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Introduction

Marshall and Olkin (1997) developed a new family of distributions with an additional
shape parameter called Marshall and Olkin-G (MO-G) family. The survival function of
MO-G family is

S(x) = % A>0,1=1-),xeR, (1)

where G(x, ¢) is the baseline cumulative distribution function(cdf) which may depend
on the vector parameter .

Many famous MO-G families and its special distributions are available in literature
such as Marshall-Olkin-G (Marshall and Olkin; 1997), the MO extended Lomax
(Ghitany et al; 2007), MO semi-Burr and MO Burr (Jayakumar and Mathew; 2008),
MO q-Weibull (Jose et al.; 2010), MO extended Lindley (Ghitany et al; 2012), the
generalized MO-G (Nadarajah et al. (2013), the MO Fréchet (Krishna et al; 2013), the
MO family (Cordeiro and Lemonte; 2013), MO extended Weibull(Santos-Neto et al;
2014), the beta MO-G (Alizadeh et al. 2015), the MO generalized exponential (Ristic,
& Kundu; 2015), MO gamma-Weibull (Saboor and Pogény; 2016), MO generalized-G

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International

@ Springer Open License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
— provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-019-0101-7&domain=pdf
mailto:fiazahmad72@gmail.com
mailto:fiazahmad72@gmail.com
http://creativecommons.org/licenses/by/4.0/

Bhatti et al. Journal of Statistical Distributions and Applications (2019) 6:12 Page 2 of 21

(Yousof et al; 2018), MO additive Weibull (Afify et al.; 2018) and Weibull MO family
(Korkmaz et al.; 2019).

This paper is sketched into the following sections. In Section 2, BIIMO-G family is devel-
opment via the T-X family technique. The basic structural properties and sub-models are
also studied. In Section 3, two special models are studied. Section 4, deals with linear repre-
sentations for the cdf and pdf of the BIIIMO-G family. In Section 5, moments, incomplete
moments, inequality measures and some other properties are theoretically derived. In Sec-
tion 6, stress-strength reliability and multicomponent stress-strength reliability of the model
are studied. In Section 7, BIIIMO-G family is characterized via (i) conditional expectation;
(ii) ratio of truncated moments and (iii) reverse hazard rate function. In Section 8, the max-
imum likelihood method is employed to estimate the parameters of the Burr III Marshall
Olkin Weibull (BIIIMO-W) and Burr III Marshall Olkin Lindley (BIIIMO-L) distributions.
In section 9, a simulation study is performed to illustrate the performance of the maximum
likelihood estimates (MLEs). In Section 10, the potentiality of BIIMO-G family is demon-
strated by its application to real data sets: survival times of leukemia patients and bladder
cancer patients’ data. Goodness of fit of the probability distribution through different
methods is studied. Section 11 contains concluding remarks.

Development of BIIIMO-G family

Alzaatreh et al. (2013) proposed a T-X family technique for the development of the
wider families based on any probability density function (pdf). The cdf of the T-X fam-
ily of distributions is given by

F(x) = /W[G(x:w)] r(¢) dt, x€R, (2)

ai

where r(¢) is the pdf of a random variable (rv) T, where T € [a,, a;] for — <a; <a; <o
and W[G(x; y)] is a function of the baseline cumulative distribution function (cdf) of a rv
X, depending on the vector parameter ¥ and satisfies three conditions i) W[G(x; y)] € [a;,
a,], ii) W[G(x; w)] is differentiable and monotonically increasing and iii) lim W[G(x; )]
—a; and xlirorg [G(x; w)]—ay. The pdf corresponding to (2) is o

fx) = {a% WG ) {W[G(x; )l}, x€R. (3)

In this article, the BIIIMO-G family is developed via the T-X family technique by

setting.
r@O=apt? M1+t P L £50, >0, 50, and W[G(x; )] = - log{M} .

Then, the cdf of BIIIMO-G family is

_ By
AG(x; y)
-log <m>] } ,x€R, (4)

where a >0, £>0,1>0 and y > 0 are parameters.

F(x;a,B,A,9) = {1 +

The pdf corresponding to (4) is given by
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_ -1
, __ aelsy) Aewy) N0,
S a,BA,9) = G(x; ) (1-1G(x; 9) [_10g<1—AG(x; l//))]

_ By~
AG(x; )
{1+ —log<m>] } ,x€R,

where g(x; ) is the baseline pdf. In future, a rv with pdf (5) is denoted by X~BIIIMO -
G(a, 5, A, ). The dependence on the parameter vector ¥ can be omitted and simply

write as g(x) = g(x; y),

G(x) = G(x; w) and fix) = flx; a, B, A, @).

