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Abstract

In this paper, a flexible family of distributions with unimodel, bimodal, increasing,
increasing and decreasing, inverted bathtub and modified bathtub hazard rate called
Burr III-Marshal Olkin-G (BIIIMO-G) family is developed on the basis of the T-X family
technique. The density function of the BIIIMO-G family is arc, exponential, left- skewed,
right-skewed and symmetrical shaped. Descriptive measures such as quantiles, moments,
incomplete moments, inequality measures and reliability measures are theoretically
established. The BIIIMO-G family is characterized via different techniques. Parameters of
the BIIIMO-G family are estimated using maximum likelihood method. A simulation study
is performed to illustrate the performance of the maximum likelihood estimates (MLEs).
The potentiality of BIIIMO-G family is demonstrated by its application to real data sets.
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Introduction
Marshall and Olkin (1997) developed a new family of distributions with an additional

shape parameter called Marshall and Olkin-G (MO-G) family. The survival function of

MO-G family is

S xð Þ ¼ λG x;ψð Þ
1−λG x;ψð Þ ; λ > 0; λ ¼ 1−λ; x∈ℜ; ð1Þ

where G(x, ψ) is the baseline cumulative distribution function(cdf) which may depend

on the vector parameter ψ.

Many famous MO-G families and its special distributions are available in literature

such as Marshall-Olkin-G (Marshall and Olkin; 1997), the MO extended Lomax

(Ghitany et al.; 2007), MO semi-Burr and MO Burr (Jayakumar and Mathew; 2008),

MO q-Weibull (Jose et al.; 2010), MO extended Lindley (Ghitany et al.; 2012), the

generalized MO-G (Nadarajah et al. (2013), the MO Fréchet (Krishna et al; 2013), the

MO family (Cordeiro and Lemonte; 2013), MO extended Weibull(Santos-Neto et al.;

2014), the beta MO-G (Alizadeh et al. 2015), the MO generalized exponential (Ristić,

& Kundu; 2015), MO gamma-Weibull (Saboor and Pogány; 2016), MO generalized-G
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(Yousof et al.; 2018), MO additive Weibull (Afify et al.; 2018) and Weibull MO family

(Korkmaz et al.; 2019).

This paper is sketched into the following sections. In Section 2, BIIIMO-G family is devel-

opment via the T-X family technique. The basic structural properties and sub-models are

also studied. In Section 3, two special models are studied. Section 4, deals with linear repre-

sentations for the cdf and pdf of the BIIIMO-G family. In Section 5, moments, incomplete

moments, inequality measures and some other properties are theoretically derived. In Sec-

tion 6, stress-strength reliability and multicomponent stress-strength reliability of the model

are studied. In Section 7, BIIIMO-G family is characterized via (i) conditional expectation;

(ii) ratio of truncated moments and (iii) reverse hazard rate function. In Section 8, the max-

imum likelihood method is employed to estimate the parameters of the Burr III Marshall

Olkin Weibull (BIIIMO-W) and Burr III Marshall Olkin Lindley (BIIIMO-L) distributions.

In section 9, a simulation study is performed to illustrate the performance of the maximum

likelihood estimates (MLEs). In Section 10, the potentiality of BIIIMO-G family is demon-

strated by its application to real data sets: survival times of leukemia patients and bladder

cancer patients’ data. Goodness of fit of the probability distribution through different

methods is studied. Section 11 contains concluding remarks.

Development of BIIIMO-G family
Alzaatreh et al. (2013) proposed a T-X family technique for the development of the

wider families based on any probability density function (pdf). The cdf of the T-X fam-

ily of distributions is given by

F xð Þ ¼
Z W G x;ψð Þ½ �

a1

r tð Þ dt; x∈ℝ; ð2Þ

where r(t) is the pdf of a random variable (rv) T, where T ∈ [a1, a2] for −∞ ≤ a1 < a2 <∞

and W[G(x; ψ)] is a function of the baseline cumulative distribution function (cdf) of a rv

X, depending on the vector parameter ψ and satisfies three conditions i) W[G(x;ψ)] ∈ [a1,

a2], ii) W[G(x;ψ)] is differentiable and monotonically increasing and iii) lim
x→−∞

W ½Gðx;ψÞ�
→a1 and lim

x→∞
½Gðx;ψÞ�→a2. The pdf corresponding to (2) is

f ðxÞ ¼ f ∂
∂x

W ½Gðx;ψÞ�grfW ½Gðx;ψÞ�g; x∈R: ð3Þ

In this article, the BIIIMO-G family is developed via the T-X family technique by

setting.

r(t) = αβt−β − 1{1 + t−β}−α − 1, t > 0, α > 0, β > 0, and W ½Gðx;ψÞ� ¼ − log
h

λGðx;ψÞ
1−λGðx;ψÞ

i
.

Then, the cdf of BIIIMO-G family is

Fðx; α; β; λ;ψÞ ¼
(
1þ

"
−log

 
λ�Gðx;ψÞ

1−�λ�Gðx;ψÞ

!#−β)−α

; x∈R; ð4Þ

where α > 0, β > 0, λ > 0 and ψ > 0 are parameters.

The pdf corresponding to (4) is given by
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f ðx; α; β; λ;ψÞ ¼ αβgðx;ψÞ
�Gðx;ψÞð1−�λ�Gðx;ψÞÞ

"
−log

 
λ�Gðx;ψÞ

1−�λ�Gðx;ψÞ

!#−β−1
�

(
1þ

"
−log

 
λ�Gðx;ψÞ

1−�λ�Gðx;ψÞ

!#−β)−α−1

; x∈R;

ð5Þ

where g(x; ψ) is the baseline pdf. In future, a rv with pdf (5) is denoted by X~BIIIMO −

G(α, β, λ, ψ). The dependence on the parameter vector ψ can be omitted and simply

write as g(x) = g(x; ψ),

G(x) =G(x; ψ) and f(x) = f(x; α, β, λ, ψ).

Let T be a BIII random variable with shape parameters α, β. The BIIIMO-G rv with

cdf (4) can be obtained from

Pr X < xð Þ ¼ Pr T ≤− log
λG xð Þ

1−λG xð Þ

" # !
:

Hence, the rv X ¼ G−1½λ−λ expð−TÞ
λþλ expð−TÞ� has the BIIIMO-G distribution. The quantile func-

tion (qf) of X is the solution of the non-linear equation

x ¼ Q uð Þ ¼ QG 1− λþ λ exp u−
1
α−1

� �−1
β

� �� �−1
 !

