n,

L(MX + b) = AECn,p
(
Mμ + b,MDMT, g(k,p)

)
.

These sketched four steps to prove Theorem 4.1 are outlined in detail in “Proof of
Theorem 4.1” section in reverse order. At the end of the present section, we consider an
example of random processes being defined by Theorem 4.1 and Corollary 3.1. More gen-
eral examples are studied in “Scale mixtures and particular p-generalizations of elliptical
random processes” section.

Example 3.1 Let g(p)
PE =

(
g(k,p)
PE

)
k∈N be the sequence of all dgs of multivariate p-

generalized Gaussian distributions. Then, the consistency of g(p)
PE is immediately seen and

for any nonempty subset I of R and any functions m : I → R and S : I →[ 0,∞),
Theorem 4.1 yields the existence of the real-valued random process AGPp(m, S) having
AECI

g(p)
PE

(m, S) as its family of fdds. Such stochastic process is called p-generalized Gaussian

process having axis-aligned fdds.

3.3 Simulation

In order to simulate a random process X having apec fdds, we consider I =[ 0, 1], simu-
late the marginal vector of X regarding to the equidistant partition

{ i
200 : i = 0, . . . , 200

}

of [ 0, 1] to get a realization of the random vector
(
X0,X 1

200
, . . . ,X 199

200
,X1
)T

. Then, we
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connect the components of this realization in ascending order by linear functions to get
an approximate realization of a trajectory of X. Since components of apec Gaussian dis-
tributed random vectors are independent, simulation of the random process AGPp(m, S)
according to the method described above is just the simulation of 201 univariate
p-generalized Gaussian variables having specific location and scale parameters. We
denote functions on [ 0, 1] taking constant values 0 and 1 by 0[0,1] and 1[0,1], respec-
tively. Results of the simulation of the random process AGPp

(
0[0,1], 1[0,1]

)
are shown for

p ∈ { 12 , 1, 2, 3
}
in Fig. 2. Note that scales of axes are highly dependent on the value of p, but

also on the specific realization of a trajectory of the process. Moreover, in Fig. 3, the effect
different location and scale functions m and S have on simulations of AGP3(m, S) are
shown. See also Appendix 7.2 for several other simulations of random processes having
apec fdds.

4 Scale mixtures and particular p-generalizations of elliptical random
processes

4.1 Scale mixtures of apec Gaussian distributions

Let be μ ∈ R
n, D ∈ R

n×n a diagonal matrix having nonnegative diagonal elements and
rank k ≥ 0, V a positive random variable, and Z ∼ ANn,p(0n,D) independent of V.
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Furthermore, let G denote the cumulative distribution function (cdf) of V. Then, the dis-
tribution of an n-dimensional random vector X satisfying the stochastic representation

X d= μ + V− 1
p · Z (8)

is called scale mixture of the n-dimensional kapec Gaussian distribution with parameters
μ and D and with mixture cdf G and is denoted by SMANn,p(μ,D,G).
The particular cases SMAN1,2(0, 1,G), SMANn,2(μ,D,G) with full rank matrix D, and

SMNn,p(G) = SMANn,p(0n, In×n,G) are introduced in Andrews and Mallows (1974),
Lange and Sinsheimer (1993), and Arellano-Valle and Richter (2012), respectively, where
numerous equivalent parameterizations of scale mixtures of the common multivariate
Gaussian distribution and different notions such as normal/independent distributions or
variance mixtures of Gaussian distribution are used. As a first characterization of the
class of SMANn,p(μ,D,G)-distributions, its connections to the classes of SMNn,p(G)- and
AECn,p

(
μ,D, g(k,p))-distributions are studied next.

Lemma 4.1 A random vector X : � → R
n satisfies X ∼ SMANn,p(μ,D,G) with k =

rk(D) ≥ 1 if and only if

X d= μ + W1
√
S1X̃ where X̃ ∼ SMNk,p(G).

Corollary 4.1 There holds SMANn,p(μ,D,G) = AECn,p
(
μ,D, g(k,p)

SMN ;G

)
with k = rk(D)

and

g(k,p)
SMN ;G(r) =

⎛
⎝ p1−

1
p

2�
(
1
p

)
⎞
⎠

k ∞∫

0

v
k
p e−

rp
p v dG(v), r ≥ 0.

As a result, scale mixtures of kapec Gaussian distributions are themselves kapec. More-
over, many properties of such scalemixtures (such as stochastic representations according
to Lemmata 2.1 and 2.4) can be obtained from properties of n-dimensional kapec distri-
butions by specializing dgs (according to that given in Corollary 4.1). Additionally, some
properties as the first two moments of SMANn,p(μ,D,G) can be specialized as follows.

Corollary 4.2 Let X ∼ SMANn,p(μ,D,G) with k = rk(D) ≥ 1 and V ∼ G. Then,
E(X) = μ if E

(
V− 1

p
)
is finite, and Cov(X) = σ 2

g(k,p)
SMN ;G

D if E
(
V− 2

p
)
is finite where

σ 2
g(n,p)
SMN ;G

= p
2
p
�
(
3
p

)

�
(
1
p

)E
(
V− 2

p
)
.

Because of the assertion of the following lemma, SMANn,p(μ,D,G) can be called a vari-
ance mixture of ANn,p(μ,D). In the special case of μ = 0n, D = In×n and p = 2, the
following lemma is covered by the main theorem in Kingman (1972).

Lemma 4.2 Let X ∼ SMANn,p(μ,D,G) with k = rk(D) ≥ 1 and V ∼ G a positive
random variable. Then, the conditional distribution of X given V = v satisfies

L(X
∣∣ V = v) = ANn,p

(
μ, v− 2

p D
)
, v > 0.
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According to Corollary 4.1, each scale-mixture of the n-dimensional apec Gaussian
distribution is an n-dimensional apec distribution with a specific dg. Now, we are inter-
ested in which AECn,p

(
μ,D, g(k,p))-distributions can be represented by scale mixtures of

the n-dimensional apec Gaussian distribution. This question is answered by the follow-
ing theorem using the notion of completely monotone functions on [ 0,∞). A function
f : (0,∞) → R is called completely monotone if its restriction f ∗ = f|(0,∞) to (0,∞) is
completely monotone, i.e. f ∗ is infinitely often differentiable and satisfies the inequality
(−1)m dmf

dxm (z) ≥ 0 for all z ∈ (0,∞) and allm ∈ N0 = N ∪ {0}, see Sasvári (2013).

Theorem 4.1 Let X ∼ AECn,p
(
μ,D, g(k,p)) with D having positive rank k. Then, X ∼

SMANn,p(μ,D,G) for the cdf G of a suitable positive random variable if and only if the
function h defined by h(y) = g(k,p)( p√y

)
, y ∈[ 0,∞), is completely monotone.

For the special case of n = 1 and p = 2, this theorem is proven in Andrews andMallows
(1974). Subsequently, the Euclidean case p = 2 of Theorem 4.1 in arbitrary dimensions
(n ∈ N) is proven in Lange and Sinsheimer (1993) and Gómez-Sánchez-Manzano et al.
(2006). Particularly, the proof of Theorem 4.1 given in “Proofs regarding to “Scale mix-
tures of apec Gaussian distributions" section” section has analogies to that in Andrews
and Mallows (1974) and the cdf G of the corresponding mixture distribution can be
determined with the help of the inverse Laplace-Stieltjes transform of h.

Corollary 4.3 Let X ∼ AECn,p
(
μ,D, g(k,p)) with k = rk(D) ≥ 1 and assume that the

function y �→ g(k,p)( p√y
)
is completely monotone in (0,∞) and has the inverse Laplace-

Stieltjes transform α, that is

g(k,p)( p√y
) =

∞∫

0

e−yt dα(t), y > 0.

Then, X ∼ SMANn,p(μ,D,G) and the cdf G of the mixture distribution satisfies the
representation

α(t) = p

ωk,p �
(
k
p

)
t∫

1

z
k
p dG(pz), t > 0.

Moreover, the probability law corresponding to G is regular and has pdf fG if and only if
α is absolutely continuous with pdf fα and both pdfs are connected by the equation

fG(s) = ωk,p �

(
k
p

)
p

k
p−2 · s− k

p fα
(
s
p

)
1(0,∞)(s), s ∈ R.

Example 4.1 An n-dimensional apec Gaussian distribution is a scale mixture of itself
with the Dirac distribution in 1 being the mixture distribution. The cdf of this Dirac
distribution is the indicator function s �→ 1(1,∞)(s).

Example 4.2 The n-dimensional kapec Pearson-type VII distribution with parameters
M and ν, M > k

p and ν > 0, and dg

g(k,p)
PT7;M,ν(r) =

⎛
⎝ p

2�
(
1
p

)
⎞
⎠

k
�(M)

ν
k
p �
(
M − k

p

)
(
1 + rp

ν

)−M
, r ≥ 0,
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is the scale mixture of the n-dimensional kapec Gaussian distribution where the mixture
distribution is the Gamma distribution �M− k

p ,
ν
p
having pdf

fG(s) =
(

ν
p

)M− k
p

�
(
M − k

p

) sM− k
p−1e−

ν
p s1(0,∞)(s), s ∈ R.