Let T be a BIII random variable with shape parameters «, . The BIIIMO-G rv with
cdf (4) can be obtained from

Hence, the rv X = G~ [%} has the BIIIMO-G distribution. The quantile func-

tion (qf) of X is the solution of the non-linear equation

x = Qu) = Qg (1—{X+/1 exp {(uﬂi—l)ﬂ }1>

where Qg(.) = G'() is the gf of the baseline distribution. Hence, if U is a uniform rv on
(0, 1), then X = Q(U) follows the BIIIMO-G family.

AG(x)
1-1G(x)

Pr(X < x) = Pr (TS— log

Transformations and compounding

The BIIIMO-G family is derived through (i) ratio of the exponential and gamma ran-
dom variables and (ii) compounding generalized inverse Weibull-MO (GIW-MO) and
gamma distributions.

Lemma
i. Let the random variable Z; have the exponential distribution with parameter

value 1 and the random variable Z, have the fractional gamma i.e.,
Zy~Gamma(a, 1). Then, for

— -B
Zy= |- log A_Gix) 25
1-AG(x)
we have
A+ A exp {(Zf E}
X=gG"! . ~ BIIMO-G(a, 8,1, ). (6)

T4+ exp [(g)”}
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ii. IfY|B, A, O~GIWMO(y; 5, A, 0) and Ola~gamma(6; a), then integrating the effect of
0 with the help of

FonaBA) = / (16,1, O)g(Bla)d
0

we have Y~BIIIMO - G(a, 5, A, ¥)..

Structural properties of BIIMO-G family
The survival, hazard, cumulative hazard, reverse hazard functions and the Mills ratio of
a random variable X with BIIIMO-G family are, respectively given, by

_ Y
s(x)—l—{1+ ~lo (1?%92@) } : (7)
a/)’g(_xl - log< Agx) ) .
G(x)(1-1G(x)) 1-1G(x)

and
m(x>{1+[_ log(lf_gl)ﬂﬁ} _{ |- tos(2 Aég‘))}ﬁ}, (11)
aﬁ% - log( A?ﬁx) ) .
G(x)(1-AG(x)) 1-AG(x)

The elasticity e(x) = d;ﬁf; xr (x

e(x) = p lnx ln{1+

for BIIIMO-G family is

-8 -«
} | )

The elasticity of BIIIMO-G family shows the behavior of the accumulation of

probability in the domain of the random variable.

Sub-models
The BIIIMO-G family has the following sub models (Table 1).
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Table 1 Sub-models of BIIMO distribution

Variable Parameters Name of Distribution

X a B A BIIIMO-G family

X a 1 A Inverse Lomax MO-G family
X 1 B A Log-logistic MO-G family

X a B 1 BIII-X family

X a 1 1 Inverse Lomax-X family

X 1 B 1 Log-logistic-X family

X 1 B A MO-G family

¥ a B A BXIIMO-G family

X 1 1 1 Base line distribution

Special BIIIMO-G models

The BIIMO-G family density (5) produces greater flexibility than any baseline distribution
for data modeling. It can be most tractable, when the functions g(x; ) and G(x; ¥) have simple
analytic expressions. Then, two special sub-models of BIIMO-G family are introduced.

The BIIIMO-Weibull (BIIIMO-W) distribution
The cdf and pdf of the Weibull random variable are g(x;b) = ba*'e™ x> 0,b > 0

and G(x;b) = 1-e*,x20,b > 0 where ¥ = b. Then, the pdf of the BIIIMO-W model is
given by

-1
bafxb1 Le™
; P} ,A, b - - 1 —
f(xa,8,1,b) (11e) [ 0g<1_Aexh X

Le™ 1
- log m ,X > 07

The following graphs show that shapes of BIIMO-W density are arc, bimodal, expo-
nential, left- skewed, right-skewed and symmetrical (Fig. 1). The BIIIMO-W distribu-
tion has uni-model, bimodal, increasing, increasing and decreasing, inverted bathtub
and modified bathtub hazard rate function (hrf) Fig. 2.

1+y

The Burr lll Marshal Olkin-Lindley (BIIIMO-L) distribution
The cdf and pdf of the Lindley random variable are g(x; ) = q +b (1+x)e™ x>0b>0

and G(x;¥) =1-(1+ 1+b)e b x>0 where w=b. Then, the pdf of the BIIIMO-L

model are given by

b2

bx -1
af o (1+ x)e™ A1+ 2 e
1+b 1+b
flx;a,8,1,b) = ( )bx - log E bx) ; X
< >e bx I—A(l +m>e_x
-B
(1 +%>e‘bx
- log x>0,

