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Abstract

Stochastic representations of star-shaped distributed random vectors having heavy or
light tail density generating function g are studied for increasing dimensions along with
corresponding geometric measure representations. Intervals are considered where star
radius variables take values with high probability, and the derivation of values of
distribution functions of g-robust statistics is proved to be based upon considering
random events whose probability is asymptotically negligible if the dimension of the
sample vector is approaching infinity. Moreover, a principal component representation
of p-generalized elliptically contoured p-generalized Gaussian distributions is discussed.
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Introduction
Among the frequently obtained impressions one gets from analyzing high-dimensional
data sets are that an observation point’s distance from the zero element of the sample
space is likely to belong to a certain interval from the positive real line, away from zero,
and that the distribution of the direction of the vector seems to be close, in a certain
sense, to a uniform distribution on the set of all directions that are observable from a
certain center. The first observation can be reflected from a probabilistic point of view
by a measure concentration type property including what is done in (Biau and Mason
2015) and (Vershynin 2016), and the second is part of background for testing uniformity
on high-dimensional spheres, see e.g. (Cutting et al. 2017), possibly after projecting data
points onto spheres as, e.g., in (Banerjee and Ghosh 2004).
In situations of the described type, it may be reasonable to model the data, or their

residuals after fitting to a model, by multivariate star-shaped distributions. In this regard,
(Balkema and Embrechts 2007) and (Balkema et al. 2010) discover conditions ensur-
ing that star-shaped distributions with the Gauss-exponential law being one of the most
known examples appear as limit laws in certain high-risk scenarios.
Distributions from the class of star-shaped distributions are flexible with respect to

convexity or radial concavity, allow different variability of probability mass along different
directions of the sample space and are able to model light and heavy distribution centers
and tails. Because there is no natural number being representative for large dimensions,
one might like to consider sequences or schemas of series of n-dimensional vectors with
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n approaching infinity. However, for simplicity of notation, we instead consider here just
a single random vector X taking values in R

n and assume afterwards that n is tending to
infinity in formulas holding for X.
Let us recall at this point the following general aspect of uni- or multivariate asymp-

totic probabilistic analysis being of particular importance, for example, in large deviation
theory, but not exclusively there. Studying the limit behavior of certain sequences of dis-
tributions on specific subsets of their ranges of definition and comparing it to how the
appearing limit law itself behaves on the same sets needs to precisely know the latter one.
In this respect, it is an independent problem to study the behavior limit laws show on the
sets of interest. Similarly, if a sequence of distributions of increasing dimension is approx-
imated in a certain part of its range of definition by a high-dimensional star-shaped limit
law then studying the latter one is an independent problem being in the core of interest
of the present note.
With the agreement of considering just one single vector X of dimension n, particular

questions concerned by the buzzword ’big data’ are approached in the present short note
by reflecting above mentioned impressions gained from data in the language of probabil-
ity distributions. To be more specific, we are dealing here with star-shaped distributions
in R

n and correspondingly distributed vectors. Such vector allows a stochastic represen-
tation as a product of a random generalized radius variable R and a random vector U
being star-uniformly distributed on a star-sphere and independent of R, as well as a cor-
responding geometric measure representation. Some consequences which can be drawn
from these representations in case of increasing dimension are studied. In particular, a
representation of p-generalized elliptically contoured distributions is considered from the
point of view of principal components.
The paper is structured as follows. In “Preliminaries” section, we present prelimi-

nary facts on star-shaped distributions including the notions of star surface content
measure and star-uniform distribution on a star sphere. “A principal component repre-
sentation” section deals with the particular class of p-generalized elliptically contoured
distributions and it is studied there how they apply to modeling high-dimensional data.
“A measure concentration property” section is then aimed to consider typical intervals
where R takes values if X is star-shaped distributed, and in “On g-robust statistics” section
distributions of univariate statistics are described which can basically be derived from
star-uniformly distributed vectors. Such distributions are not affected by whether X has a
density generating function g generating light or heavy distribution tails and is therefore
called g-robust. The derivation of values of distribution functions of g-robust statistics is
proved to be based upon considering random events whose probability is asymptotically
negligible if the dimension of the sample vector is approaching infinity.