Example 4.3 A special case of the preceding one is the n-dimensional kapec Student-t
distribution with parameter ν > 0 and dg g(k,p)

St;ν = g(k,p)
PT7; ν+k

p ,ν
being that of the scale mixture

of the n-dimensional kapec Gaussian distribution with mixture distribution �ν
p ,

ν
p
.

Example 4.4 The n-dimensional kapec Slash distribution with parameter ν > 0 is
defined as the scale mixture of the n-dimensional kapec Gaussian distribution with
mixture distribution having pdf f Slν (y) = νyν−11(0,1)(y), y ∈ R.

4.2 Scale mixed p-generalized Gaussian processes having axis-aligned fdds

Let g(p)
SMN ;G =

(
g(k,p)
SMN ;G

)
k∈N denote the sequence of dgs of scale mixtures of k-dimensional

p-generalized Gaussian distributions with one and the same mixture cdf G with

G is independent of the index variablek in g(k,p)
SMN ;G. (9)

According to Examples 4.1-4.4, representatives of mixture cdfs satisfying (9) are the
Dirac distribution in 1, �ν

p ,
ν
p
as well as the distribution with pdf f Slν , whereas the cdf of the

distribution �M− k
p ,

ν
p
does not generally satisfy (9).

Lemma 4.3 For the cdf G of a positive random variable satisfying (9), the sequence
g(p)
SMN ;G is consistent.

Throughout this section, again let I be a nonempty subset of R, m : I → R and
S : I →[ 0,∞) arbitrary functions, and G the cdf of a positive random variable satisfy-
ing (9). Then, a random process having apec fdds, location and scale functions m and
S, respectively, and the sequence g(p)

SMN ;G of dgs exists according to Theorem 4.1 and
Corollary 3.1. Such process is called a scale mixed p-generalized Gaussian process hav-
ing axis-aligned fdds with location function m, scale function S and mixture cdf G and
is denoted by SMAGPp(m, S,G), thus AECPp

(
m, S; g(p)

SMN ;G

)
= SMAGPp(m, S,G). The

motivation and justification of this naming is given by a characterizing property of such
processes in Theorem 4.2 below.
On the one hand, for the special case p = 2, the class of SMAGPp(m, S,G)-processes

is equal to the class of spherically invariant random processes having axis-aligned fdds
which is defined in Vershik (1964). Moreover, it is shown implicitly in Yao (1973) and
explicitly in Kano (1994) that a sequence g(2) is consistent if and only if all elements of
g(2) are dgs of scale mixtures of multivariate Gaussian distributions regarding to one and
the same mixture distribution. On the other hand, for general p > 0, if the mixture
distribution is chosen to be the Dirac distribution in 1, then SMAGPp

(
m, S,1(1,∞)

) =
AGPp(m, S). Furthermore, for any ν > 0, let us denote the cdf of �ν

p ,
ν
p
and of the dis-

tribution with pdf f Slν by GSt
ν/p and GSl

ν , respectively. Then, SMAGPp
(
m, S,GSt

ν/p

)
and

SMAGPp
(
m, S,GSl

ν

)
are called p-generalized Student-t and p-generalized Slash process
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having axis-aligned fdds with location functionm, scale function S and parameter ν, and
are denoted by AStPp(m, S, ν) and ASlPp(m, S, ν), respectively.
Because of its construction, a scale mixed p-generalized Gaussian process X having

axis-aligned fdds with location functionm, scale function S and mixture cdfG is uniquely
determined except for equivalence and denoted X ∼ SMAGPp(m, S,G). Next, we state a
characteristic representation of the random process SMAGPp(m, S,G) with the help of a
specific p-generalized Gaussian process providing the motivation for the naming of such
process.

Theorem 4.2 Let X = {Xt}t∈I be a scale mixed p-generalized Gaussian process having
axis-aligned fdds, X ∼ SMAGPp(m, S,G). Then, X and Y =

{
m(t) + V− 1

p Zt
}
t∈I are

equivalent where the p-generalized Gaussian process Z = {Zt}t∈I ∼ AGPp(0I , S) having
axis-aligned fdds is independent of the random variable V ∼ G.

For p = 2 and m = 0I , Theorem 4.2 is proven in Wise and jun Gallagher (1978).
In the sequel, using the characteristic representation from Theorem 4.2, we determine
expectation and covariance functions as well as stationarity properties of the random pro-
cess SMAGPp(m, S,G). Since SMAGPp(m, 0I ,G) equals a.s. the location function m, the
results of Theorems 4.3 and 4.5 below are restricted to non-vanishing scale functions, i.e.
S �= 0I . Let g

(p)
SMN ;G =

(
g(k,p)
SMN ;G

)
k∈N be the sequence of dgs of scale mixtures of multivari-

ate p-generalized Gaussian distributions with one and the same mixture cdf G such that
E

(
V− 2

p
)
is finite where V ∼ G. Then, because of Corollary 4.2 and property (9) ofG, the

sequence
(

σ 2
g(k,p)
SMN ;G

)

k∈N
of the corresponding univariate variance components is constant

and an arbitrary element of it is subsequently denoted by σ 2
g(p)
SMN ;G

.

Theorem 4.3 Let X = {Xt}t∈I ∼ SMAGPp(m, S,G) with S �= 0I and V ∼ G. Then,
the expectation function of the random process X exists and is equal to the location func-
tion m if E

(
V− 1

p
)
is finite. If E

(
V− 2

p
)
is finite, X is a second order random process with

covariance function � : I × I → R given by

�(s, t) =
⎧⎨
⎩

σ 2
g(p)
SMN ;G

· S(t) if s = t

0 else
.

As announced before, different stationarity properties of the random process
SMAGPp(m, S,G) are studied now. We start with a result on strict stationarity.

Theorem 4.4 Let X = {Xt}t∈I ∼ SMAGPp(m, S,G). Then, X is strictly stationary if and
only if m and S are constant.

In the following theorem, we additionally take the notions of weak stationarity and
white noise into consideration.

Theorem 4.5 Let X = {Xt}t∈I ∼ SMAGPp(m, S,G), V ∼ G, μ ∈ R and δ > 0. Then,
the following statements are equivalent:

1) There holdsm(t) = μ and S(t) = δ for all t ∈ I and E

(
V− 2

p
)
is finite.
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2) X is strictly stationary, E
(
V− 2

p
)
is finite, the expectation function of X attains the

constant value μ and the covariance function � of X satisfies �(t, t) = σ 2
g(p)
SMN ;G

δ for

all t ∈ I and �(s, t) = 0 for all s, t ∈ I with s �= t.

3) X is weakly stationary with constant expectation μ and covariance function �

given by �(s, t) = K(s − t) where K satisfies K(0) = σ 2
g(p)
SMN ;G

δ and K(h) = 0 for all

h ∈ {s − t : s, t ∈ I}\{0}.
4) X is white noise with expectation μ and variance σ 2

g(p)
SMN ;G

δ.

Finally, we establish the closedness of the class of all scale mixed p-generalized Gaussian
processes having axis-aligned fdds with respect to linear transformations.

Theorem 4.6 Let {Xt}t∈I ∼ SMAGPp(m, S,G), b : I → R and γ : I → R. Then,

{γ (t)Xt + b(t)}t∈I ∼ SMAGPp
(
γm + b, γ 2S,G

)
,

where [ γm+b] : I → R and
[
γ 2S

]
: I →[ 0,∞) are defined by [γm + b] (t) = γ (t)m(t)+

b(t), t ∈ I, and
[
γ 2S

]
(t) = (γ (t))2S(t), t ∈ I, respectively.

5 Proofs
5.1 Proofs of Lemmata 2.3 and 2.5

Before proving Lemma 2.3, we state a part of its proof as the following remark on the p-
generalized surface content of p-generalized spheres of different dimensions in relation
with a certain integral.

Remark 5.1 For every ν ∈ N with ν ≥ 2 and every κ ∈ {1, . . . , ν − 1},

ωκ ,p ων−κ ,p
ων,p

π
2∫

0

(cos(ψ))ν−κ−1 (sin(ψ))κ−1

(
(sin(ψ))p + (cos(ψ))p

) ν
p

dϕ = 1.

According to Richter (2009), the left hand side of the above equation is the limit of
the cdf of the p-generalized Fisher statistic Tν−κ ,κ (p) evaluated at t as t → ∞. Hence,
Remark 5.1 follows from the elementary fact that the cdf of a univariate random variable
evaluated at t tends to one as t → ∞.