1-1 (1 + 1b"b)e bx
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BIIIMO-W Distribution
f(x)
200 eeeees BIIIMO-W(6.50,2.35,0.35,0.15
" - BIIIMO-W(0.25,0.75,0.90,5.00
15 . '." ,, ------ BIIMO-W(0.35,3.70,3.70,2.40,
[ K SR e BIIIMO-W(0.50,3.50,1.35,2.50
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R R BIIIMO-W(4.90,1.10,0.05,8.00
il ~ CECOMMMARRER . oneeo BIIMO-W(2.90,0.60,0.03,1.30
Fig. 1 Plot of pdf of BIIMO-W distribution for selected parameter values

The following graphs show that shapes of BIIIMO-L density are ], revers J, arc, expo-
nential, left- skewed, right-skewed and symmetrical (Fig. 3). The BIIIMO-L distribution

has unimodal, increasing, increasing and decreasing, decreasing-increasing-decreasing

inverted bathtub, bathtub and modified bathtub hazard rate function (Fig. 4).

Useful expansions

In this sub-section, the linear representations for the cdf and pdf of the BIIMO-G fam-

ily are obtained. The cdf in (4) can be expressed as

_ iB
- AG(x)
= 1- l+1 (x+t 1\ | _ lo TV ’
Z )|~ los 1-1G (%)
Following (Tahir et al. 2016), we have
6@ \]"
x
_ —i P 1-| ——
tog [ 28 g Z S\ Gw)
- - ——, . — k 9
1-AG(x) AG(x)
qu I—T
1-1G(x)
where
BIIMO-W Distribution
h(x)
====== BJIIMO-W(1.50,0.50,0.03,5.00

BIIMO-W
------ BIIMO-W

------ BIIMO-W
X weeeee BIIMO-W
Fig. 2 Plots of hrf of BIIMO-W distribution for selected parameter values

( )
( )
( )
------ BIIIMO-W(2.00,2.10,2.00,1.50)
( )
( )
( )

1.00,3.50,0.60,0.70
6.50,2.35,0.35,0.15

====== B|IIMO-W(2.60,4.80,2.50,0.80

2.60,4.80,1.05,0.55
0.40,0.70,0.90,3.50
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BIIMO-Lindley Distribution
f(x)
158 ".. \“ o e BIIIMO-L(0.21,4.65,0.70,1.50)
S N . ====== BIIMO-L(0.50,4.60,0.70,1.50)
. ey 0 ’ . Q .
] AS :\ B =<==-= BIIMO-L(0.46,10.0,0.10,0.40)
1.08% » * S (YA S
L s oo X L BIIIMO-L(0.60,1.60,0.15,0.40)
PRC) AN . KA .
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. Se '. * o® ‘\ 5
0° A3 ' ," el . Y/ eeeee BIIIMO-L(4.00,0.50,0.05,2.00)
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,'~‘.~_._, et '\’1.'-_0.-...__._\_ ------ BIIIMO-L(3.50,0.30,1.00,3.50)
o matten T TV Pt e
=" 05 o 15 50 BIIIMO-L(2.65,10.0,2.65,1.20)
Fig. 3 Plots of pdf of BIIMO-L distribution for selected parameter values

pO = 1)
P = —%iﬁ,
1 . 2\2 .
Py =5 [3(i)"-5iB],
Ps = i8 [-(B)” + 5(iB)*~6if]
Ps= 57160 [15(iB)*-150(iB)* + 48(iB)*~502ip]
etc., and
@ = q(iB) =D (-1 (’Iﬁ) (11()
j=k

Then, we arrive at

BIIMO-Lindley Distribution
hx)
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Fig. 4 Plots of hrf of BIIMO-L distribution for selected parameter values
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Bhatti et al. Journal of Statistical Distributions and Applications (2019) 6:12

1

k )
i>1 )

G(x)
S 12”[<‘GJ
F(x) = 1—2(—1) (1) & @

Using
bt
20 = i,
Z agx’ k=0
k=0
where ¢, — % 22:1 ¢u-kax—b, = 0 (see Gradshteyn and Ryzhik 2014),
_1)H (a1 B
we obtain F(x) = 1—;()(Z)Zm Ck [1—(M)]k .
a k=0 1-1G(x)
A

By applying the power series to the quantity A,
(127 = 3" (1 ()2
h=0

where |z| <1 and b is a real non-integer, we obtain

oo

1+l a+t 1
2 GO et 2 e
k=1

k

h=1

For 0 <A <1, applying (1-x)™"

F(x) = 1- i; (_1)1+i<a+i,-_1> i

=300 F1)at to the quantity B, we arrive

j=0

oo k oo
co+chZ(—l)h(’,;)/th("“ 1)(1 -1)/G(x )/+h}

w ke oo
n Z Z Z Z Ck (_1)2+h+i(1_)t)j/1h (2) (n+j—1) (a-l;i—l)@(x)ﬂrh

n-1

T
o
N
I
-
>~
I
-
v
-
S

HH : (14)
i>1 =0 h=1 k=1

vin = 3o ORI AN ) () ()
Vi = q—o(—l) (“ il_ )