;

where QG(.) =G−1(.) is the qf of the baseline distribution. Hence, if U is a uniform rv on

(0, 1), then X =Q(U) follows the BIIIMO-G family.

Transformations and compounding

The BIIIMO-G family is derived through (i) ratio of the exponential and gamma ran-

dom variables and (ii) compounding generalized inverse Weibull-MO (GIW-MO) and

gamma distributions.

Lemma

i. Let the random variable Z1 have the exponential distribution with parameter

value 1 and the random variable Z2 have the fractional gamma i.e.,

Z2~Gamma(α, 1). Then, for

Z1 ¼ − log
λG xð Þ

1−λG xð Þ

 !" #−β
Z2;

we have

X ¼ G−1
λþ λ exp Z2

Z1

� �1
β

� �

λþ λ exp Z2
Z1

� �1
β

� �
8>><
>>:

9>>=
>>; � BIIIMO−G α; β; λ;ψð Þ: ð6Þ
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ii. If Y|β, λ, θ~GIWMO(y; β, λ, θ) and θ|α~gamma(θ; α), then integrating the effect of

θ with the help of

f y; α; β; λð Þ ¼
Z∞
0

g yjβ; λ; θð Þg θjαð Þdθ;

we have Y~BIIIMO −G(α, β, λ, ψ)..

Structural properties of BIIIMO-G family

The survival, hazard, cumulative hazard, reverse hazard functions and the Mills ratio of

a random variable X with BIIIMO-G family are, respectively given, by

S xð Þ ¼ 1− 1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α

; ð7Þ

h xð Þ ¼

αβg xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−1

1þ − log λG xð Þ
1−λG xð Þ

� �h i−β� �αþ1

− 1þ − log λG xð Þ
1−λG xð Þ

� �h i−β� � ; ð8Þ

r xð Þ ¼ d
dx

ln 1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α

; ð9Þ

H xð Þ ¼ − ln 1− 1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α2
4

3
5; ð10Þ

and

m xð Þ ¼
1þ − log λG xð Þ

1−λG xð Þ

� �h i−β� �αþ1

− 1þ − log λG xð Þ
1−λG xð Þ

� �h i−β� �

αβ
λg xð Þ

G xð Þ 1−λG xð Þ� 	 − log
λG xð Þ

1−λG xð Þ

 !" #−β−1 : ð11Þ

The elasticity eðxÞ ¼ dlnFðxÞ
d lnx ¼ xrðxÞ for BIIIMO-G family is

e xð Þ ¼ d
d lnx

ln 1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α

: ð12Þ

The elasticity of BIIIMO-G family shows the behavior of the accumulation of

probability in the domain of the random variable.

Sub-models

The BIIIMO-G family has the following sub models (Table 1).
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Special BIIIMO-G models
The BIIIMO-G family density (5) produces greater flexibility than any baseline distribution

for data modeling. It can be most tractable, when the functions g(x;ψ) and G(x;ψ) have simple

analytic expressions. Then, two special sub-models of BIIIMO-G family are introduced.

The BIIIMO-Weibull (BIIIMO-W) distribution

The cdf and pdf of the Weibull random variable are gðx; bÞ ¼ bxb−1e−x
b
; x > 0; b > 0

and Gðx; bÞ ¼ 1−e−x
b
; x≥0; b > 0 where ψ = b. Then, the pdf of the BIIIMO-W model is

given by

f x; α; β; λ; bð Þ ¼ bαβxb−1

1−λe−xb
� 	 − log

λe−x
b

1−λe−xb

 !" #−β−1
�

1þ γ − log
λe−x

b

1−λe−xb

 !" #−β8<
:

9=
;

−α−1

; x > 0;

The following graphs show that shapes of BIIIMO-W density are arc, bimodal, expo-

nential, left- skewed, right-skewed and symmetrical (Fig. 1). The BIIIMO-W distribu-

tion has uni-model, bimodal, increasing, increasing and decreasing, inverted bathtub

and modified bathtub hazard rate function (hrf) Fig. 2.

The Burr III Marshal Olkin-Lindley (BIIIMO-L) distribution

The cdf and pdf of the Lindley random variable are gðx;ψÞ ¼ b2

ð1þbÞ ð1þ xÞe−bx; x > 0; b > 0

and Gðx;ψÞ ¼ 1−ð1þ bx
1þbÞe−bx; x≥0 where ψ = b. Then, the pdf of the BIIIMO-L

model are given by

f x; α; β; λ; bð Þ ¼
αβ

b2

1þ bð Þ 1þ xð Þe−bx

1þ bx
1þ b


 �
e−bx

− log
λ 1þ bx

1þb

� �
e−bx

1−λ 1þ bx
1þb

� �
e−bx

2
4

3
5

8<
:

9=
;

−β−1

�

1þ − log
λ 1þ bx

1þb

� �
e−bx

1−λ 1þ bx
1þb

� �
e−bx

2
4

3
5

8<
:

9=
;

−β0
B@

1
CA

−α−1

; x > 0;

Table 1 Sub-models of BIIIMO distribution

Variable Parameters Name of Distribution

X α β λ BIIIMO-G family

X α 1 λ Inverse Lomax MO-G family

X 1 β λ Log-logistic MO-G family

X α β 1 BIII-X family

X α 1 1 Inverse Lomax-X family

X 1 β 1 Log-logistic-X family

X 1 β λ MO-G family

1
X

α β λ BXIIMO-G family

X 1 1 1 Base line distribution
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The following graphs show that shapes of BIIIMO-L density are J, revers J, arc, expo-

nential, left- skewed, right-skewed and symmetrical (Fig. 3). The BIIIMO-L distribution

has unimodal, increasing, increasing and decreasing, decreasing-increasing-decreasing

inverted bathtub, bathtub and modified bathtub hazard rate function (Fig. 4).