Proof of Lemma 2.3 Let k ∈ {1, . . . , n − 1} be fixed. Denoting τk,p = �
(
3
p

)
�
(
k
p

)

�
(
1
p

)
�
(
k+2
p

) , using

integral transformation y = zp + rp with dy
dz = pzp−1 and finally renaming r and z by x

and y, respectively, we get

σ 2
g(k,p)
(n)

= τk,p ωk,p

∞∫

0

rk+1g(k,p)
(n) (r) dr

= τk,p ωk,p ωn−k,p

∞∫

0

∞∫

0

xk+1yn−k−1g(n,p)
(

p
√
xp + yp

)
dy dx.
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Applying the l2,p-spherical coordinate transformation x = r cos(ψ)
Np(ψ)

and y = r sin(ψ)
Np(ψ)

with Np(ψ) = (|sin(ψ)|p + |cos(ψ)|p)1/p and d(x,y)
d(r,ψ)

= r
N2
p (ψ)

, see Richter (2007), Fubini’s
theorem and Remark 5.1 for ν = n + 2 and κ = n − k, it follows

σ 2
g(k,p)
(n)

= τk,p ωk,p ωn−k,p

∞∫

0

π
2∫

0

rn+1g(n,p)(r)
(cos(ψ))k+1 (sin(ψ))n−k−1

(
(sin(ψ))p + (cos(ψ))p

) n+2
p

dψ dr

= σ 2
g(n,p) .

Proof of Lemma 2.5 It follows from D = (W1
√
S1
)(
W1

√
S1
)T and Lemma 2.1 that

WT
1 X

d= WT
1

(
μ + R ·

(
W1
√
S1
)
U(k)
p

)
= WT

1 μ + R ·√S1U(k)
p .

Since
√
S1 has full rank k,WT

1 X is k-dimensional rank-k-continuous p-generalized ellip-
tically contoured distributed with parametersWT

1 μ and S1 andwith dg g(k,p). By definition
of this distribution, for Y ∼ �g(k,p) , it followsWT

1 X
d= WT

1 μ + √
S1Y . Thus,WT

1 X has pdf

1√
di1 · . . . · dik

g(k,p)
(∣∣∣
√
S1

−1 (
z − WT

1 μ
)∣∣∣
p

)
, z ∈ R

k .

Since the columns of W1 and W2 together build an orthonormal basis of Rn, we have
WT

2 W1 = 0(n−k)×k and

WT
2 X

d= WT
2 μ + R · WT

2 W1
√
S1U(k)

p = WT
2 μ a.s.

Thus, the orthogonal projection Y = �UWT
2

(μ)(X) of X into the space UWT
2
(μ) has the

pdf

1√
di1 · . . . · dik

g(k,p)
(∣∣∣
√
S1

−1
WT

1 (x − μ)

∣∣∣
p

)
, x ∈ R

n,

and the orthogonal projection of X into the orthogonal complement of UWT
2
(μ) has

probability mass zero.

5.2 Proof of Theorem 4.1

We start with considering a particular case of Lemma 3.3.

Lemma 5.1 Let X ∼ AECn,p
(
μ,D, g(k,p)) where rk(D) = k ≥ 1. Then, for every (n ×

n)-permutation matrix M and every b ∈ R
n,

L (MX + b) = AECn,p
(
Mμ + b,MDMT, g(k,p)

)
.

Proof With notations from “The class of n-dimensional rank-k-continuous axis-aligned
p-generalized elliptically contoured distributions” section,

MX + b d= (Mμ + b) + MW1
√
S1Y where Y ∼ �g(k,p) .
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SinceMW1
√
S1 ∈ R

n×k arises fromW1
√
S1 by interchanging rows, it has rank k. Thus,

L (MX + b) = AECn,p

(
Mμ + b,

(
MW1

√
S1
)(

MW1
√
S1
)T

, g(k,p)
)

= AECn,p
(
Mμ + b,MDMT, g(k,p)

)
.

Proof of Lemma 3.3 Because of Lemma 5.1, only the case k = 0 has to be considered. In
this case, X ∼ AECn,p

(
μ, 0n×n, g(0,p)), i.e. X follows the Dirac distribution in μ. Thus,

MX + b d= Mμ + b P − a.s.

and L(MX + b) = AECn,p
(
Mμ + b,M0n×nMT, g(0,p)) because of 0n×n = M0n×nMT.

Denoting the cardinality of the set A by |A|, we continue with studying a particular case
of Lemma 3.2.

Lemma 5.2 Let be X = (X1, . . . ,Xn)T ∼ AECn,p
(
μ,D, g(k,p)) where μ =

(μ1, . . . ,μn)
T ∈ R

n and assume D = diag (d1, . . . , dn) has nonnegative diagonal entries
and rank k ≥ 1. Further, let m ∈ N with m ≤ n, J = {j1, . . . , jm} ⊆ {1, . . . , n} with j1 <

. . . < jm and
∣∣{η ∈ {1, . . . ,m} : djη > 0

}∣∣ ≥ 1. Then, the corresponding m-dimensional
subvector XJ = (Xj1 , . . . ,Xjm

)T of X satisfies

XJ ∼ AECm,p
(
μJ ,DJ , g

(kJ ,p)
(k)

)

where μJ = (μj1 , . . . ,μjm
)T, DJ = diag

(
dj1 , . . . , djm

)
and kJ = rk(DJ) ≥ 1.

Proof Starting from the equation XJ = �X where

� =

⎛
⎜⎜⎝

e(n)
j1

T

...
e(n)
jm

T

⎞
⎟⎟⎠ ∈ R

m×n

and using notations from “The class of n-dimensional rank-k-continuous axis-aligned
p-generalized elliptically contoured distributions” section, it follows that

�W1
√
S1 =

⎛
⎜⎜⎝

e(n)
j1

T

...
e(n)
jm

T

⎞
⎟⎟⎠
(√

di1e
(n)
i1 · · · √dik e

(n)
ik

)
=

⎛
⎜⎜⎝

f (1)
...

f (n)

⎞
⎟⎟⎠ ∈ R

m×k

where

f (η) =
{√

dil e
(k)
l

T
if jη = il for an l ∈ {1, . . . , k}

0Tk else
, η = 1, . . . ,m.

Thus, for Y = (Y1, . . . ,Yk) ∼ �g(k,p) , we get

�W1
√
S1Y =

⎛
⎜⎜⎝

h(1)
...

h(m)

⎞
⎟⎟⎠ ∈ R

m

where
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h(η) =
k∑

l=1

√
dilYlδil jη =

{√
dilYl if jη = il for an l ∈ {1, . . . , k}

0 else
,

η = 1, . . . ,m. Now, let

K = {l ∈ {1, . . . , k} : il = jη for an η ∈ {1, . . . ,m}} . (10)

Then, |K | =
∣∣∣
{
η ∈ {1, . . . ,m} : σ 2

jη > 0
}∣∣∣ ≥ 1 and the matrix �W1

√
S1 has k − |K | zero

columns. Since each non-zero column is the product of a positive constant with a unit
vector in R

m, the vector �W1
√
S1Y consists of |K | different components of Y multiplied

by positive constants and of m − |K | zeros. Subsequently, put K = {
l1, . . . , l|K |

}
where

l1 < l2 < . . . < l|K | is an increasing enumeration of the elements of K and let

M =

⎛
⎜⎜⎝

ψ(1)
...

ψ(m)

⎞
⎟⎟⎠ ∈ R

m×|K |

be a matrix consisting of the row vectors

ψ(η) =
⎧⎨
⎩

√
dilκ e

(|K |)
κ

T
if jη = ilκ for a κ ∈ {1, . . . , |K |}

0T|K | else
, η = 1, . . . ,m.

Then, for B ∈ Bm, Y ∼ �g(k,p) and Z ∼ �g(|K |,p)
(k)

, it follows that

P
(
�W1

√
S1Y ∈ B

)
= P

⎛
⎜⎜⎝

⎛
⎜⎜⎝

h(1)
...

h(m)

⎞
⎟⎟⎠ ∈ B , Yl ∈ R for alll ∈ {1, . . . , k}\K

⎞
⎟⎟⎠

= P(MZ ∈ B)

and, because of (1) and rk(M) = |K |,
XJ = �X d= μJ + �W1

√
S1Y

d= μJ + MZ

∼ ECm,p
(
μJ ,MMT, g(|K |,p)

(k)

)
.

Note that M can be extended to �W1
√
S1 by adding zero columns without changing

the rank. Moreover, MMT = (
�W1

√
S1
)(

�W1
√
S1
)T = �D� = DJ and |K | = rk(M) =

rk
(
MMT

) = rk(DJ) = kJ . Summarizing all, we have

L(XJ) = AECm,p
(
μJ ,DJ , g

(kJ ,p)
(k)

)
.