S D) E) G [1-(1-0)G ()] "
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Hy(x) = G(x)°

is the cdf of the Lehmann type II Exp (1-G) model with power 6> 0.
By differentiating (14) we get.

o ko
=2 DD visha() (15)

=0 h=1 k=1
and

ho(x) = Og(x)G(x)""

is the pdf of the Lehmann type II Exp (1-G) model with power 8> 0. Equations (14)
and (15) reveal that the BIIIMO-G density can be written as linear combinations of the
Lehmann type II Exp(1-G) density functions. So, all properties of the new family can be
derived based on the Lehmann type II Exp(1-G) density.

Moments
Moments, incomplete moments, inequality measures and some other properties are
theoretically derived in this section.

Moments about origin

The 7" moment of X, say ., follows from (15) as

= i i vinE(Y7) (16)

=0 h=1 k=1

k

Henceforth, Y,, denotes the Lehmann type II exp-(1-G) distribution with power
parameter 1.
The 1 central moment of X, say M,, is given by

UL S ny .
S 9090 9 SUHE i () S )

j=0 h=1 k=1

The cumulants (k,,) of X follow recursively from
, n-1 1’1—1 ,
Kn = W,— Z (V—l )Ki"ﬂnr (18)
r=0
where 11 = ), Ky = py—p 2, K3 = ty—3popt; + i, etc. The skewness and kurtosis mea-

sures can be calculated from the ordinary moments using well-known relationships.

Generating function

The moment generating function (mgf) Mx(t) = E(e %) of X is given by

- Z:'O:OZE:lZ::lvithm(t)a (19)

where M,,,(t) is the mgf of Y,,,. Hence, Mx{(t) can be determined from Lehmann type II
exp-(1-G) generating function.
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Incomplete moments
The s™ incomplete moment, say I (), of X can be expressed from (15) as

L(t) = / X f(x)dx = ;“:OZZ:IZ::IV,“h / oy () (20)

A general formula for the first incomplete moment, I;(£), can be derived from the last
equation (with s =1).

The first incomplete moment can be applied to construct Bonferroni and Lorenz curves
defined for a given probability 7z by B(1r) = I,(q)/(7u)) and L(1r) = I1(q) /), respectively,
where 4, = E(X) and ¢ = Q(n) is the qf of X at 7. The mean deviations about the
mean [§; = E(|X-4,|)] and about the median [8,=E(|X - M|)] of X are given by
81 = 24 F(u))-21,(u)) and 8y = p, =21, (M), respectively, where y; = E(X), M = Median
(X) = Q(}) is the median and F(4,) is easily calculated from (4).

Table 2 shows the numerical measures of the median, mean, standard deviation,
skewness and Kurtosis of the BIIIMO-W distribution for selected parameter values
to describe their effect on these measures.

Table 3 shows the numerical measures of the median, mean, standard deviation,
skewness and Kurtosis of the BIIIMO-L distribution for selected parameter values
to describe their effect on these measures.

Reliability measures
In this section, different reliability measures for the BIIIMO-G family are studied.

Stress-strength reliability of BIIIMO-G family

Let X; ~BIIMO - G(ay, B, A, ¢), Xo ~BIIMO - G(a,, 5, A, ) and X; represents strength
and X, represents stress. Then, the reliability of the component is:

oo X oo

R= Pr(X; < X;) ://f(xl,xz)dxzdxl :/fxl(x)sz(x)dx,
- o e _
[ mbgly) | AG(x) B AG(x)
R[ G(x) (1-1G(x)) l°g<1_m(x)> {H[ l°g<1_r (x))
o AG(x)
8\ 120G (x)

-B —a2
1+ de =1
(le + 0{2)

Therefore R is independent of 5, 1 and y.

a1 Bg(x

Multicomponent stress-strength reliability estimator R, . based on BIIIMO-G family
Suppose a machine has at least “s” components working out of “ x ” components. The
strengths of all components of system are X;, X,, . ...X,. and stress Y is applied to the

system. Both the strengths X;, X5, . ...X, are iid. and are independent of stress Y. F
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Table 2 Median, mean, standard deviation, skewness and Kurtosis of the BIIMO-W distribution