Useful expansions
In this sub-section, the linear representations for the cdf and pdf of the BIIIMO-G fam-

ily are obtained. The cdf in (4) can be expressed as

F xð Þ ¼ 1−
X∞
i≥1

−1ð Þiþ1 αþi−1
i

� 	
− log

λG xð Þ
1−λG xð Þ

 !" #−iβ
;

Following (Tahir et al. 2016), we have

− log
λG xð Þ

1−λG xð Þ

 !" #−iβ
¼

X∞
k¼0

pk 1−
λG xð Þ

1−λG xð Þ

 !" #k

X∞
k¼0

qk 1−
λG xð Þ

1−λG xð Þ

 !k ;

where

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

f x
BIIIMO W Distribution

BIIIMO W 6.50,2.35,0.35,0.15

BIIIMO W 0.25,0.75,0.90,5.00

BIIIMO W 0.35,3.70,3.70,2.40

BIIIMO W 0.50,3.50,1.35,2.50

BIIIMO W 0.90,5.00,0.50,0.70

BIIIMO W 4.45,5.00,5.00,1.30

BIIIMO W 4.50,0.15,5.00,1.30

BIIIMO W 4.90,1.10,0.05,8.00

BIIIMO W 2.90,0.60,0.03,1.30

Fig. 1 Plot of pdf of BIIIMO-W distribution for selected parameter values
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BIIIMO W Distribution

BIIIMO W 1.50,0.50,0.03,5.00

BIIIMO W 1.00,3.50,0.60,0.70

BIIIMO W 6.50,2.35,0.35,0.15

BIIIMO W 2.00,2.10,2.00,1.50

BIIIMO W 2.60,4.80,2.50,0.80

BIIIMO W 2.60,4.80,1.05,0.55

BIIIMO W 0.40,0.70,0.90,3.50

Fig. 2 Plots of hrf of BIIIMO-W distribution for selected parameter values
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p0 ¼ 1;

p1 ¼ −
1
2
iβ;

p2 ¼
1
24

3 iβð Þ2−5iβ� 

;

p3 ¼
1
48

− iβð Þ3 þ 5 iβð Þ2−6iβ� 

;

p4 ¼
1

5760
15 iβð Þ4−150 iβð Þ3 þ 48 iβð Þ2−502iβ� 


etc., and

qk ¼ qk iβð Þ ¼
X∞
j¼k

−1ð Þkþ j iβ
j

� �
j
k

� �

Then, we arrive at

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

f x
BIIIMO Lindley Distribution

BIIIMO L 0.21,4.65,0.70,1.50

BIIIMO L 0.50,4.60,0.70,1.50

BIIIMO L 0.46,10.0,0.10,0.40

BIIIMO L 0.60,1.60,0.15,0.40

BIIIMO L 0.20,15.0,1.70,1.25

BIIIMO L 4.00,0.50,0.05,2.00

BIIIMO L 3.50,0.30,1.00,3.50

BIIIMO L 2.65,10.0,2.65,1.20

Fig. 3 Plots of pdf of BIIIMO-L distribution for selected parameter values
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BIIIMO L 1.00,1.80,1.05,1.45

BIIIMO L 3.50,0.30,1.00,3.50

BIIIMO L 2.65,10.0,2.65,1.20

Fig. 4 Plots of hrf of BIIIMO-L distribution for selected parameter values
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F xð Þ ¼ 1−
X∞
i≥1

−1ð Þiþ1 αþi−1
i

� 	
X∞
k¼0

pk 1−
λG xð Þ

1−λG xð Þ

 !" #k

X∞
k¼0

qk 1−
λG xð Þ

1−λG xð Þ

 !k ;

Using

X∞
k¼0

bkx
k

X∞
k¼0

akx
k

¼ 1
a0

X∞
k¼0

ckx
k ;

where cn− 1
a0

Pn
k¼1 cn−kak−bn ¼ 0 (see Gradshteyn and Ryzhik 2014),

we obtain FðxÞ ¼ 1−

X∞
i≥1

ð−1Þ1þiðαþi−1
i Þ

q0

P∞
k¼0 ck ½1−ð

λGðxÞ
1−λGðxÞÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k

A

:

By applying the power series to the quantity A,

1−zð Þk−1 ¼
X∞
h¼0

−1ð Þh k−1
h

� 	
zh;

where |z| < 1 and b is a real non-integer, we obtain

F xð Þ ¼ 1−
X∞
i≥1

−1ð Þ1þi αþi−1
i

� 	 1
q0

c0 þ
X∞
k¼1

ck
Xk
h¼1

−1ð Þhλh k
h

� 	
G xð Þh 1− 1−λð ÞG xð Þ� 


|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}−h
B

2
64

3
75:

ð13Þ

For 0 < λ ≤ 1, applying ð1−xÞ−n ¼P∞
ℓ¼0ðnþℓ−1

n−1 Þxℓ to the quantity B, we arrive

F xð Þ ¼ 1−
X∞
i≥1

−1ð Þ1þi αþi−1
i

� 	 1
q0

c0 þ
X∞
k¼1

ck
Xk
h¼1

−1ð Þh k
h

� 	
λh
X∞
j¼0

nþ j−1
n−1

� �
1−λð Þ jG xð Þ jþh

" #

¼ 1þ

X∞
i≥1

c0
q0

−1ð Þ2þi αþi−1
i

� 	

þ
X∞
j¼0

Xk
h¼1

X∞
k¼1

X∞
i≥1

ck
q0

−1ð Þ2þhþi 1−λð Þ jλh k
h

� 	 nþ j−1
n−1

� �
αþi−1

i

� 	
G xð Þ jþh

2
66664

3
77775

F xð Þ ¼ 1þ
X∞
i≥1

vi þ
X∞
j¼0

Xk
h¼1

X∞
k¼1

v j;hH jþh xð Þ; ð14Þ

where

v j;h ¼
X∞
i≥1

ck
q0

−1ð Þ2þhþi 1−λð Þ jλh k
h

� 	 nþ j−1
n−1

� �
αþi−1

i

� 	

vi ¼ c0
q0

−1ð Þ2þi αþi−1
i

� 	

and
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Hθ xð Þ ¼ G xð Þθ

is the cdf of the Lehmann type II Exp (1-G) model with power θ > 0.