Proof of Lemma 3.2 If k = 0, X ∼ AECn,p
(
μ, 0n×n, g(0,p)) and J = {j1, . . . , jm} ⊆

{1, . . . , n} with j1 < . . . < jm. In this case, XJ = μJ P-a.s. and

XJ ∼ ECm,p
(
μJ , 0m×m, g

(0,p)
(0)

)

because the symbols g(0,p) and g(0,p)
(k) can be switched for a k ∈ N ∪ {0}. Now, let

X ∼ AECn,p
(
μ,D, g(k,p)) where D = diag (d1, . . . , dn) has nonnegative diagonal ele-

ments and positive rank k, and let J = {j1, . . . , jm} ⊆ {1, . . . , n} be an index set such
that j1 < . . . < jm and

∣∣∣
{
η ∈ {1, . . . ,m} :

√
djη > 0

}∣∣∣ ≥ 1. Then, Lemma 5.2 yields the
assertion. Finally, let X ∼ AECn,p

(
μ,D, g(k,p)) where D = diag (d1, . . . , dn) has nonneg-

ative diagonal elements and positive rank k but, now, where J = {j1, . . . , jm} ⊆ {1, . . . , n}
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is an index set such that j1 < . . . < jm and
∣∣∣
{
η ∈ {1, . . . ,m} :

√
djη > 0

}∣∣∣ = 0. Using
the notation from the proof of Lemma 5.2, the set K defined in (10) has cardinality
|K | =

∣∣∣
{
η ∈ {1, . . . ,m} :

√
djη > 0

}∣∣∣ = 0. Because of this, �W1
√
S1 is equal to the (m×k)

zero matrix and the distribution of �W1
√
S1Y for Y ∼ �g(k,p) is concentrated in 0m. Since

DJ = diag
(
dj1 , . . . , djm

) = 0m×m, kJ = rk(DJ) = 0 and XJ = �X d= μJ + �W1
√
S1Y for

Y ∼ �g(k,p) , it follows

XJ = μJ P − a.s.,

i.e. XJ ∼ AECm,p
(
μJ , 0m×m, g

(0,p)
(k)

)
.

Proof of Lemma 3.1 Starting from (5) and using the transformation ỹ = |x|pp + yp, for
x ∈ R

k , we get

g(k,p)(|x|p
) =

∞∫

−∞
g(k+1,p)

(
p
√

|x|pp + ∣∣y∣∣p
)

dy

= 2
∞∫

0

g(k+1,p)
(

p
√

|x|pp + yp
)

dy

= 2
p

∞∫

|x|pp

(
ỹ − |x|pp

) 1
p−1 g(k+1,p)

(
p
√
ỹ
)
dỹ.

Because of ω1,p = 2,

g(k,p)(|x|p
) = g(k,p)

(k+1)
(|x|p

)
, x ∈ R

k .

Proof of Theorem 4.1 For n ∈ N and arbitrary elements t1, . . . , tn, tn+1 of I,
let μ(n+1) = (m(t1), . . . ,m(tn),m(tn+1))

T ∈ R
n+1 and assume D(n+1) =

diag (S(t1), . . . , S(tn), S(tn+1)) to have rank k. Further, let Q{t1,...,tn,tn+1}(·) =
AECn+1,p

(· ∣∣ μ(n+1),D(n+1), g(k,p)) ∈ AECIg(p) (m, S) be the probability measure induced
by a random vector following the (n+1)-dimensional kapec distribution with parameters
μ(n+1) and D(n+1) and dg g(k,p) ∈ g(p) if k > 0 and symbol g(0,p) if k = 0, respectively. By
Lemma 3.2, it follows

Q{t1,...,tn,tn+1}(A × R) = AECn+1,p
(
A × R

∣∣ μ(n+1),D(n+1), g(k,p)
)

= AECn,p
(
A
∣∣ μ(n),D(n), g(κ ,p)

(k)

)
, A ∈ Bn,

whereμ(n) = (m(t1), . . . ,m(tn))T andD(n) = diag (S(t1), . . . , S(tn))with κ = rk
(
D(n)

) ∈
{k − 1, k}. Furthermore, using Lemma 3.1 if κ > 0 and recalling the exchangeability of
symbols g(0,p)

(k) and g(0,p) (to maintain the notation as in the proof of Lemma 3.2) if κ = 0,
we have

Q{t1,...,tn,tn+1}(A × R) = AECn,p
(
A
∣∣ μ(n),D(n), g(κ ,p)

)
= Q{t1,...,tn}(A).

Therefore, the marginal probability measure Q{t1,...,tn} of Q{t1,...,tn+1} corresponds to the
elementAECn,p

(
μ(n),D(n), g(κ ,p)) ofAECIg(p) (m, S) and, thus, the Kolmogorov consistency

condition (6) is satisfied. Now, let π be a permutation of {1, . . . , n} and M the corre-
sponding permutation matrix. Additionally, let Q{t1,...,tn}(·) = AECn,p

(· ∣∣ μ,D, g(κ ,p)) ∈
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AECIg(p) (m, S) be the probability measure induced by a random vector X with X ∼
AECn,p

(
μ,D, g(κ ,p)) where μ = μ(n) = (m(t1), . . . ,m(tn))T and D = D(n) =

diag (S(t1), . . . , S(tn)) with κ = rk(D). Then, Q{tπ(1),...,tπ(n)} is induced by MX and,
according to Lemma 3.3,

Q{tπ(1),...,tπ(n)}(·) = AECn,p
(
· ∣∣ Mμ,MDMT, g(κ ,p)

)
.

If κ = 0, then D = MDMT = 0n×n. In this case, Q{t1,...,tn} and Q{tπ(1),...,tπ(n)} are Dirac
measures in μ andMμ, respectively, and, for A ∈ Bn,

Q{tπ(1),...,tπ(n)}(Aπ ) = Q{tπ(1),...,tπ(n)}(MA) = 1MA(Mμ)

= 1A(μ) = Q{t1,...,tn}(A).

Thus, the Kolmogorov consistency condition (7) is satisfied if κ = 0.
Now, let κ > 0. Using the notations of matrices S1, W1 and W2 from
“The class of n-dimensional rank-k-continuous axis-aligned p-generalized elliptically
contoured distributions” section,

(
W1

√
S1
)(
W1

√
S1
)T is a decomposition of D with

W1
√
S1 ∈ R

n×κ and rk
(
W1

√
S1
) = κ and the columns of W2 are a basis of the ker-

nel of D. Consequently, on the one hand,
(
MW1

√
S1
)(
MW1

√
S1
)T is a corresponding

decomposition of MDMT with MW1
√
S1 ∈ R

n×κ and rk
(
MW1

√
S1
) = κ since left mul-

tiplication ofW1
√
S1 by permutation matrixM only interchanges columns and leaves the

rank unchanged. On the other hand, the columns of MW2 build a basis of the kernel of
MDMT,

U(MW2)T(Mμ) = {My ∈ R
n : WT

2 y = WT
2 μ
} = M · UWT

2
(μ),

and

λ
(κ)
U

(MW2)
T (Mμ)(·) = λ

(κ)
M·UWT

2
(μ)(·) = λ

(κ)
UWT

2
(μ)

(
fMT(·))

where fMT is defined by fMT(x) = MTx, x ∈ R
n. Finally, for A ∈ Bn, Eq. 4 resulting

from the pdf-like representation of an n-dimensional apec distribution together with the
transformation y = fMT(x) having the Jacobian |det(M)| = 1 yield

Q{tπ(1),...,tπ(n)}(Aπ )

= AECn,p
(
MA

∣∣ Mμ,MDMT, g(κ ,p)
)

= 1
det
(√

S1
)
∫

MA

g(κ ,p)
(∣∣∣
√
S1

−1
(MW1)

T(x − Mμ)

∣∣∣
p

)
λ

(κ)
U

(MW2)
T (Mμ)(dx)

= 1
det
(√

S1
)
∫

fMT (A)

g(κ ,p)
(∣∣∣
√
S1

−1
WT

1
(
fMT(x) − μ

)∣∣∣
p

)
λ

(κ)
UWT

2
(μ)

(
fMT(dx)

)

= 1
det
(√

S1
)
∫

A

g(κ ,p)
(∣∣∣
√
S1

−1
WT

1 (y − μ)

∣∣∣
p

)
λ

(κ)
UWT

2
(μ)(dy)

= Q{t1,...,tn}(A).

Thus, the Kolmogorov consistency condition (7) is satisfied in case κ > 0, too.

5.3 Proofs regarding to “Scale mixtures of apec Gaussian distributions” section

Proof of Lemma 4.1 For a positive random variable V ∼ G, because of (1) and (8), we
have X d= μ+V− 1

p ·Z where Z ∼ ANn,p(0n,�). It follows X d= μ+V− 1
p ·W1

√
S1Z̃ where
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Z̃ ∼ Nk,p and X d= μ + W1
√
S1V− 1

p · Z̃ where Z̃ ∼ Nk,p. Thus, X
d= μ + W1

√
S1X̃ where

X̃ ∼ SMNk,p(G).