Parameters q, 3, A, b Median Mean Standard Deviation Skewness Kurtosis
1555 11771 1.1780 0.0545 0211 49161
2555 1.2034 1.2079 0.04693 0.8716 5.9434
3555 12174 1.2232 0.0452 1.1058 6.6793
50155 1.7972 1.8793 09214 0.1150 1.9890
50555 1.9479 2.0645 0.6437 0.5428 24137
50655 1.8321 1.9746 06159 0.8302 2.9991
5155 15246 1.6301 0.3962 17014 6.7042
05,1.505,5 0.8426 1.3586 1.1866 14186 3.2418
0515155 09185 0.9232 0.2749 06282 59778
05,1.5255 0.9858 0.9805 0.2668 04229 56954
01,325,055 0.5710 0.5575 0.2477 -0.0171 29788
0.1,3.25,0.75,5 06175 0.5985 02616 —0.0403 3.5046
0.1,3.251,5 06521 0.6282 0.2694 —-0.1980 22918
1,10,1,10 1.0000 1.0001 0.0181 0.0954 4.2672
5551 2.8679 2.9859 0.5965 3.9302 127.836
5553 14208 14346 0.0866 14729 9.1049
5555 1.2346 1.2413 0.0443 1.3008 74790
Table 3 Median, mean, standard deviation, skewness and Kurtosis of the BIIMO-Lindley
Distribution

Parameters q, 3, A, b Median Mean Standard Deviation Skewness Kurtosis
1111 1.5675 53348 153851 82183 90.6069
21,11 3.3663 9.5872 226103 64326 557313
31,10 5.0424 13.5865 29.5541 5.8056 455406
4111 6.6589 17.6427 373102 55979 423776
51,11 8.1887 19.9071 36.5353 4.6082 29.1756
1,10,1,1 1.5826 1.6022 0.2585 0.8210 64705
0.65,10,5,1 3.1084 3.1032 03673 0.0413 45913
0.65,10,5,0.15 239115 23.8698 2.5003 0.0084 44424
0.5,10,3,0.10 29.9001 29.7078 3.9877 —-0.1783 4.1985
0.15,20,0.5,0.95 08711 0.8362 0.2341 -0.5213 29375
0.15,20,0.5,0.5 1.9486 1.8711 04854 —0.5968 3.0644
0.5,20,05,0.5 23013 2.2875 0.2677 -0.2134 4.1862
0.1,905,0.5 1.1787 12283 0.7764 04073 26804
0.1,9,0.35,05 0.8983 0.9548 0.6292 05181 29726
0.1,10,1.1,04 2.8248 2.7678 14233 0.0055 2.2482
0.1,10,1.3,04 31227 3.0411 1.5263 —-0.0426 2.2369
0.1,102,04 3.9758 3.8169 1.7934 -0.1728 22366
0.1,102,1.8 0.6578 0.6423 0.3405 —0.0045 2.1782
0.1,102,1.9 06160 0.6020 0.3203 0.0051 2.1889
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and G are the cdf of X and Y respectively. The reliability of a machine is the probability

that the machine functions properly.

Let X ~BIIMO - G(ay, B, A, ¢), Y ~BIIMO - G(ao, 5, A, ) with common parameters
B, A,  and unknown shape parameters a; and a,. The multicomponent stress- strength
reliability for BIIMO-G family is given by (Bhattacharyya and Johnson 1974).

Ry m = P(strengths > stress) =

=30 [

I=s

[1-F) [F())dG()

10g< Afi() )

K G
R — K
'S,K [ _
t=s ( ) afg(x) 1o AG(x 14
G(x) (121G (x 8 ‘G
WG P .
Lett={1+[- log(l_r(x))] } , then we obtain

« 1
(0 e
£=s 0

1
Letz=t't =72, dt =-2'dz
14

, then
. 1
_ (’)/ V(KE If
L=s 0
. 1
= ( )/ 1-z) z(K ol "ldz,
L=s 0
1/«
Rop— 1 < >B<1+€,K et )
V‘Z:s ¢
1 «! ¢ 1 B o
Ry =~ : K—j+ - where v = —>
T v (k-2)! Lll( / v) o

The probability R
reliability.

Characterizations

Platleast”s" of (X1, Xa, ..

Xy ) exceed Y], (22)

(23)

(24)

« in (24) is called multicomponent stress-strength model

In this section, BIIIMO-G family is characterized via: (i) conditional expectation; (ii)

ratio of truncated moments and (iii) reverse hazard rate function.