By differentiating (14) we get.

f xð Þ ¼
X∞
j¼0

Xk
h¼1

X∞
k¼1

v j;hh jþh xð Þ; ð15Þ

and

hθ xð Þ ¼ θg xð ÞG xð Þθ−1

is the pdf of the Lehmann type II Exp (1-G) model with power θ > 0. Equations (14)

and (15) reveal that the BIIIMO-G density can be written as linear combinations of the

Lehmann type II Exp(1-G) density functions. So, all properties of the new family can be

derived based on the Lehmann type II Exp(1-G) density.

Moments
Moments, incomplete moments, inequality measures and some other properties are

theoretically derived in this section.

Moments about origin

The rth moment of X, say μ′r , follows from (15) as

μ
0
r ¼ E Xrð Þ ¼

X∞
j¼0

Xk
h¼1

X∞
k¼1

v j;hE Y r
m

� 	 ð16Þ

Henceforth, Ym denotes the Lehmann type II exp-(1-G) distribution with power

parameter m.

The nth central moment of X, say Mn, is given by

Mn ¼ EðX−μ′1Þ
n ¼

Xn
r¼0

X∞
j¼0

Xk
h¼1

X∞
k¼1

v j;hð−1Þn−r
 
n

r

!
μ′ðn−rÞr EðY r

mÞ ð17Þ

The cumulants (κn) of X follow recursively from

κn ¼ μ
0
n−
Xn−1
r¼0

n−1
r−1


 �
κrμ

0
n−r ð18Þ

where κ1 ¼ μ
0
1; κ2 ¼ μ

0
2−μ

02
1 ; κ3 ¼ μ

0
3−3μ

0
2μ

0
1 þ μ

03
1 , etc. The skewness and kurtosis mea-

sures can be calculated from the ordinary moments using well-known relationships.

Generating function

The moment generating function (mgf) MX(t) = E(et X) of X is given by

MX tð Þ ¼
X∞

j¼0

Xk

h¼1

X∞

k¼1
v j;hMm tð Þ; ð19Þ

where Mm(t) is the mgf of Ym. Hence, MX(t) can be determined from Lehmann type II

exp-(1-G) generating function.
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Incomplete moments

The sth incomplete moment, say Is(t), of X can be expressed from (15) as

Is tð Þ ¼
Zt
−∞

xs f xð Þdx ¼
X∞

j¼0

Xk

h¼1

X∞

k¼1
v j;h

Z t

−∞
xsh jþh xð Þdx ð20Þ

A general formula for the first incomplete moment, I1(t), can be derived from the last

equation (with s = 1).

The first incomplete moment can be applied to construct Bonferroni and Lorenz curves

defined for a given probability π by BðπÞ ¼ I1ðqÞ=ðπμ0
1Þ and LðπÞ ¼ I1ðqÞ=μ0

1, respectively,

where μ
0
1 ¼ EðXÞ and q =Q(π) is the qf of X at π. The mean deviations about the

mean ½δ1 ¼ EðjX−μ0
1jÞ� and about the median [δ2 = E(|X −M|)] of X are given by

δ1 ¼ 2μ
0
1Fðμ

0
1Þ−2I1ðμ

0
1Þ and δ2 ¼ μ

0
1−2I1ðMÞ, respectively, where μ0

1 ¼ EðXÞ, M ¼ Median

ðXÞ ¼ Qð12Þ is the median and Fðμ0
1Þ is easily calculated from (4).

Table 2 shows the numerical measures of the median, mean, standard deviation,

skewness and Kurtosis of the BIIIMO-W distribution for selected parameter values

to describe their effect on these measures.

Table 3 shows the numerical measures of the median, mean, standard deviation,

skewness and Kurtosis of the BIIIMO-L distribution for selected parameter values

to describe their effect on these measures.

Reliability measures
In this section, different reliability measures for the BIIIMO-G family are studied.

Stress-strength reliability of BIIIMO-G family

Let X1 ∼ BIIIMO −G(α1, β, λ, ψ), X2 ∼ BIIIMO −G(α2, β, λ, ψ) and X1 represents strength

and X2 represents stress. Then, the reliability of the component is:

R ¼ Pr X2 < X1ð Þ ¼
Z∞
−∞

Zx1
−∞

f x1; x2ð Þdx2dx1 ¼
Z∞
0

f x1 xð ÞFx2 xð Þdx;

R ¼
Z∞
0

α1βg xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−1
1þ − log

λG xð Þ
1−λG xð Þ

 !" #−β8<
:

9=
;

−α1−1

1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α2

dx ¼ α1
α1 þ α2ð Þ

ð21Þ

Therefore R is independent of β, λ and ψ.

Multicomponent stress-strength reliability estimator Rs, κ based on BIIIMO-G family

Suppose a machine has at least “s” components working out of “ κ ” components. The

strengths of all components of system are X1, X2, . …Xκ and stress Y is applied to the

system. Both the strengths X1, X2, . …Xκ are i.i.d. and are independent of stress Y. F

Bhatti et al. Journal of Statistical Distributions and Applications            (2019) 6:12 Page 10 of 21



Table 2 Median, mean, standard deviation, skewness and Kurtosis of the BIIIMO-W distribution

Parameters α, β, λ, b Median Mean Standard Deviation Skewness Kurtosis

1,5,5,5 1.1771 1.1780 0.0545 0.2111 4.9161

2,5,5,5 1.2034 1.2079 0.04693 0.8716 5.9434

3,5,5,5 1.2174 1.2232 0.0452 1.1058 6.6793

5,0.1,5,5 1.7972 1.8793 0.9214 0.1150 1.9890

5,0.5,5,5 1.9479 2.0645 0.6437 0.5428 2.4137

5,0.6,5,5 1.8321 1.9746 0.6159 0.8302 2.9991

5,1,5,5 1.5246 1.6301 0.3962 1.7014 6.7042

0.5,1.5,0.5,5 0.8426 1.3586 1.1866 1.4186 3.2418

0.5,1.5,1.5,5 0.9185 0.9232 0.2749 0.6282 5.9778

0.5,1.5,2.5,5 0.9858 0.9805 0.2668 0.4229 5.6954

0.1,3.25,0.5,5 0.5710 0.5575 0.2477 −0.0171 2.9788

0.1,3.25,0.75,5 0.6175 0.5985 0.2616 −0.0403 3.5046

0.1,3.25,1,5 0.6521 0.6282 0.2694 −0.1980 2.2918

1,10,1,10 1.0000 1.0001 0.0181 0.0954 4.2672

5,5,5,1 2.8679 2.9859 0.5965 3.9302 127.836

5,5,5,3 1.4208 1.4346 0.0866 1.4729 9.1049

5,5,5,5 1.2346 1.2413 0.0443 1.3008 7.4790

Table 3 Median, mean, standard deviation, skewness and Kurtosis of the BIIIMO-Lindley
Distribution