Preliminaries
Let K ⊂ R

n be a star body having the origin in its interior and assume that theMinkowski
functional hK of K is positively homogeneous of degree one. We call K(r) = rK and its
boundary S(r) = rS the star ball and star sphere of star radius r > 0, respectively. If

g :[ 0,∞) →[ 0,∞) satisfies 0 < I(n, g) < ∞ where I(n, g) =
∞∫

0
rn−1g(r)dr then it is

called a density generating function. In such case,

ϕg,K (x) = C(g,K)g(hK (x)), x ∈ R
n
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is called a star-shaped density and K its contour defining star body. The correspond-
ing probability measure is denoted �g,K and the normalizing constant allows the
representation

C(g,K) = 1
OS(S)I(n, g)

where OS(S) means the star-generalized surface content of S, see (Richter 2014). If the
additional assumption C(g,K) = 1 is satisfied then g is called a density generator. In the
following example, we recall an explicit analytical representation of the star-generalized
surface content measure OS in case S is a p-generalized ellipsoid with main axes of half
lengths a1, ..., an and indicate relationships to representations in other particular cases.

Example 1 Let K = {x ∈ R
n : |x|a,p ≤ 1} where |x|a,p =

( n∑

i=1
| xiai |p

)1/p
, a =

(a1, ..., an)T , ai > 0, i = 1, ..., n, p > 0, and S+(−) = S ∩ {x : xn > (<)0} the upper (lower)
half of the (a, p)-ellipsoid S = {x : |x|a,p = 1}. Then

OS(A) = an

⎛

⎜
⎝

∫

G(A∩S+)

+
∫

G(A∩S−)

⎞

⎟
⎠

d(x1, ..., xn−1)
(

1 −
n−1∑

i=1
| xiai |p

)1−1/p , A ∈ B(S) (1)

where G(A ∩ S+(−)) = {ϑ ∈ R
n−1 : ∃η = η(ϑ)s.t.(ϑT , η)T ∈ A ∩ S+(−)},B(S) = Bn ∩ S

andBn denotes the Borel σ -field in R
n.

• If p = 2 and a = 1n = (1, ..., 1)T thenOS(A) is the Euclidean surface content of the
measurable subset A of S.

• If p = 1 thenOS(A) can be considered as a particular polyhedral generalized surface
content of A.

• IfOS,∞(A) is defined as the limit ofOS(A),A ∈ B(S) as p → ∞ thenOS,∞ can be
considered as another particular polyhedral generalized surface content measure. For
the whole class of polyhedral generalized surface content measures, see (Richter and
Schicker 2017).

• Generalizations of representation (1) hold true for all cases where K is a ball with
respect to any norm or antinorm, see (Richter 2015).

The next example deals with the asymptotic behavior of star surface content and vol-
ume of star spheres and star balls or ellipsoids, respectively, if dimension is approaching
infinity.

Example 2 [a] It is well known that if S is the Euclidean unit sphere then OS(S) = ωn
whereωn = 2πn/2/	(n2 ) is the Euclidean surface content of S. It is known that arg sup

n
ωn =

7 and that ωn is monotonously decreasing starting from this value, see e.g. (Loskot and
Beaulieu 2007). Moreover, according to Stirling’s formula,

OS(S) ∼
√
2e

1 + 1
6n

(
2πe
n

)(n−1)/2 as n → ∞

meaning that the ratio of the quantity on the left hand side divided by that of the right
hand side tends to one if n tends to infinity. Obviously, OS(S) is tending to zero quite fast
as n → ∞.
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(b) If S is the ln,p-sphere having unit star radius, p > 0, then the star surface content of S is
known to beOS(S) = ωn,p where ωn,p = 2n(	( 1p ))n/(pn−1	(np )). Note that

OS(S) ∼ p√
2π

(p
n

) n
p− 1

2

(
2	( 1p )

p

)n

e
n
p , n → ∞.

Let 
n,p = ωn,p
n denote the volume of the ln,p-ball. The asymptotic relations following from

the latter one,



p
n
n,p ∼

pe
[
2
p	
(
1
p

)]p

n
and 


p
n ln n
n,p ∼ 1

e
, n → ∞,

generalize two results given in (Chen and Lin 2014) for the particular Euclidean case p = 2.
(c) It is well known that the star surface content of the (a, p)-ellipsoid S = {x ∈ R

n : |x|a,p =
1} isOS(S) = a1 · · · anωn,p, thus

OS(S) ∼ a1 · · · an p√
2π

(p
n

) n
p− 1

2

(
2	( 1p )

p

)n

e
n
p , n → ∞. (2)

If a random vector X follows the star-shaped density ϕg,K then it allows the stochastic
representation

X d= R · U
meaning that X is distributed as R ·U . The nonnegative random variable R is independent
of the random vector U, R has density function

fR(r) = I(n, g)−1rn−1g(r)I[0,∞)(r)

and U has the star-uniform distribution

ωS(A) = OS(A)

OS(S)
,A ∈ B(S).