Proof of Corollary 4.1 In the case k ≥ 1, the assertion follows from Lemma 4.1, Eq. 1
and the identity SMNk,p(G) = �g(k,p)

SMN ;G
from Arellano-Valle and Richter (2012). In the

case k = 0, Z = 0n a.s. in (8). Therefore, X ∼ SMANn,p(μ, 0n×n,G), that is X has Dirac
distribution in μ. Thus, X ∼ AECn,p

(
μ, 0n×n, g

(0,p)
SMN ;G

)
, where g(0,p)

SMN ;G is just a symbol to
maintain notations.

Proof of Corollary 4.2 By Corollary 4.1, the assertion follows from Lemma 2.2 with
the specific dg g(k,p)

SMN ;G. Particularly, for m ∈ {1, 2}, Ik+m
(
g(k,p)
SMN ;G

)
is finite if and only if

E

(
V−m

p
)
is finite. To see this, consider

Ik+m
(
g(k,p)
SMN ;G

)
= Ck

p

∞∫

0

rk+m−1
∞∫

0

v
k
p e−

rp
p v dG(v) dr

= Ck
p p

k+m
p −1

�

(
k + m

p

) ∞∫

0

v−m
p dG(v).

Here, we used notation Cp = p1−
1
p

2�
(
1
p

) , two times Fubini’s theorem and changed variables

s = rp
p v with

dr
ds = p

1
p−1v− 1

p s
1
p−1. Finally, by Lemma 2.2, the specific univariate variance

component is

g(k,p)
SMN ;G = p

2
p
�
(
3
p

)

�
(
1
p

)E
(
V− 2

p
)
.

Proof of Lemma 4.2 LetZ ∼ ANn,p(0n,D) and assumeZ to be independent ofV. Making
use of Eq. 8 and exploiting the independence of Z and V, for all B ∈ Bn and v > 0,

P
(
X ∈ B

∣∣ V = v
) = P

((
μ + V− 1

p Z
)

∈ B
∣∣ V = v

)
= P

((
μ + v− 1

pW1
√
S1Z̃
)

∈ B
)

where Z̃ ∼ Nk,p. Because of
(
v− 1

pW1
√
S1
)(

v− 1
pW1

√
S1
)T = v− 2

p D with v− 1
pW1

√
S1 ∈

R
n×k and rk

(
v− 1

pW1
√
S1
)

= k, according to (1) with dg g(k,p)
PE , the assertion follows from

L

(
μ + v− 1

pW1
√
S1Z̃
)

= ANn,p
(
μ, v− 2

p D
)
, v > 0.

Before proving the general statement of Theorem 4.1, we prove the following particular
one.

Lemma 5.3 Let X ∼ �g(k,p) . Then, X ∼ SMNk,p(G) for the cdf G of a suitable positive
random variable if and only if the function h defined by h(y) = g(k,p)( p√y

)
, y ∈[ 0,∞), is

completely monotone.
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Proof Throughout this proof, let X ∼ �g(k,p) . If X ∼ SMNk,p(G) for the cdf G of a
suitable positive random variable, according to Corollary 4.1, g(k,p) = g(k,p)

SMN ;G and

h(y) = g(k,p)
SMN ;G

(
y
1
p
)

= Ck
p

∞∫

0

v
k
p e−

y
p v dG(v), y ≥ 0,

where Cp = p1−
1
p

2�
(
1
p

) . Because of

dmh
dym

(y) = (−1)m
Ck
p

pm

∞∫

0

v
k
p+me−

y
p v dG(v), y > 0

for all m ∈ N ∪ {0}, h is completely monotone in [ 0,∞). Now, let h = g(k,p)( p√·) be
completely monotone on [ 0,∞). According to Hausdorff-Bernstein-Widder theorem, see
Widder (1946), h is representable as the Laplace-Stieltjes transform of a nondecreasing
function α, i.e.

h(y) =
∞∫

0

e−yt dα(t), 0 < y < ∞,

and the integral converges for all 0 < y < ∞. Additionally, denoting,

β(t) =
t∫

1

C−k
p v− k

p dα

(
1
p
v
)
, t > 0,

Stieltjes integral properties yield

h(y) =
∞∫

0

e−y
(
1
p v
)
dα

(
1
p
v
)

= Ck
p

∞∫

0

v
k
p e−

1
p yv dβ(v), y > 0.

Thus,

g(k,p)(r) = h
(
rp
) = Ck

p

∞∫

0

v
k
p e−

rp
p v dβ(v), r > 0.

Consequently, it remains to show thatG defined byG(v) = β(v)− lim
t↘0

β(t), v > 0, is the

cdf of a positive random variable. Note that G is nondecreasing since α has this property.
Hence,

G(v2) − G(v1) = β(v2) − β(v1) =
v2∫

v1

C−k
p v− k

p dα

(
1
p
v
)

≥ 0, 0 < v1 ≤ v2.

It remains to show that 1 = lim
v→∞G(v) − lim

t↘0
G(t). To this end, let g̃(k,p)(z, r) =

Ck
p

z∫
z−1

v
k
p e−

rp
p v dβ(v), 1 < z < ∞, denote a left and right truncated version of g(k,p).

Using Fubini’s theorem, change of variables s = r p√v with dr
ds = v− 1

p and the equality
ωk,p Ik

(
g(k,p)
PE

)
= 1, we have
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∞∫

0

rk−1g̃(k,p)(z, r) dr =
z∫

z−1

v
k
p

∞∫

0

Ck
prk−1e−

rp
p v dr dβ(v)

=
z∫

z−1

Ik
(
g(k,p)
PE

)
dβ(v)

= 1
ωk,p

(
β(z) − β

(
z−1)) , z > 1.

Because g̃(k,p)(z, r) is a nonnegative function and g(k,p)(r) = h (rp), it follows 0 ≤
rk−1g̃(k,p)(z, r) ≤ rk−1g(k,p)(r) for all z > 1 and r > 0. Furthermore, because of its struc-
ture as well as its nonnegativity, for all r > 0, the function rk−1g̃(k,p)(z, r) is monotonically
increasing in variable z and converges to rk−1g(k,p)(r) as z → ∞. Thus, the monotone
convergence theorem of Beppo Levi yields the desired

lim
v→∞G(v) − lim

t↘0
G(t) = lim

z→∞
(
G(z) − G

(
z−1))

= lim
z→∞ β(z) − β

(
z−1)

= lim
z→∞ ωk,p

∞∫

0

rk−1g̃(k,p)(z, r) dr

= ωk,p Ik
(
g(k,p)
PE

)

Therefore, G defined by G(v) = β(v) − lim
t↘0

β(t), v > 0, is the cdf of a positive random

variable. Finally, because of

g(k,p)(r) = h
(
rp
) = Ck

p

∞∫

0

v
k
p e−

rp
p v dβ(v)

= Ck
p

∞∫

0

v
k
p e−

rp
p v d

(
β(v) − lim

t↘0
β(t)

)

= Ck
p

∞∫

0

v
k
p e−

rp
p v dG(v), r > 0,

we have g(k,p) = g(k,p)
SMN ;G a.e. in [ 0,∞) and X ∼ SMNk,p(G).

Before proving the general statement of Corollary 4.3, we prove the following particular
one.

Corollary 5.1 Let X ∼ �g(k,p) and assume that g(k,p)( p√·) is completely monotone in

(0,∞) and has inverse Laplace-Stieltjes transform α, g(k,p)( p√y
) =

∞∫
0
e−yt dα(t), y > 0.

Then, X ∼ SMNk,p(G) and the mixture cdf G satisfies the representation

α(t) = p

ωk,p �
(
k
p

)
t∫

1

z
k
p dG(pz), t > 0.
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Moreover, the probability distribution corresponding to G is regular and has pdf fG if and
only if α is absolutely continuous and has pdf fα where both pdfs are connected by

fG(s) = ωk,p �

(
k
p

)
p

k
p−2 · s− k

p fα
(
s
p

)
1(0,∞)(s), s ∈ R.

Proof of Corollary 5.1 According to the second part of the proof of Lemma 5.3, on the

one hand, there exists a nondecreasing function α satisfying g(k,p)( p√y) =
∞∫
0
e−yt dα(t),

y > 0. Since X ∼ SMNk,p(G) for a suitable mixture cdf G, on the other hand, we have

g(k,p)( p√y) = g(k,p)
SMN ;G( p√y) = Ck

p
∞∫
0
v
k
p e−

1
p yv dG(v), y > 0. Then, changing variables z = 1

pv,

∞∫

0

e−yt dα(t) = Ck
p

∞∫

0

v
k
p e−

1
p yv dG(v) = p

ωk,p �
(
k
p

)
t∫

1

z
k
p e−zv dG(pz)

and using properties of Stieltjes integrals, it turns out that

α(t) = p

ωk,p �
(
k
p

)
t∫

1

z
k
p dG(pz), t > 0.