Parameters α, β, λ, b Median Mean Standard Deviation Skewness Kurtosis

1,1,1,1 1.5675 5.3348 15.3851 8.2183 90.6069

2,1,1,1 3.3663 9.5872 22.6103 6.4326 55.7313

3,1,1,1 5.0424 13.5865 29.5541 5.8056 45.5406

4,1,1,1 6.6589 17.6427 37.3102 5.5979 42.3776

5,1,1,1 8.1887 19.9071 36.5353 4.6082 29.1756

1,10,1,1 1.5826 1.6022 0.2585 0.8210 6.4705

0.65,10,5,1 3.1084 3.1032 0.3673 0.0413 4.5913

0.65,10,5,0.15 23.9115 23.8698 2.5003 0.0084 4.4424

0.5,10,3,0.10 29.9001 29.7078 3.9877 −0.1783 4.1985

0.15,20,0.5,0.95 0.8711 0.8362 0.2341 −0.5213 2.9375

0.15,20,0.5,0.5 1.9486 1.8711 0.4854 −0.5968 3.0644

0.5,20,0.5,0.5 2.3013 2.2875 0.2677 −0.2134 4.1862

0.1,9,0.5,0.5 1.1787 1.2283 0.7764 0.4073 2.6804

0.1,9,0.35,0.5 0.8983 0.9548 0.6292 0.5181 2.9726

0.1,10,1.1,0.4 2.8248 2.7678 1.4233 0.0055 2.2482

0.1,10,1.3,0.4 3.1227 3.0411 1.5263 −0.0426 2.2369

0.1,10,2,0.4 3.9758 3.8169 1.7934 −0.1728 2.2366

0.1,10,2,1.8 0.6578 0.6423 0.3405 −0.0045 2.1782

0.1,10,2,1.9 0.6160 0.6020 0.3203 0.0051 2.1889
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and G are the cdf of X and Y respectively. The reliability of a machine is the probability

that the machine functions properly.

Let X ∼ BIIIMO −G(α1, β, λ, ψ), Y ∼ BIIIMO −G(α2, β, λ, ψ) with common parameters

β, λ, ψ and unknown shape parameters α1 and α2. The multicomponent stress- strength

reliability for BIIIMO-G family is given by (Bhattacharyya and Johnson 1974).

Rs;m ¼ P strengths > stressð Þ ¼ P at least}s}of X1;X2; :…Xκð ÞexceedY½ �; ð22Þ

Rs;κ ¼
Xκ
l¼s

κ
ℓ

� 	 Z∞
0

1−F yð Þ½ �l F yð Þ½ �κ−ldG yð Þ ð23Þ

Rs;κ ¼
Xκ
ℓ¼s

κ
ℓ


 �
Z∞
0

1− 1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α10
@

1
A

ℓ

1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α10
@

1
A

κ−ℓð Þ

�

α2βg xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−1
1þ − log

λG xð Þ
1−λG xð Þ

 !" #−β8<
:

9=
;

−α2−1

2
66666664

3
77777775
dx

Let t ¼ f1þ ½− logð λGðxÞ
1−λGðxÞÞ�

−β

g
−α2

, then we obtain

Rs;κ ¼
Xκ
ℓ¼s

κ
ℓ


 �Z1
0

1−tvð Þℓ tv κ−ℓð Þdt:

Let z ¼ tν; t ¼ z
1
ν; dt ¼ 1

ν
z
1
ν−1dz

, then

Rs;κ ¼
Xκ
ℓ¼s

κ
ℓ


 �Z1
0

1−tvð Þℓ tv κ−ℓð Þdt;

Rs;κ ¼
Xκ
ℓ¼s

κ
ℓ


 �Z1
0

1−zð Þℓ z κ−ℓð Þ 1
ν
z
1
ν−1dz;

Rs;κ ¼ 1
ν

Xκ
ℓ¼s

κ
ℓ


 �
B 1þ ℓ; κ−ℓþ 1

ν


 �
:;

Rs;κ ¼ 1
ν

Xκ
ℓ¼s

κ!
κ−ℓð Þ!

Yℓ
j¼0

κ− jþ 1
ν


 �" #−1
where v ¼ α2

α1
ð24Þ

The probability Rs, κ in (24) is called multicomponent stress-strength model

reliability.

Characterizations
In this section, BIIIMO-G family is characterized via: (i) conditional expectation; (ii)

ratio of truncated moments and (iii) reverse hazard rate function.

Characterization based on conditional expectation

Here BIIIMO-G family is characterized via conditional expectation.

Bhatti et al. Journal of Statistical Distributions and Applications            (2019) 6:12 Page 12 of 21



Proposition

Let X :Ω→ (0,∞) be a continuous random variable with cdf F(x)

( 0 < F(x) < 1 for x ≥ 0), then for α > 1, X has cdf (4) if and only if

E − log
λG Xð Þ

1−λG Xð Þ

 !" #−β������X < t

8<
:

9=
; ¼ 1

α−1ð Þ 1þ α − log
λG tð Þ

1−λG tð Þ

 !" #−β8<
:

9=
;; for t > 0 ð25Þ

Proof. If pdf of X is (5), then

E − log
λG Xð Þ

1−λG Xð Þ

 !" #−β������X < t

8<
:

9=
; ¼ F tð Þð Þ−1

Zt
0

− log
λG xð Þ

1−λG xð Þ

 !" #−β
f xð Þdx

¼ ðFðtÞÞ−1 R t0
½− logð λGðxÞ

1−λGðxÞÞ�
−β

αβ gðxÞ
GðxÞð1−λGðxÞÞ�

½− logð λGðxÞ
1−λGðxÞÞ�

−β−1

f1þ ½− logð λGðxÞ
1−λGðxÞÞ�

−β

g
−α−1

0
BBB@

1
CCCA dx

Upon integration by parts and simplification, we obtain

E − log
λG Xð Þ

1−λG Xð Þ

 !" #−β������X < t

8<
:

9=
; ¼ 1

α−1ð Þ 1þ α − log
λG tð Þ

1−λG tð Þ

 !" #−β8<
:

9=
;; t > 0:

Conversely, if (25) holds, then

Zt
0

− log
λG xð Þ

1−λG xð Þ

 !" #−β
f xð Þdx ¼ F tð Þ

α−1ð Þ 1þ α − log
λG tð Þ

1−λG tð Þ

 !" #−β8<
:

9=
; ð26Þ

Differentiating (26) with respect to t, we obtain.