Characterization based on conditional expectation

Here BIIIMO-G family is characterized via conditional expectation.
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Proposition
Let X:Q — (0, =) be a continuous random variable with cdf F(x)
(0<F(x) <1 for x=0), then for a > 1, X has cdf (4) if and only if

— -B — -B

E{ - log<l/}}%)(())()> < t} = (oc—il) {1 +al- 10g<1/})%t()t)> }, fort >0 (25)
Proof. If pdf of X is (5), then
_ 8 : _ 5

AG(X) B 1 AG(x)

E{ - log (TG(X)) X < t} = (F(t)) [ l— log (1—/T_(x)> f(x)dx
Clog( 180 T ap e
— (F@) [ -1 g(l-/l (x))] ﬁ@(x)gl—AG(x)) o "
0 WGx) P 1G(x) ’
- log (A2 {1+ - oA )

Upon integration by parts and simplification, we obtain
E 1 AGX) <t ! 1+a

— 10 —_— = -—

g\ 16 (a-1)

Conversely, if (25) holds, then
t w6 \17 () wo \17
~log[ 2% - 14+al-1 2
[ [ o8 <1—)LG(x)> S () { e °g< 4@@)) } (26)
Y N EWE U

(a-1)
Differentiating (26) with respect to t, we obtain.
“D'G(x)(1-AG(¢)) -AG(t)

-B

ORI AG(1)
o) fO = a1+ el gl

[~ log(

After simplification and integration we arrive at

_ B @
F(t) = {1+ - log<li%t()t)> } ,t=0

Characterization of BIIIMO-G family through ratio of truncated moments
Here BIIIMO-G family is characterized using Theorem G (Glédnzel; 1987) on the basis
of a simple relationship between two truncated moments of X.

Proposition

Let X:Q — R be a continuous random variable.

o -B a+1
Let hy(x) = é {1 + |- log (ﬁ%ﬁl)) } , x€R

and

Page 13 of 21
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_ _p) @t
Z{H[_log(g%a;;))] }
ha(x) = G \1°
& {‘ 1°g(1—re<x>ﬂ

The random variable X has pdf (5) if and only if that the function p(x) (defined in

,xX€R

_ WG
theorem G) has the form p(x) = [- IOg(1-/T@(x))] , xeR.
Proof. For random variable X with pdf (5),
—= -B
ox) = |- log [ AGW)
(1= F(3))E(n (X)X 25) = |- 1 g(l_wa
and
N G F -
(1-F)E(n(0)[X23) = [- log(AZL0] e
Yai B
FRE] = o) = (- log( AL e,
and
_ B AG(x) P
P& = a6t iaew) R

The differential equation

foy o DWW 2t
p(x)h2(x)-h1(x)  G(x)(1-AG(t))

has solution

AG(x)
In [— log (1—)L—G(x)>

Therefore, in the light of theorem G, X has pdf (5).

2B
, x€R.

s(x)

Corollary

Let X: Q) — R be a continuous random variable and let.

J— -B a+1
21+~ log( %"))ﬂ )
hy(x) = = _(x ,x€R. The pdf of X is (5) if and only if there exist
G(x) B Y

2
al- log(——=
[ g(ulG(x))]

functions

p(x) and h1(x) defined in Theorem G, satisfying the differential equation

B-1
{1 +

AG(x)
~log (1-1@(@)

- log( Aﬂx)

p (%)  aPgx)
1-1G(x)

p®)ha(x)-hi(x)  G(x)(1-A1G(x))

_ﬁ}—u—l

(27)
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Remark
The solution of (27) is

_ -1
apg(x) AG(x)
I (%) = —= - lo —
(e || s ee) g(l—AG(x)) |
p = |- 1o8( ZZ5) | [ g |+
1+ |-log (1_%()) dx

where D is a constant.

Characterization of BIIIMO-G family via reverse Hazard rate function

Definition

Let X:Q — (0, «) be a continuous random variable with cdf F(x) and pdf fix).The re-
verse hazard function, rz, of a twice differentiable distribution function F, satisfies the

differential equation

L] =2 rela), 29

Proposition
Let X: Q) — (0, =) be continuous random variable. The pdf of X is (5) if and only if its
reverse hazard function, rr satisfies the first order differential equation

_ S \ 181
re(x) (1+ {_ log | AG1) } ﬁ)-”)g(x) - log 5% o)
' 1-1G() G(1-16()

AG(x) )} A1

Proof If
X has pdf (5), then (29) holds. Now if (29) holds, then

_ 8 _ g1
d AG(x) _,d g(x) AG(x)
e [’F(’“) (H{_log 1-1G(x) } )} =P g {G(x)(l—xc;(x)) _l°g<1-XG(x)> }
or
O W <0 N PR W R " -
T Ewaaew) | B\1aGw) 8\ 106w A

which is the reverse hazard function of the BIIIMO-G Family.