Hence, regularity properties of probability distributions regarding to G and α are
equivalent. Moreover, since fG is the pdf of a positive random variable and there holds

fα(t) = p

ωk,p �
(
k
p

) t kp dG(pt)
dt

= p2

ωk,p �
(
k
p

) t kp · fG(pt),

t > 0, according to the above equation involving fG, it follows fG(s) = 0 for all s ≤ 0 and

fG(s) = ωk,p �

(
k
p

)
p−2

(
s
p

)− k
p
fα
(
s
p

)
, s > 0.

Proof of Theorem 4.1 Let X ∼ SMANn,p(μ,D,G) for the cdf G of a positive random
variable. Then, g(k,p) = g(k,p)

SMN ;G according to Corollary 4.1 and g(k,p)
SMN ;G

(
p√·) is completely

monotone in [ 0,∞) according to Lemma 5.3. Vice versa, let X ∼ AECn,p
(
μ,D, g(k,p))with

k = rk(D) and assume h(·) = g(k,p)( p√·) to be completely monotone in [ 0,∞). Then,
according to Lemma 5.3, g(k,p) is the dg of a distribution from

{
SMNk,p(G) : G is the cdf of a positive random variable

}
,

i.e. �g(k,p) = SMNk,p(G) for a suitable cdf G of a positive random variable. Thus, X d=
μ + W1

√
S1X̃ where X̃ ∼ SMNk,p(G) because of (1) and, finally, X ∼ SMANn,p(μ,�,G)

because of Lemma 4.1.

Proof of Corollary 4.3 According to (1), for X ∼ AECn,p
(
μ,D, g(k,p)) with rk(D) = k, we

have

X d= μ + W1
√
S1X̃ where X̃ ∼ �g(k,p) .
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Because g(k,p)( p√·) is completely monotone in (0,∞), Corollary 5.1 yields X̃ ∼
SMNk,p(G) as well as

α(t) = p

ωk,p �
(
k
p

)
t∫

1

z
k
p dG(pz), t > 0,

where α is the inverse Laplace-Stieltjes transform of g(k,p)( p√·). The relationship between
the pdfs fG and fα follows in analogy to the second part of the proof of Corollary 5.1.

5.4 Proofs regarding to “Scale mixed p-generalized Gaussian processes having

axis-aligned fdds” section

Proof of Lemma 4.3Using Fubini’s theorem and changing variables y = v− 1
p z with dy

dz =
v− 1

p , for all k ∈ N and r ≥ 0, there holds
∞∫

−∞
g(k+1,p)
SMN ;G

(
p
√
rp + ∣∣y∣∣p

)
dy = 2

∞∫

0

g(k+1,p)
SMN ;G

(
p
√
rp + yp

)
dy

=
⎛
⎝Ck

p

∞∫

0

v
k
p e−

rp
p v dG(v)

⎞
⎠ p1−

1
p

�
(
1
p

)
∞∫

0

e−
zp
p dz.

Since G is independent of k, see (9), the first factor on the right hand side of the
latter equation is equal to the value of the dg g(k,p)

SMN ;G evaluated at r. Furthermore, the
corresponding second factor equals 1. Thus, the assertion follows with

∞∫

−∞
g(k+1,p)
SMN ;G

(∣∣∣(x1, . . . , xk , xk+1
)T∣∣∣

p

)
dxk+1 =

∞∫

−∞
g(k+1,p)
SMN ;G

(
p
√
rp + ∣∣y∣∣p

)
dy

= g(k,p)
SMN ;G(r)

= g(k,p)
SMN ;G

(∣∣(x1, . . . , xk)T
∣∣
p

)

for all k ∈ N and (x1, . . . , xk)T ∈ R
k where r = ∣∣(x1, . . . , xk)T

∣∣
p and y = xk+1.

Proof of Theorem 4.2 Let n ∈ N and J = {t1, . . . , tn} an arbitrary subset of I having n
elements. Then, J ∈ H(I), and AECn,p

(
μ,D, g(k,p)

SMN ;G

)
with μ = (m(t1), . . . ,m(tn))T and

D = diag (S(t1), . . . , S(tn)) where k = rk(D) is the fdd of the random process X corre-
sponding to XJ = (Xt1 , . . . ,Xtn

)T. Moreover, ANn,p(0n,D) and L

(
μ(n) + V− 1

p ZJ
)
are the

fdds of Z regarding to ZJ = (
Zt1 , . . . ,Ztn

)T and of Y regarding to YJ = (
Yt1 , . . . ,Ytn

)T,
respectively. By (8) and Corollary 4.1,

L

(
μ(n) + V− 1

p ZJ
)

= SMANn,p(μ,D,G) = AECn,p
(
μ,D, g(k,p)

SMN ;G

)

for all n ∈ N and every set J = {t1, . . . , tn} ∈ H(I) with |J| = n. Thus, the random
processes X and Y are equivalent meaning that they have one and the same family of
fdds.

Before we prove Theorem 4.3, we consider the following special case of it. To this end,

notice that the sequence
(

σ 2
g(k,p)
PE

)

k∈N
of all univariate variance components of multivari-

ate p-generalized spherical Gaussian distributions equals the sequence
(

σ 2
g(p)
SMN ;G

)

k∈N
with
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G = 1(1,∞). Thus, according to the paragraph before Theorem 4.3, it is constant. Subse-
quently, an arbitrary element of it is denoted by σ 2

g(p)
PE

and satisfies σ 2
g(p)
PE

= σ 2
g(p)
SMN ;1(1,∞)

=

p
2
p

�
(
3
p

)

�
(
1
p

) .

Lemma 5.4 Let Z = {Zt}t∈I ∼ AGPp(m, S). Then, Z is a second order random process,
its expectation function is equal to m, and its covariance function � : I× I → R is given by

�(s, t) =
⎧⎨
⎩

σ 2
g(p)
PE

· S(t) if s = t

0 else
.

The proof of this lemma follows immediately from Corollaries 4.1 and 4.2 and is
therefore omitted, here.

Proof of Theorem 4.3 Let Z = {Zt}t∈I ∼ AGPp(0I , S) be independent of V ∼ G.
Then, according to Theorem 4.2, X is equivalent to the random process Y ={
m(t) + V− 1

p Zt
}
t∈I and V− 1

p and Zt as well as V− 2
p and ZsZt are independent for all

indices s, t ∈ I. Because of

E(Xt) = E

(
m(t) + V− 1

p Zt
)

= m(t) + E

(
V− 1

p
)
E(Zt)

and E(Zt) = 0 for all t ∈ I according to Lemma 5.4, the value of expectation of Xt exists
and is equal tom(t) if E(V− 1

p ) is finite. Furthermore, for all t ∈ I, the independence V− 2
p

and ZtZt = Z2
t yields

E
(
X2
t
) = (m(t))2 + 2m(t)E

(
V− 1

p
)
E(Zt) + E

(
V− 2

p
)
E
(
Z2
t
)
.

As Z is a second order random process, X is a second order random process, too, if
E

(
V− 2

p
)
is finite. In this case, for all s, t ∈ I, using the independence of V− 2

p and ZsZt
as well as the covariance function of a centered p-generalized Gaussian process Z having
axis-aligned fdds with scale function S from Lemma 5.4, it follows

�(s, t) = CovXs,Xt = E

(
V− 2

p
)
E (ZsZt)

=
⎧⎨
⎩
E

(
V− 2

p
)

σ 2
g(p)
PE

· S(t) if s = t

0 else
.

The equation E

(
V− 2

p
)

σ 2
g(p)
PE

= σ 2
g(p)
SMN ;G

yields the asserted result.

Proof of Theorem 4.4 Let X be strictly stationary. Then, for all t1 ∈ I and h ∈
Ht1 = {h ∈ R : t1 + h ∈ I}, the distributions SMAN1,p(m(t1), S(t1),G) of Xt1 and
SMAN1,p(m(t1 + h), S(t1 + h),G) of Xt1+h are equal. If S(t1) = 0, the distribution of Xt1 is
the univariate Dirac distribution inm(t1)which can be considered to be the scale mixture
of the univariate kapec Gaussian distribution with k = 0, location parameter m(t1) and
scale parameter 0. Therefore, for all h ∈ Ht1 , L

(
Xt1+h

)
is the univariate Dirac distribution

in m(t1), too, and it follows S(t1 + h) = 0 = S(t1) for all h ∈ Ht1 . Thus, S = 0I . Since
L
(
Xt1+h

) = SMAN1,p(m(t1+h), 0,G) is defined to be the Dirac distribution inm(t1+h),
it followsm(t1 + h) = m(t1) for all h ∈ Ht1 , i.e.m is constant on I. If S(t1) > 0, according
to “The class of n-dimensional rank-k-continuous axis-aligned p-generalized elliptically
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contoured distributions” section, for all t1 ∈ I and h ∈ Ht1 , L
(
Xt1
)
and L

(
Xt1+h

)
have

pdfs

fXt1
(x) = Cp√

S(t1)
g(1,p)
SMN ;G

(∣∣∣∣
x − m(t1)√

S(t1)

∣∣∣∣
)
, x ∈ R,

fXt1+h(x) = Cp√
S(t1 + h)

g(1,p)
SMN ;G

(∣∣∣∣
x − m(t1 + h)√

S(t1 + h)

∣∣∣∣
)
, x ∈ R,

respectively, where Cp = p1−
1
p

2�
(
1
p

) . Because L
(
Xt1
) = L

(
Xt1+h

)
, we have fXt1

= fXt1+h , too.