½− logð λGðtÞ
1−λGðtÞÞ�

−β

f ðtÞ ¼ f ðtÞ
ðα−1Þ f1þ α½− logð λGðtÞ

1−λGðtÞÞ�
−β

g− FðtÞ
ðα−1Þ ½ αβgðtÞ

GðxÞð1−λGðtÞÞ ½− logð λGðtÞ
1−λGðtÞÞ�

−β−1

�

After simplification and integration we arrive at

F tð Þ ¼ 1þ − log
λG tð Þ

1−λG tð Þ

 !" #−β8<
:

9=
;

−α

; t≥0

Characterization of BIIIMO-G family through ratio of truncated moments

Here BIIIMO-G family is characterized using Theorem G (Glänzel; 1987) on the basis

of a simple relationship between two truncated moments of X.

Proposition

Let X :Ω→ℝ be a continuous random variable.

Let h1 xð Þ ¼ 1
α

1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

αþ1

; x∈ℝ

and
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h2 xð Þ ¼
2 1þ − log λG xð Þ

1−λG xð Þ

� �h i−β� �αþ1

α − log λG xð Þ
1−λG xð Þ

� �h iβ ; x∈ℝ

The random variable X has pdf (5) if and only if that the function p(x) (defined in

theorem G) has the form pðxÞ ¼ ½− logð λGðxÞ
1−λGðxÞÞ�

β

; x∈ℝ:

Proof. For random variable X with pdf (5),

1−F xð Þð ÞE h1 Xð ÞjX ≥xð Þ ¼ − log
λG xð Þ

1−λG xð Þ

 !" #−β

and

ð1−FðxÞÞEðh2ðXÞjX ≥xÞ ¼ ½− logð λGðxÞ
1−λGðxÞÞ�

−2β

; x∈ℝ:

E½h1ðxÞjX ≥x�
E½h2ðxÞjX ≥x� ¼ pðxÞ ¼ ½− logð λGðxÞ

1−λGðxÞÞ�
β

; x∈ℝ;

and

p′ðxÞ ¼ βgðxÞ
�GðxÞð1−�λ�GðxÞÞ ½−logð

λ�GðxÞ
1−�λ�GðxÞÞ�

β−1

; x∈R:

The differential equation

s
0
xð Þ ¼ p

0
xð Þh2 xð Þ

p xð Þh2 xð Þ−h1 xð Þ ¼
2βg tð Þ

G xð Þ 1−λG tð Þ� 	 − log
λG xð Þ

1−λG xð Þ

 !" #−1

has solution

s xð Þ ¼ ln − log
λG xð Þ

1−λG xð Þ

 !" #2β
; x∈ℝ:

Therefore, in the light of theorem G, X has pdf (5).

Corollary

Let X :Ω→ℝ be a continuous random variable and let.

h2ðxÞ ¼
2f1þ½− logð λGðxÞ

1−λGðxÞÞ�
−β

g
αþ1

α½− logð λGðxÞ
1−λGðxÞÞ�

β ; x∈ℝ . The pdf of X is (5) if and only if there exist

functions

p(x) and h1(x) defined in Theorem G, satisfying the differential equation

p
0
xð Þ

p xð Þh2 xð Þ−h1 xð Þ ¼
αβg xð Þ

G xð Þ 1−λG xð Þ� 	 − log
λG xð Þ

1−λG xð Þ

 !" #β−1
1þ − log

λG xð Þ
1−λG xð Þ

 !" #−β8<
:

9=
;

−α−1

:

ð27Þ
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Remark

The solution of (27) is

p xð Þ ¼ − log
λG xð Þ

1−λG xð Þ

 !" #2β Z −h1 xð Þ αβg xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−1
�

1þ − log
λG xð Þ

1−λG xð Þ

 !" #−β8<
:

9=
;

−α−1

dx

2
6666664

3
7777775
þ D;

where D is a constant.

Characterization of BIIIMO-G family via reverse Hazard rate function

Definition

Let X :Ω→ (0,∞) be a continuous random variable with cdf F(x) and pdf f(x).The re-

verse hazard function, rF, of a twice differentiable distribution function F, satisfies the

differential equation

d
dx

ln f xð Þ½ � ¼ r
0
F xð Þ

r F xð Þ þ r F xð Þ: ð28Þ

Proposition

Let X :Ω→ (0,∞) be continuous random variable. The pdf of X is (5) if and only if its

reverse hazard function, rF satisfies the first order differential equation

r
0
F xð Þ 1þ − log

λG xð Þ
1−λG xð Þ

" #( )−β
0
@

1
A‐

βg xð Þ − log λG xð Þ
1−λG xð Þ

� �h i−β−1
G xð Þ 1−λG xð Þ� 	 r F xð Þ

¼ αβ
d
dx

g xð Þ − log λG xð Þ
1−λG xð Þ

� �h i−β−1
G xð Þ 1−λG xð Þ� 	

8><
>:

9>=
>;: ð29Þ

Proof If

X has pdf (5), then (29) holds. Now if (29) holds, then

d
dx

r F xð Þ 1þ − log
λG xð Þ

1−λG xð Þ

" #( )−β
0
@

1
A

2
4

3
5 ¼ αβ

d
dx

g xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−18<
:

9=
;;

or

r F xð Þ ¼ αβg xð Þ
G xð Þ 1−λG xð Þ� 	 − log

λG xð Þ
1−λG xð Þ

 !" #−β−1
1þ − log

λG xð Þ
1−λG xð Þ

 !" #−β8<
:

9=
;

−1

; x∈ℝ;

which is the reverse hazard function of the BIIIMO-G Family.