Maximum likelihood estimation

In this section, parameter estimates are derived using maximum likelihood
method. The log-likelihood function for the vector of parameters @ = (a, 5,1, ¢)
of BIIIMO-G family is
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¢(®) = InL(®)

n

nln(a)+n In(B) + Z Ing(x;; t//)—Z InG(x;; y)-

TC(x 1)) y n|(-lo M -
_ | D n(1-4G (i ) (ﬁ+1); : [ lg(l—ﬁ(mﬂ/ﬁ)]

o[ ACEEY) ”
S\ 173G v)

In order to compute the estimates of the parameters a, 8, A, ¥, the following

((x+l)i In¢ 1+

i=1

nonlinear equations must be solved simultaneously:

y o -8
ﬁz(@):g—z In{ 1+ —log(%)] =0, (31)

i=1

— _ _ 8 -1
) _n 3 ol AG(xi59) - ol AG(x;59) B AG(x;5 )
7@ =3 ;1 { 10g<—1_E(Xi;w)>}+(a+l);1 [ 1°g<1—A\G(xi;w)>}{{ log(l_E(xi;W)ﬂ +1} ,
_ (32)
g (% w)+§”:g(xz,w)_ ~ g (xi;y)
“gliy) S Gy S [1-AG(x;y)]
. _ AG(xi5y) -
ie(q)) T g (xl_llf)[ log;;ﬁ(x w))] »
A 5 (Gl )16 (iy) =0
_ B-1
. _ BY o (x: 0) - log (AG0)
—(a+1)8 1+ log< Aﬂ"l’v‘/’) )] g(x,,z//)[ log (5351 w))]
pat 1-1G (% y) (G(x,, ¥)-1G (x; .//))
(33)

where g (x;; y) = £ ¢(xi; y).

Simulation studies

In this Section, we perform the simulation study to see the performance of MLE’s of
BIIMO-L distribution. The random number generation is obtained with inverse of its
cdf. The MLEs, say (&, B, Ai, b;) for i =1,2,...,N, have been obtained by CG routine in R
programme.

The simulation study is based on graphical results. We generate N = 1000 samples of
sizes n = 20,30,...,1000 from BIIIMOL distribution and get true values of a =1.5, 5=
2.55, 1 =0.095 and b =5 for this simulation study. We also calculate the mean, standard
deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and MSE are
calculated by (for h=a, 5, A, b)

Bias, = %ZN: ) (izi—h)
and

MSE), — %Zi (12,»—h)2.

The results are given by Fig. 5. Figure 5 reveals that the empirical means tend to the
true parameter values and that the sds, biases and MSEs decrease when the sample size

Page 16 of 21
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increases as expected. These results are in agreement with first-order asymptotic
theory.

Applications

The BIIMO-W and BIIMO-L distributions are compared with sub- and competing
models. Different goodness fit measures such Cramer-von Mises (W*), Anderson Dar-
ling (A*), Kolmogorov- Smirnov statistics with p-values [K-S(p-values], Akaike informa-
tion criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian
information criterion (BIC), Hannan-Quinn information criterion (HQIC) and like-
lihood ratio statistics are computed for survival times of leukemia patients and bladder
cancer patients using R-Packages(AdequacyModel and zipfR). In first application, we
compare BIIIMO-W distribution with Weibull Marshall Olkin-Weibull (WMO-W),
odd Burr III Weibull (OBIII-W), Kumaraswamy Weibull (Kum.-W), beta Weibull
(Beta-W), generalized gamma Weibull, Weibull and Burr III (BIII) distributions. In
second application, we compare BIIIMO-Lindley (BIIIMO-L) distribution with odd
Burr III Lindley (OBIII-L), Mc-Donald- Lindley (Mc-L), Kumaraswamy Lindley
(Kum.-L), beta Lindley (Beta-L), Weibull power Lindley (W-PL), Kumaraswamy
power Lindley (Kum.- PL), Lindley and Burr III (BIII) distributions.

The better fit corresponds to smaller W*, A*, K-S, -2 E, AIC, CAIC, BIC and HQIC value.
The maximum likelihood estimates (MLEs) of unknown parameters and values of goodness
of fit measures are computed for BIIIMO-W, BIIIMO-L distributions and their sub-models
and competing models. The MLEs, their standard errors (in parentheses) and goodness-of-fit
statistics like W*, A* K-S (p-value) are given in Tables 4 and 5. Tables 6 and 7 displays
goodness-of-fit values.

Data set |
The survival times (days) of 40 patients suffering from leukemia (Abouammoh et
al. 1994) are: 115,181, 255, 418, 441, 461, 516, 739, 743,789,807, 865, 924, 983,
1024,1062, 1063,1165, 1191, 1222,1251,1277, 1290,1357,1369, 1408,1455, 1478,
1222,1549, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815,1852.

The BIIIMO-W distribution is best fitted than sub-models and competing models
because the values of all criteria are smaller for BIIMO-W distribution.

We can also perceive that the BIIIMO-W distribution is best fitted model than
other sub-models and competing models because BIIIMO-W distribution offers
the closer fit to empirical data (Fig. 6).