Here, I[0,∞)(r) = 1 if r ≥ 0 and I[0,∞)(r) = 0 otherwise. Accordingly, the geometric
measure representation of star-shaped distribution laws reads

�g,K (B) = 1
I(n, g)

∞∫

0

rn−1g(r)FS(B, r)dr,B ∈ Bn

where

FS(B, r) = OS
([ 1

r B
] ∩ S

)

OS(S)
= ωS

([
1
r
B
]

∩ S
)

is the star sphere intersection proportion function of the set B. Let the Minkowski
functional of K be denoted hK then

R d= hK (X),

and R is called the star radius of X.

A principal component representation
In this section we study to what extent a particular class of continuous multivariate
star-shaped distributions applies to modeling high-dimensional data. To be specific, we
consider p-generalized elliptically contoured p-generalized Gaussian distributions.
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It will be shown which way principal component analysis can be used to identify those
components of such star-shaped distributed vectors being of major importance for the
modeling process. In particular it turns out that covariance ellipsoids being l2-ellipsoids
have the same main axes as density level set ellipsoids being lp-ellipsoids.
Let Xi, i = 1, ..., n be independent random variables correspondingly following the

densities

fp(x;μi, σi) = Cp
σi

exp
{

−|x − μi|p
pσ p

i

}

, x ∈ R

where Cp = p1−1/p/
(
2	
(
1
p

))
. Then EXi = μi and V (Xi) = κσ 2

i are expectation and
variance of Xi, respectively, i = 1, ..., n. Here and in what follows we use the notation

κ(n) = p
2
p
	
(n+2

2
)

	
(n
2
) and κ = κ(1).

Let σ = (σ1, ..., σn)T , X = (X1, ...,Xn)T and μ = (μ1, ...,μn)T , then X − μ allows the
stochastic representation

X − μ
d= Rσ ,pUσ ,p

where Rσ ,p = |X − μ|σ ,p and Uσ ,p = 1
Rσ ,p

(X − μ) are independent. The star radius Rσ ,p
follows the p-generalized Chi-distribution with n d.f. having according to (Richter 2007)
the density

f (r) = rn−1e−
rp
p

p
n
p−1

	
(
n
p

) I[0,∞)(r),

and the stochastic basis vector Uσ ,p is star-uniformly distributed on the star sphere S =
Eσ ,p from Example 2(c) with ai = σi, i = 1, ..., n, Uσ ,p ∼ ωσ ,p. Thus, using notation in
(Richter 2014), X belongs to the class ECσ ,p,μ,In and its density generating function can be

chosen as g(r) = gp(r) = e−
rp
p I[0,∞)(r). Note that EUσ ,p = 0n and, because ER2

σ ,p = κ(n),

cov(Uσ ,p) = κ

κ(n)
D2

where

D = diag(σ1, ..., σn).

It follows that EX = μ and cov(X) = κD2. Now, denote an orthogonal n × n-matrix
O = (Oi,j

)
i,j=1,n and let the transpose of its i’th row be Oi = (Oi,1, ...,Oi,n)T . The random

vector Y = O(X − μ) follows the p-generalized elliptically contoured density

fY (y) = Cn
p

σ1 · · · σn exp
{

−1
p
|OTy|pσ ,p

}

, y ∈ R
n, (3)

that is Y belongs to the class ECσ ,p,0n,O. Note that EY = 0n and cov(Y ) = EYYT = � =
κOD2OT = (σi,j

)
i,j=1,n where

σi,j = cov(Yi,Yj) = κOT
i D

2Oj, 1 ≤ i, j ≤ n.