As fXt1
and fXt1+h , h ∈ Ht1 , are symmetric with respect to the straight lines x = m(t1) and

x = m(t1+h), respectively, being parallel to the ordinate axis, it followsm(t1) = m(t1+h)
for all t1 ∈ I and h ∈ Ht1 . Thus,m is constant on I. Furthermore, since fXt1

(m(t1)) = Cp√
S(t1)

and fXt1+h(m(t1 + h)) = Cp√
S(t1+h) , the identity of these pdfs implies S(t1) = S(t1 + h) for

all t1 ∈ I and h ∈ Ht1 . Thus, the constancy of S on I is shown. The other direction of this
proof is omitted, here.

Proof of Theorem 4.5 Let assume 1). According to Theorem 4.4, the constancy ofm and
S yields strict stationarity of X. Moreover, according to Theorem 4.3, it follows by the
existence of expectation of V− 2

p that X is a second order random process having expec-
tation function m and covariance function � given by �(t, t) = σ 2

g(p)
SMN ;G

S(t) for all t ∈ I

and �(s, t) = 0 for all s, t ∈ I with s �= t. Because of m(t) = μ and S(t) = δ for all t ∈ I,
the expectation function of X is constantly equal to μ and the covariance function of X
satisfies �(t, t) = σ 2

g(p)
SMN ;G

δ for all t ∈ I and �(s, t) = 0 for all s, t ∈ I with s �= t. Thus,

1) implies 2). Further, every strictly stationary second order random process is weakly
stationary and the covariance function � of X from 2) evaluated in (s, t) ∈ I × I is rep-
resentable as a function only depending on the difference s − t since it follows from the
property 3) of function K that �(t, t) = σ 2

g(p)
SMN ;G

δ = K(0) = K(t − t) for all t ∈ I as well

as �(s, t) = 0 = K(s − t) for all s, t ∈ I with s �= t. Thus, the implication from 2) to 3)
is shown. Additionally, it follows from 3) that CovXs,Xt = �(s, t) = 0 for all s, t ∈ I with
s �= t and E(Xt) = m(t) = μ as well as Var(Xt) = �(t, t) = σ 2

g(p)
SMN ;G

δ for all t ∈ I. Hence,

assuming 3), random variables Xt , t ∈ I, are uncorrelated and have constant expecta-
tion μ and variance σ 2

g(p)
SMN ;G

δ. Thus, 4) follows from 3). Finally, let us assume 4) to hold.

According to Theorem 4.3, X is a second order random process if E
(
V− 2

p
)
is finite. Fur-

thermore, because of the definition of white noise as in 4), it holds m(t) = E(Xt) = μ as
well as σ 2

g(p)
SMN ;G

S(t) = Cov(Xt ,Xt) = Var(Xt) = σ 2
g(p)
SMN ;G

δ for all t ∈ I. Then, m and S are

constantly equal toμ and δ, respectively. Thus, the implication from 4) to 1) is shown.

Finally, the proof of Theorem 4.6 is based on Lemma 5.6. In preparation for the proof
of this lemma, we establish the following special case.

Lemma 5.5 Let X ∼ AECn,p
(
μ,D, g(k,p)) with D = diag (d1, . . . , dn) having non-

negative diagonal elements and positive rank k. Further, let be b ∈ R
n and � =

diag (γ1, . . . , γn) ∈ R
n×n such that �D� = diag

(
γ 2
1 d1, . . . , γ 2

n dn
)
has positive rank

k� ≥ 1. Then,
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L(�X + b) = AECn,p
(
�μ + b,�D�, g(k� ,p)

(k)

)
.

Proof Assuming γmε �= 0 for ε = 1, . . . , l and γmε = 0 for ε = l + 1, . . . , n where
m1 < m2 < . . . < ml and ml+1 < ml+2 < . . . < mn, and using notations from
“The class of n-dimensional rank-k-continuous axis-aligned p-generalized elliptically
contoured distributions” section, it follows that

�W1
√
S1 =

⎛
⎜⎜⎝

γ1e(n)
1

T

...
γne(n)

n
T

⎞
⎟⎟⎠
(√

di1e
(n)
i1 · · · √dik e

(n)
ik

)
=

⎛
⎜⎜⎝

γ1f (1)
...

γnf (n)

⎞
⎟⎟⎠ ∈ R

n×k

where

f (η) =
{√

dij e
(k)
j

T
if η = ij for a j ∈ {1, . . . , k}

0Tk else
, η = 1, . . . , n.

Since γη = 0 for η ∈ {ml+1, . . . ,mn
}
, there holds

�W1
√
S1 =

⎛
⎜⎜⎝

h(1)
...

h(n)

⎞
⎟⎟⎠ ∈ R

n×k

where

h(η) =
{

γη

√
dηe(k)j

T
if η ∈ Kand η = ij for a j ∈ {1, . . . , k}

0Tk else
,

η = 1, . . . , n, and

K = {η : η = ij for a j ∈ {1, . . . , k} and η = mε for a ε ∈ {1, . . . , l}} . (11)

Then, |K | ≥ 1 because of rk(�D�) ≥ 1, and �W1
√
S1 has |K | columns being the

product of a positive constant, a constant fromR\{0} and a unit vector ofRk . Particularly,
all these unit vectors differ from each other and, using the notation δim of Kronecker’s
Delta, we have

|K | =
k∑

j=1

l∑
ε=1

δijmε .

Hence, �W1
√
S1 has k − |K | columns being 0n. For Y = (Y1, . . . ,Yk)T ∼ �g(k,p) , it

follows that

�W1
√
S1Y =

⎛
⎜⎜⎝

θ(1)
...

θ(n)

⎞
⎟⎟⎠ ∈ R

n

where

θ(η) =
{

γη

√
dηYj if η ∈ K and η = ijfor a j ∈ {1, . . . , k}

0 else
,
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η = 1, . . . , n, and the vector �W1
√
S1Y consists of |K | different components of Y. Thus,

for B ∈ Bn, we have

P
(
�W1

√
S1Y ∈ B

)
= P

⎛
⎜⎜⎝

⎛
⎜⎜⎝

θ(1)
...

θ(n)

⎞
⎟⎟⎠ ∈ B , Yj ∈ R for all j ∈ {1, . . . , k}\J

⎞
⎟⎟⎠

where J = {j ∈ {1, . . . , k} : ij ∈ K
}
. Now, let

J = {j1, . . . , j|K |
}

with j1 < j2 < . . . < j|K |

be an enumeration of the elements of J and

M =

⎛
⎜⎜⎝

ψ(1)
...

ψ(n)

⎞
⎟⎟⎠ ∈ R

n×|K |

where

ψ(η) =
{

γη

√
dηe(|K |)

κ

T
if η ∈ Kand η = ijκ for a κ ∈ {1, . . . , |K |}

0T|K | else

for η = 1, . . . , n. Then, |J| = |K | and �W1
√
S1Y

d= MZ for Z ∼ �g(|K |,p)
(k)

. Thus, because of
rk(M) = |K |, it follows

�X + b d= (�μ + b) + �W1
√
S1Y , Y ∼ �g(k,p)

d= (�μ + b) + MZ, Z ∼ �g(|K |,p)
(k)

= AECn,p
(
�μ + b,MMT, g(|K |,p)

(k)

)
.

Note thatM can be extended to �W1
√
S1 by adding k − |K | zero columns. Therefore,

MMT =
(
�W1

√
S1
)(

�W1
√
S1
)T = �W1S1WT

1 � = �D�,

and |K | = rk(M) = rk
(
MMT

) = rk(�D�). Finally, this yields

L(�X + b) = AECn,p
(
�μ + b,�D�, g(k� ,p)

(k)

)
.

Using this particular result, we prove the following more general one.

Lemma 5.6 Let X ∼ AECn,p
(
μ,D, g(k,p)) with D = diag (d1, . . . , dn) having nonnega-

tive diagonal elements and rank k ≥ 0. Further, let be b ∈ R
n and � = diag (γ1, . . . , γn) ∈

R
n×n. Then,

L(�X + b) = AECn,p
(
�μ + b,�D�, g(k� ,p)

(k)

)
,

where �D� = diag
(
γ 2
1 d1, . . . , γ 2

n dn
)
and k� = rk(�D�) ≥ 0.