Maximum likelihood estimation
In this section, parameter estimates are derived using maximum likelihood

method. The log-likelihood function for the vector of parameters Φ = (α, β, λ, ψτ)

of BIIIMO-G family is
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ℓ Φð Þ ¼ lnL Φð Þ

¼

n ln αð Þ þ n ln βð Þ þ
Xn
i¼1

lng xi;ψð Þ−
Xn
i¼1

lnG xi;ψð Þ−
Xn
i¼1

ln 1−λG xi;ψð Þ� 	
− βþ 1ð Þ

Xn
i¼1

ln − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #
−

αþ 1ð Þ
Xn
i¼1

ln 1þ − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #−β8<
:

9=
;

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð30Þ

In order to compute the estimates of the parameters α, β, λ, ψτ, the following

nonlinear equations must be solved simultaneously:

δ
δα

ℓ Φð Þ ¼ n
α
−
Xn
i¼1

ln 1þ − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #−β8<
:

9=
; ¼ 0; ð31Þ

δ
δβ

ℓ Φð Þ ¼ n
β
−
Xn
i¼1

ln − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #
þ αþ 1ð Þ

Xn
i¼1

ln − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #
− log

λG xi;ψð Þ
1−λG xi;ψð Þ

 !" #β
þ 1

8<
:

9=
;

−1

;

ð32Þ

δ
δψ

ℓ Φð Þ ¼

Xn
i¼1

g
0
xi;ψð Þ

g xi;ψð Þ þ
Xn
i¼1

g
0
xi;ψð Þ

G xi;ψð Þ−
Xn
i¼1

λg
0
xi;ψð Þ

1−λG xi;ψð Þ� 


− βþ 1ð Þ
Xn
i¼1

g
0
xi;ψð Þ − log λG xi;ψð Þ

1−λG xi;ψð Þ

� �h i−1
G xi;ψð Þ−λG2

xi;ψð Þ
� �

− αþ 1ð Þβ
Xn
i¼1

1þ − log
λG xi;ψð Þ

1−λG xi;ψð Þ

 !" #β8<
:

9=
;

g
0
xi;ψð Þ − log λG xi;ψð Þ

1−λG xi;ψð Þ

� �h iβ−1
G xi;ψð Þ−λG2

xi;ψð Þ
� �

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼ 0:

ð33Þ

where g
0 ðxi;ψÞ ¼ δ

δψ gðxi;ψÞ:

Simulation studies
In this Section, we perform the simulation study to see the performance of MLE’s of

BIIIMO-L distribution. The random number generation is obtained with inverse of its

cdf. The MLEs, say ðα̂i; β̂i; λ̂i; b̂iÞ for i = 1,2,…,N, have been obtained by CG routine in R

programme.

The simulation study is based on graphical results. We generate N = 1000 samples of

sizes n = 20,30,…,1000 from BIIIMOL distribution and get true values of α = 1.5, β =

2.55, λ = 0.095 and b = 5 for this simulation study. We also calculate the mean, standard

deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and MSE are

calculated by (for h = α, β, λ, b)

Biash ¼ 1
N

XN

i¼1
ĥi−h
� �

and

MSEh ¼ 1
N

XN

i¼1
ĥi−h
� �2

:

The results are given by Fig. 5. Figure 5 reveals that the empirical means tend to the

true parameter values and that the sds, biases and MSEs decrease when the sample size
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increases as expected. These results are in agreement with first-order asymptotic

theory.

Applications
The BIIIMO-W and BIIIMO-L distributions are compared with sub- and competing

models. Different goodness fit measures such Cramer-von Mises (W*), Anderson Dar-

ling (A*), Kolmogorov- Smirnov statistics with p-values [K-S(p-values], Akaike informa-

tion criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian

information criterion (BIC), Hannan-Quinn information criterion (HQIC) and like-

lihood ratio statistics are computed for survival times of leukemia patients and bladder

cancer patients using R-Packages(AdequacyModel and zipfR). In first application, we

compare BIIIMO-W distribution with Weibull Marshall Olkin-Weibull (WMO-W),

odd Burr III Weibull (OBIII-W), Kumaraswamy Weibull (Kum.-W), beta Weibull

(Beta-W), generalized gamma Weibull, Weibull and Burr III (BIII) distributions. In

second application, we compare BIIIMO-Lindley (BIIIMO-L) distribution with odd

Burr III Lindley (OBIII-L), Mc-Donald- Lindley (Mc-L), Kumaraswamy Lindley

(Kum.-L), beta Lindley (Beta-L), Weibull power Lindley (W-PL), Kumaraswamy

power Lindley (Kum.- PL), Lindley and Burr III (BIII) distributions.

The better fit corresponds to smaller W*, A*, K-S, −2 ℓ
_
, AIC, CAIC, BIC and HQIC value.

The maximum likelihood estimates (MLEs) of unknown parameters and values of goodness

of fit measures are computed for BIIIMO-W, BIIIMO-L distributions and their sub-models

and competing models. The MLEs, their standard errors (in parentheses) and goodness-of-fit

statistics like W*, A*, K-S (p-value) are given in Tables 4 and 5. Tables 6 and 7 displays

goodness-of-fit values.

Data set I

The survival times (days) of 40 patients suffering from leukemia (Abouammoh et

al. 1994) are: 115,181, 255, 418, 441, 461, 516, 739, 743,789,807, 865, 924, 983,

1024,1062, 1063,1165, 1191, 1222,1251,1277, 1290,1357,1369, 1408,1455, 1478,

1222,1549, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815,1852.

The BIIIMO-W distribution is best fitted than sub-models and competing models

because the values of all criteria are smaller for BIIIMO-W distribution.

We can also perceive that the BIIIMO-W distribution is best fitted model than

other sub-models and competing models because BIIIMO-W distribution offers

the closer fit to empirical data (Fig. 6).