Thus, fY = ϕgp,OK and the boundary of K is S = Eσ ,p. Note that OK is a star body having
the properties introduced at the beginning of this section. The covariance ellipsoid of Y is

C(�) = {x ∈ R
n : xT�−1x = 1} =

{

x ∈ R
n :

n∑

i=1

||
Oix||2
σ 2
i

= κ

}
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where 
yx means the orthogonal projection of x into the linear space spanned up by
y. The main axes of C(�) belong to the spaces spanned up by the vectors Oi and have
half lengths of size

√
κσi, i = 1, ..., n, respectively. Moreover, the set C(�) is symmetric

with respect to any of the lines Li = L{Oi}, i = 1, ..., n. The latter holds also true for the
p-generalized ellipsoids

OEσ ,p = {Ox ∈ R
n : |x|σ ,p = 1}

because Eσ ,p is symmetric with respect to the lines

L∗
i = {x ∈ R

n : x = λei, λ ∈ R},
for i = 1, ..., n, and

OL∗
i = {λOei : λ ∈ R} = {λ0i : λ ∈ R} = Li

with e1, ..., en being the standard orthonormal basis vectors in R
n. One may chose the

variances according to the maximization procedure from principal component analysis,
σ1 ≥ σ2 ≥ ... ≥ σn. For high-dimensional data holds σn → 0 as n → ∞. This circum-
stance allows to introduce data reduction. Therefore, methods from this area of statistical
analysis apply to model data of arbitrary fixed or increasing dimension by p-generalized
elliptically contoured distributions if p ≥ 1. If p ∈ (0, 1), certain maximization principles
from PCA are to be changed with corresponding minimization principles. In this sense,
representation (3) may be called a principal component representation of p-generalized
elliptically contoured p-generalized Gaussian densities. With slight changes, the density
generating function g = gp may be replaced in (3) with an arbitrary one for representing
general p-generalized elliptically contoured densities.

Ameasure concentration property
A χ2-distributed random variable with n d.f. can be considered as the square of the
Euclidean norm of an n-dimensional standard Gaussian vector. The probability mass of
such vector is the more concentrated in a relatively small shell having radius of order

√
n

the larger the vector’s dimension is, see Figs. 1 and 2. Observing the empirical ”relative
concentration numbers” 30/10, 45/30, 90/100 and 300/1000 one may argue that suitably
defined numbers might even converge to zero in some sense. This will be proved here
within the even more general frame of χp-distributions. For definitions and properties of
these distributions we refer to (Richter 2007; 2009; 2014; 2015; 2016).
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If a multivariate distribution converges to the standard Gaussian law then the square
of the Euclidean norm of the correspondingly distributed vector X, i.e. the square of the
Euclidean radius R = |X|1,2 of such vector, will tend under some additional assumption
to the χ2-distribution with n d.f. . Let now X follow a star-shaped distribution �g,K , what
can we say then about the behavior of (the suitably defined power of) its generalized
(star) radius? In this section we derive typical intervals where star radius variables of high-
dimensional star-shaped vectors take values.

Proposition 1 For δ > 0 chosen such that

α = 1
δ2

(
I(n + 2, g)I(n, g)

I2(n + 1, g)
− 1
)

is approaching zero as dimension n is tending to infinity, and independently of the shape
defining star body K, the typical behavior of the random star radius of a vector following
the star-shaped distribution �g,K with density generating function g is described by

P
(

(1 − δ)
I(n + 1, g)
I(n, g)

≤ R ≤ (1 + δ)
I(n + 1, g)
I(n, g)

)

≥ 1 − α.

Proof Obviously,

ERk = I(n + k, g)
I(n, g)

.

Now, Tschebyscheff ’s inequality applies �

According to (Biau and Mason 2015), the behavior of |X|1,p as n increases is called
the distance concentration phenomenon in the computational learning literature. For
sums of independent random variables or matrices, sharper concentration inequalities of
exponential type are proved in (Vershynin 2016).
For more details on moments of p-spherical random vectors, see (Arellano-Valle and

Richter 2012), for an asymmetric situation if p = 1 see (Henschel and Richter 2002).
The following corollary deals with a class of light tailed high-dimensional star-shaped
distributions.

Corollary 1 Let K be any star body as introduced in “Preliminaries” section. If the density
generating function of a high-dimensional star-shaped distribution�g,K is that of Kotz type
with parameters s > 0, t > 0, k > 1 − n,
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g(r) = rk−1e−trs I[0,∞)(r),

and

δ 
 1√
n

(meaning that δ
√
n → ∞ as n → ∞) then, for sufficiently large n, there holds

P
(

(1 − δ)
	(n+k

s )

t1/s	(n+k−1
s )

≤ R ≤ (1 + δ)
	(n+k

s )

t1/s	(n+k−1
s )

)

≥ 1 − α.