Proof of Lemma 5.6 Let k = 0, that is X ∼ AECn,p
(
μ, 0n×n, g(0,p)). Then, �X + b follows

the Dirac distribution in �μ + b. Using the exchangeability of g(0,p) and g(0,p)
(0) , we have

L(�X + b) = AECn,p
(
�μ + b, 0n×n, g(0,p)

)

= AECn,p
(
�μ + b,�0n×n�, g

(0,p)
(0)

)
.
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If D has positive rank and � is assumed to satisfy k� = rk(�D�) ≥ 1, the assertion
coincides with the result of Lemma 5.5. Finally, letD have positive rank and � be assumed
to satisfy k� = rk(�D�) = 0 and �D� = 0n×n, respectively. In Analogy to the proof
of Lemma 5.5 and using the same notations, the set K in (11) is empty. Then, |K | = 0,
�W1

√
S1 consists only of zero columns, and, for Y ∼ �g(k,p) and every B ∈ Bn, we have

P
(
�W1

√
S1Y ∈ B

)
= P(0n ∈ B) = 1B(0n).

Particularly, if B = {0n}, it follows that
P
(
�W1

√
S1Y = 0n

)
= P

(
�W1

√
S1Y ∈ {0n}

)
= 1.

Thus, �W1
√
S1Y = 0n P-a.s., and the stochastic representation �X + b d= (�μ + b) +

�W1
√
S1Y where Y ∼ �g(k,p) holds according to (1), yields

�X + b = �μ + b P − a.s.

or, equivalently, L(�X + b) = AECn,p
(
�μ + b, 0n×n, g

(0,p)
(k)

)
.

Proof of Theorem 4.6 Let be n ∈ N and J = {t1, . . . , tn} an arbitrary subset of I. Moreover,
let Yt = γ (t)Xt + b(t), t ∈ I, and Y = {Yt}t∈I . Then, for YJ = (

Yt1 , . . . ,Ytn
)T and XJ =(

Xt1 , . . . ,Xtn
)T, we have

YJ =

⎛
⎜⎜⎝

Yt1
...

Ytn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ (t1)Xt1 + b(t1)
...

γ (tn)Xtn + b(tn)

⎞
⎟⎟⎠ = �XJ + b

where b = (b(t1), . . . , b(tn))T and � = diag (γ (t1), . . . , γ (tn)). Since

L(XJ) = AECn,p
(
μ,D, g(k,p)

SMN ;G

)

where μ = (m(t1), . . . ,m(tn))T and D = diag (S(t1), . . . , S(tn)) with k = rk(D), making
use of Lemmata 4.3 and 5.5, it follows

L(YJ ) = L(�XJ + b) = AECn,p

(
�μ + b,�D�,

(
g(k,p)
SMN ;G

)(k� ,p)

(k)

)

= AECn,p
(
�μ + b,�D�, g(k� ,p)

SMN ;G

)
.

Thus, AECn,p
(
�μ + b,�D�, g(k� ,p)

SMN ;G

)
is the fdd of Y corresponding to

YJ . Finally, because of �μ + b = ([ γm + b] (t1), . . . , [ γm + b] (tn))T and
�D� = diag

([
γ 2S

]
(t1), . . . ,

[
γ 2S

]
(tn)
)
, we get

Y ∼ SMAGPp
(
γm + b, γ 2S,G

)
.

6 Discussion
In the present paper, first, kapec distributions are introduced and their properties such as
stochastic representations, moments, and density-like representations are studied. Sec-
ondly, based on the Kolmogorov existence theorem, the existence of random processes
having apec fdds with arbitrary location and scale functions and a consistent sequence of
dgs of p-generalized spherical distributions is shown. Particularly, a sequence of dgs of
scalemixtures of multivariate p-generalized Gaussian distributions with one and the same
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mixture distribution is consistent and the corresponding processes are p-generalizations
of elliptical random processes having axis-aligned fdds, see Yao (1973) and Kano (1994)
for the case of p = 2. Thirdly, the question is answered when an n-dimensional kapec
distribution with dg g(k,p) is representable as a scale mixture of n-dimensional kapec
Gaussian distribution for a suitable mixture distribution of a positive random variable.
It is established that the complete monotony of the composition h of g(k,p) with the
pth root function is a necessary and sufficient condition for such representation and
that the inverse Laplace-Stieltjes transform of h is connected to the cdf of the mixture
distribution. For the particular case p = 2, the univariate consideration is covered by
Andrews and Mallows (1974) and the multivariate one by Lange and Sinsheimer (1993)
and Gómez-Sánchez-Manzano et al. (2006), respectively.

7 Appendix 1: Further aspects of simulations
7.1 Algorithms to simulate apec distributions

The following two algorithms to simulate X ∼ AECn,p
(
μ,D, g(k,p)) are based on the two

stochastic representations of X, see Lemmata 2.1 and 2.4. In both cases, let X̃ ∼ �g(k,p)

and use notations from “The class of n-dimensional rank-k-continuous axis-aligned
p-generalized elliptically contoured distributions” section.

Algorithm 1 1) Generation of a random vector U(k)
p following the k-dimensional

p-generalized uniform distribution on Sk,p:

a) Generate Z̃ =
(
Z̃1, . . . , Z̃k

)T
following the k-dimensional p-generalized

Gaussian distribution by generating k independent and identically
univariate p-generalized Gaussian distributed random variables
Z̃1, . . . , Z̃k .

b) Compute RZ̃ = |Z̃|p and U(k)
p = Z̃

RZ̃
.

2) Generate RX̃ having pdf fRX̃ (r) = ωk,p rk−1g(k,p)(r) 1[0,∞)(r), r ∈ R, and being a
univariate random radius variable.

3) Compute X̃ = RX̃ U(k)
p and X = μ + W1

√
S1X̃.

Algorithm 2 1) Generation of the random radius and angle variables according to
Lemma 2.4: Generate

a) R with fR(r) = ωk,p rk−1g(k,p)(r)1[0,∞)(r), r ∈ R,
b) 	i with f	i(ψi) = ωk−i,p

ωk−i+1,p
(sin(ψi))k−i−1

(Np(ψi))
k−i+1 1[0,π)(ψi), ψi ∈ R, for

i = 1, . . . , k − 2,
c) 	k−1 with f	k−1(ψk−1) = 1

ω2,p
1

(Np(ψk−1))
2 1[0,2π)(ψk−1), ψk−1 ∈ R.

2) Compute X̃ = SPH(k)
p (R,	1, . . . ,	k−1) and X = μ + W1

√
S1X̃.

For the particular case of simulating X ∼ SMANn,p(μ,D,G) where the mixture cdf G is
explicitly known in a closed form, the following algorithm can be used. This is based on (8)
and Lemma 4.1 where X̃ ∼ SMNk,p(G) and notations from “The class of n-dimensional
rank-k-continuous axis-aligned p-generalized elliptically contoured distributions” section
are used.
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Algorithm 3 1) Generate Z̃ =
(
Z̃1, . . . , Z̃k

)T
following the k-dimensional

p-generalized spherical Gaussian distribution by generating k independent and
identically univariate p-generalized Gaussian distributed random variables
Z̃1, . . . , Z̃k .

2) Generate independently a univariate random variable V having cdf G.
3) Compute X̃ = V− 1

p · Z̃ and X = μ + W1
√
S1X̃.

7.2 Simulation of p-generalized Student as well as p-generalized Slash processes

According to the method described in “Simulation” section, but simulating a 201-
dimensional apec Student-t and Slash distributed random vector with the help of an
algorithms from Appendix 7.1 instead of 201 independent univariate p-generalized
Gaussian variables, we get approximates of trajectories of p-generalized Student-t and
p-generalized Slash processes having axis-aligned fdds. Particularly, approximate real-
izations of AStPp

(
0[0,1], 1[0,1], ν

)
as well as of ASlPp

(
0[0,1], 1[0,1], ν

)
for ν ∈ {1, 3, 10}

and p = 1
2 and p = 3, respectively, are visualized in Figs. 4 and 5. Note that our

considerations are restricted to location function 0[0,1] and scale function S = 1[0,1]
while the effects of varying location and scale functions are already shown in Fig. 3.
Furthermore, on the one hand, notice that the height of amplitudes of the realiza-
tions of AStPp

(
0[0,1], 1[0,1], ν

)
and ASlPp

(
0[0,1], 1[0,1], ν

)
, respectively, increases if p > 0

decreases or ν > 0 increases. On the other hand, the effects that scales of axes are
highly dependent on the specific realization of a trajectory of the process have to be
in mind, too.

Fig. 4 Simulation of AStPp
(
0[0,1], 1[0,1], 1

)
(left), AStPp

(
0[0,1], 1[0,1], 3

)
(center), and AStPp

(
0[0,1], 1[0,1], 10

)
(right)
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Fig. 5 Simulation of ASlPp
(
0[0,1], 1[0,1], 1

)
(left), ASlPp

(
0[0,1], 1[0,1], 3

)
(center), and ASlPp

(
0[0,1], 1[0,1], 10

)
(right)
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