Data set II

The survival times of 128 bladder cancer patients (Lee and Wang 2003) are 0.08,

2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,

0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,

14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,

7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69,

4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,

43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,

17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
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18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,

3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93,

8.65, 12.63, 22.69

The BIIIMO-L distribution is best fitted than sub-models and competing

models because the values of all criteria are smaller for BIIIMO-L

distribution.

We can also perceive that the BIIIMO-L distribution is best fitted model than

other sub-models and competing models because BIIIMO-L distribution offers the

closer fit to empirical data (Fig. 7).

Fig. 5 Simulation results of the special BIIIMO-L distribution

Table 4 MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics for data
set I

Model α β λ a b W* A* K-S (p-value)

BIIIMO-W 0.0778
(0.0535)

61.6872
(50.1271)

15.3084
(8.1416)

– 0.1597
(0.0214)

0.0223 0.1689 0.0657
(0.9952)

WMO-W – 1.4827
(0.8886)

19.8894
(50.0788)

0.0100
(0.0090)

0.8196
(0.0880)

0.1010 0.6747 0.0917
(0.8897)

OBIII-W 8.3649
(1.9540)

0.3518
(0.2383)

– 0.0071
(0.0027)

0.9864
(0.1077)

0.2146 1.3316 0.1349
(0.4609)

Kum.-W 5.3277
(1.4325)

1.0881
(0.6411)

– 0.0071
(0.0028)

0.8185
(0.0713)

0.4722 2.7197 0.8567
(< 2.2e-16)

Beta-W 686.6493
(275.8812)

117.5352
(76.0463)

– 11.0073
(15.0129)

0.0705
(0.0154)

0.4182 2.4380 0.1769
(0.1637)

GG-W 20.12230
(2.7548)

0.9595
(0.2615)

– 2.4800
(0.1540)

0.3978
(0.1058)

0.3531 2.0916 0.1749
(0.1729)

Weibull – – – 0.0743
(0.3914)

1.9547
(10.3026)

0.4920 2.8243 0.5085
(2.069e-09)

BIII – – – 1000.0297
(545.5985)

1.0548
(0.0879)

0.6829 3.8003 0.3005
(0.001459)
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Table 5 MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics for data set II

Model α β λ a b c W* A* K-S (p-value)

BIIIMO-
L

0.5122
(0.2016)

1.8631
(0.5179)

0.5600
(0.6845)

– 0.1530
(0.1159)

– 0.0168 0.1031 0.0307
(0.9997)

OBIII-L 0.7847
(0.2147)

0.9553
(0.1586)

– – 0.1723
(0.0330)

– 0.1903 1.1378 0.0934
(0.2145)

Mc-L 1.2106
(0.7307)

0.2846
(0.0286)

– – 0.4949
(0.0028)

0.7145
(0.5179)

0.1444 0.8629 0.0884
(0.2704)

Kum.-L 0.9611
(0.1671)

0.2825
(0.0276)

– – 0.5015
(0.0028)

– 0.1344 0.8039 0.0898
(0.2529)

Beta-L 0.9248
(0.1301)

0.2813
(0.0283)

– – 0.4949
(0.0037)

– 0.1399 0.836 0.0894
(0.2576)

W-PL 0.0215
(0.0285)

13.54214
(12.6100)

– 0.0466
(0.0402)

1.1848
(0.0901)

– 0.1482 0.8851 0.0735
(0.4932)

Kum-
PL

3.1406
(2.9576)

1.4481
(3.0649)

– 0.5045
(0.3671)

0.8239
(0.3653)

– 0.0389 0.2541 0.043
(0.9719)

Lindley – – – – 0.1960
(0.0123)

– 0.1717 1.0257 0.1164
(0.06235)

BIII 4.2070
(0.4054)

1.0333
(0.0604)

– – – – 0.3856 2.4543 0.1017
(0.1413)

Table 6 Goodness-of-fit statistics for data set I

Model −2 ℓ
_ AIC CAIC BIC HQIC

BIIIMO-W 598.7174 606.7174 607.8603 613.4729 609.16

WMO-W 606.9106 614.9106 616.0534 621.6661 617.3531

OBIII-W 614.6548 622.6549 623.7977 629.4104 625.0974

Kum.-W 622.6082 630.6082 631.7511 637.3637 633.0508

Beta-W 627.9062 635.9063 637.0491 642.6618 638.3489

GG-W 623.4344 631.4344 632.5772 638.1899 633.8769

Weibull 785.6506 789.6507 789.975 793.0284 790.872

BIII 652.7072 656.7072 657.0316 660.085 657.9285

Table 7 Goodness-of-fit statistics for data set II

Model −2 ℓ
_ AIC CAIC BIC HQIC

BIIIMO-L 409.7209 827.4419 827.7671 838.85 832.0771

OBIII-L 416.2479 838.4958 838.6893 847.0519 841.9722

Kum.-L 414.0998 834.1995 834.3931 842.7556 837.6759

Mc-L 414.0916 836.1833 836.5085 847.5914 840.8184

Beta-L 414.1904 834.3807 834.5743 842.9368 837.8571

WPL 414.9072 837.8144 838.1397 849.2226 842.4496

Kum.-PL 410.4152 828.8304 829.1556 840.2386 833.4656

Lindley 419.5299 841.0598 841.0916 843.9118 842.2186

BIII 426.6864 857.3729 857.4689 863.0769 859.6905
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Concluding remarks
We have developed the BIIIMO-G family via the T-X family technique. We have

studied properties such as sub-models; descriptive measures based on the quan-

tiles, moments, inequality measures, stress-strength reliability and multicompo-

nent stress-strength reliability model. The BIIIMO-G family is characterized via

different techniques. The MLEs for the BIIIMO-G family have been computed. A

simulation studies is performed to illustrate the performance of the maximum

likelihood estimates (MLEs). Applications of the BIIIMO-G model to real data

sets (survival times of leukemia patients and bladder cancer patients data) are

presented to show the significance and flexibility of the BIIIMO-G family. Good-

ness of fit shows that the BIIIMO-G family is a better fit. We have demonstrated

that the BIIIMO-G family is empirically better for lifetime applications.
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Fig. 6 Fitted pdf, cdf, survival and pp. plots of the BIIIMO-W distribution for survival times data
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Fig. 7 Fitted pdf, cdf, survival and pp. plots of the BIIIMO-Lindley distribution for survival times data
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