Proof First we check that α tends to zero: because

I(n + 2, g)I(n, g)
I2(n + 1, g)

= 1 + 1
s(n + k)

+ O
(

1
n2

)

,

where O(.) means Landau’s big O symbol, it follows

α = 1
δ2

[
1

s(n + k)
+ O

(
1
n2

)]

, n → ∞.

Such α approaches zero as n tends to infinity if δ2 · n → ∞ for n → ∞. Finishing the
proof, we finally observe that

I(n + 1, g)
I(n, g)

=
	
(
k+n
s

)

t1/s	
(
k+n−1

s

) �

Remark 1 On using Stirling’s formula, it can be seen that

	
(
n+k
s

)

	
(
n+k−1

s

) =
(
n + k
s

)1/s (

1 + O
(
1
n

))

as n → ∞. (4)

Before turning to the case of heavy distribution tails, we note that asymptotic relation
(4) makes the statement of Corollary 1 more specific in the sense that

IKt(R) =
(

(1 − δ)

(
n + k
ts

)1/s
, (1 + δ)

(
n + k
ts

)1/s)

is a reasonable interval where R takes values with high probability if we are given a high-
dimensional star-shaped vector with density generating function of Kotz type and fixed
or increasing dimension n. The most essential role is played here by parameter s which
basically determines the relative heaviness or lightness of the distribution tails.

Corollary 2 Let K be any star body as introduced in “Preliminaries” section. If the density
generating function of a star-shaped distribution �g,K is that of Pearson type VII with
parameters s > 0, k > n + 2 [12] where k − n → ∞ as n → ∞,

g(r) =
(
1 + r

s

)−k
I[0,∞)(r),

and

δ 
 1√
n
as well as δ 
 1√

k − n
,
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then, for sufficiently large n, with probability greater or equal to 1− α, the star-radius R of
the high-dimensional vector X belongs to the interval

IP7(R) =
(

(1 − δ)
sn

k − n − 1
, (1 + δ)

sn
k − n − 1

)

.

Proof Checking that α tends to zero, we find that
I(n + 2, g)I(n, g)

I2(n + 1, g)
= 1 + 1

n
+ 1

k − n − 2
+ 1

n(k − n − 2)
.

The proof is finished by observing that
I(n + 1, g)
I(n, g)

= sn
k − n − 1

�

Remark 2 Let δ = δ(n) → +0 and α = α(n) → +0 as n → ∞ such that
nδ2(n) → ∞ and assume that in the situation of Corollary 2 there holds additionally that
(k − n)δ2(n) → ∞. The statements of Corollaries 1 and 2 can be reformulated then as

P(R > (1 + δ)ER or R < (1 − δ)ER) = O(α(n)) as n → ∞
where Landau’s symbol O defined for the asymptotic relation f (n) = O(g(n)), n → ∞
guaranties the existence of a constant C such that for all n there holds |f (n)/g(n)| ≤ C.
Moreover, in the situation of Corollaries 1 and 2 we have that

ER =
(
n + k
ts

)1/s (

1 + O
(
1
n

))

and ER = sn
k − n − 1

,

respectively.

Remark 3 Let us finally mention that because in fact we are considering sequences or
even schemas of series of vectors and distributions, the assumption k − n → ∞ stated in
Corollary 2 is not contradictory. Instead, it ensures a certain variability of the result. More-
over, we remark that (Henschel 2001) and (Henschel and Richter 2002) study the exact
distribution of R in case of simplicially contoured vectors (or ln,1-spherical vectors having
nonnegative components). General ln,p-spherical vectors and their star radius R are studied
in (Richter 2009), (Arellano-Valle and Richter 2012) and (Richter 2014), tables of corre-
sponding exact quantiles of Rp and R are to be found in (Müller and Richter 2016) and
(Richter 2016).

On g-robust statistics
If the distribution of a statistic does not depend on the density generating function g of
a star-shaped sample vector density ϕg,K then it is commonly called g-robust. It is well
known that Student and Fisher type statistics possess besides the g-robustness property
further optimality properties. Here we will see that decisions based upon such statistics
are done by closer analyzing random events whose probability is asymptotically negligible
if the dimension of the sample vector is approaching infinity.
To be more concrete, in this section, we describe a class of statistical distribution func-

tions, derived from a star-shaped sample vector, the ratio representations of whose values
are asymptotically negligible as vector dimension increases unboundedly. It turns out,
e.g., that classical and generalized Student and Fisher distributions belong to this class.
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Let a random vector X follow the distribution law �g,K , X ∼ �g,K , and the sets

B(t) = {x ∈ R
n : T(x) < t}, t ∈ R

being generated by a statistic T : Rn → R such that the equation

FS(B(t), r) = C(t), ∀t

is satisfied where C(t) ∈[ 0, 1] does not depend on r. A statistic T of this type is g-robust. It
follows by the geometric representation proved for star-shaped distributions in (Richter
2014) that

P(T(X) < t) = �g,K (B(t)) = OS(B(t) ∩ S)
OS(S)

. (5)

The distribution law of T(X) is determined already by that of vector’s X central projection
onto the star sphere S. Thus, for t ∈ R, the probability P(T(X) < t) is defined by the ωS-
value of the random event B(t)∩S in the geometric probability space (S,B(S),ωS), and its
representation in (5) will be called its ratio representation. It can be observed that many
star spheres show the asymptotic behaviour

OS(S) → 0 as n → ∞. (6)

For a particular case of such type, see Example 2(a). The statistical model concerned in
this case is dealing with independent and homoscedastic random variables. In case of
increasing dimensions, we are confronted then with sequences of probability spaces with
asymptotically negligible set S.

Example 3 In case S is the unit ln,p-sphere, condition (6) is satisfied.

In the following example we restrict our consideration to the n-dimensional standard
Gaussian law �g,K = � where g(r) = e−r2/2 and K = {x : x21 + ... + x2n ≤ 1

}
.

Example 4 A set A ⊂ Rn belongs to the class A(dir, dist) if there exist functions eA :
[ 0,∞) → Sn(1) and RA : [ 0,∞) →[ 0,∞) satisfying the following two assumptions:
A1) The set A allows the representation

A ∩ Sn(r) = Hn (eA(r), RA(r)) ∩ Sn(r), r > 0,

where Hn(e,R) = {x ∈ Rn : 
ex = λe, λ ≥ R} is a half space and Sn(r) the Euclidean sphere
of radius r.
A2) The function C :[ 0,∞) → Rn with

C(r) = RA(r)eA(r), r ≥ 0

is a piecewise continuous curve such that A becomes a Borel set.
The functions eA and RA are called directional type and distance type functions of the set

A, respectively. If A ∈ A(dir, dist) then

�(A) = C(n−1)√
2π

∞∫

0
rn−1e−r2/2

α∗(r)∫

0
(sinα)n−2dα dr,

α∗(r) = arctan
(
(r/RA(r))2 − 1

)1/2 ∈ (0,π), r > 0



Richter Journal of Statistical Distributions and Applications             (2019) 6:5 Page 11 of 12

where C(n) = 21−n/2/	(n/2), see (Richter 1995). If the function r → α∗(r) is constant
then

�(A) = ωn−1
ωn

α∗∫

0

(sinα)n−2dα

where

ωn−1
ωn

∼
√

n
2π

, n → ∞.

Example 5 Let 1
σ
X, σ > 0, be a standard Gaussian distributed random vector in Rn.

The statistic

Te,N = (X, e)
‖
NX‖/√k

is known to be Student distributed with k d.f. for all e ∈ Sn(1) and all k-dimensional linear
subspacesN of Rn such that e⊥N and k ≤ n − 1.
Let A = B(t) = {Te,N < t}. Then A ∈ A(dir, dist) where eA(r) = e, the distance type

function is RB(t)(r) = t̃r/(t̃ 2 + 1)1/2, t̃ = t/
√
n − 1 and the function α∗(r) = arctan (1/t̃ )

is constant. Evaluating with k = n−1 the limit of �(A) as n → ∞ leads to the well known
result �0,1(t) where �0,1 denotes the cumulative distribution function of the univariate
standard normal distribution.

For similar properties of a corresponding exact Student test in nonlinear regression, see
(Ittrich 2000) and (Ittrich and Richter 2005).

Example 6 For a related consideration on the p-generalized Fisher statistic, see
(Richter 2009).

Remark 4 If one is interested in avoiding the asymptotic negligibility of S in case of
increasing dimension one may leave the class of statistical models dealing with indepen-
dent homoscedastic observations. Density level sets of sample vectors having heteroscedas-
tic components may be star-shaped. If S is an (a, p)-ellipsoid then, according to asymptotic
relation (2), condition (6) may by violated and even asymptotically stabilizing.
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