Data set Il

The survival times of 128 bladder cancer patients (Lee and Wang 2003) are 0.08,
2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,
14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,
7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69,
4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,
43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
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Fig. 5 Simulation results of the special BIIIMO-L distribution

18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,
3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93,
8.65, 12.63, 22.69

The BIIIMO-L distribution is best fitted than sub-models and competing
models because the values of all criteria are smaller for BIIIMO-L
distribution.

We can also perceive that the BIIIMO-L distribution is best fitted model than
other sub-models and competing models because BIIIMO-L distribution offers the
closer fit to empirical data (Fig. 7).

Table 4 MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics for data

set |
Model  a 8 A a b w A K-S (p-value)
BIIMO-W  0.0778 61.6872 15.3084 - 0.1597 0.0223 0.1689 0.0657
(0.0535) (50.1271) (8.1416) (0.0214) (0.9952)
WMO-W - 14827 19.8894 0.0100 08196 0.1010 0.6747 0.0917
(0.8886) (50.0788) (0.0090) (0.0880) (0.8897)
OBIII-W 83649 03518 - 0.0071 0.9864 02146 13316 0.1349
(1.9540) (0.2383) (0.0027) (0.1077) (0.4609)
Kum-W 53277 1.0881 - 0.0071 0.8185 04722 27197 08567
(1.4325) (0.6411) (0.0028) (0.0713) (< 2.2e-16)
Beta-W 686.6493 1175352 - 11.0073 0.0705 04182 24380 0.1769
(275.8812) (76.0463) (15.0129) (0.0154) (0.1637)
GG-W 20.12230 0.9595 - 24800 03978 03531 20916 0.1749
(2.7548) (0.2615) (0.1540) (0.1058) (0.1729)
Weibull - - - 0.0743 1.9547 04920 238243 0.5085
(0.3914) (10.3026) (2.069e-09)
Bl - - - 1000.0297 1.0548 0.6829 3.8003 0.3005

(545.5985) (0.0879) (0.001459)
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Table 5 MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics for data set |l

*

*

Model a B A a b c W A K-S (p-value)
BIIMO- 05122 1.8631 0.5600 - 0.1530 - 0.0168 0.1031 0.0307
L (0.2016) (0.5179) (0.6845) (0.1159) (0.9997)
OBIlI-L  0.7847 0.9553 - - 0.1723 - 0.1903 1.1378 0.0934
(0.2147) (0.1586) (0.0330) (0.2145)
Mc-L 1.2106 0.2846 - - 04949 0.7145 0.1444 0.8629 0.0884
(0.7307) (0.0286) (0.0028) (0.5179) (0.2704)
Kum.-L 09611 0.2825 - - 05015 - 0.1344 0.8039 0.0898
(0.1671) (0.0276) (0.0028) (0.2529)
Beta-L  0.9248 02813 - - 0.4949 - 0.1399 0836 0.0894
(0.1301) (0.0283) (0.0037) (0.2576)
W-PL  0.0215 13.54214 - 0.0466 1.1848 - 0.1482 0.8851 0.0735
(0.0285) (12.6100) (0.0402) (0.0901) (0.4932)
Kum-  3.1406 14481 - 0.5045 0.8239 - 0.0389 0.2541 0.043
PL (29576) (3.0649) (0.3671) (0.3653) (0.9719)
Lindley - - - - 0.1960 - 0.1717 1.0257 0.1164
(0.0123) (0.06235)
Blll 4.2070 1.0333 - - - - 03856 24543 0.1017
(0.4054) (0.0604) (0.1413)
Table 6 Goodness-of-fit statistics for data set |
Model ) ’2\ AlC CAIC BIC HQIC
BIIMO-W 598.7174 606.7174 607.8603 6134729 609.16
WMO-W 606.9106 6149106 616.0534 621.6661 617.3531
OBIII-W 614.6548 622.6549 623.7977 6294104 625.0974
Kum.-W 622.6082 630.6082 631.7511 637.3637 633.0508
Beta-W 627.9062 635.9063 637.0491 6426618 638.3489
GG-W 6234344 6314344 632.5772 638.1899 633.8769
Weibull 785.6506 789.6507 789.975 793.0284 790.872
Bl 652.7072 656.7072 657.0316 660.085 657.9285
Table 7 Goodness-of-fit statistics for data set I
Model 5 ,P? AIC CAIC BIC HQIC
BIIMO-L 409.7209 8274419 827.7671 838.85 832.0771
OBIII-L 416.2479 838.4958 838.6893 847.0519 8419722
Kum.-L 414.0998 834.1995 834.3931 842.7556 8376759
Mc-L 4140916 836.1833 836.5085 847.5914 840.8184
Beta-L 414.1904 834.3807 834.5743 8429368 837.8571
WPL 414.9072 837.8144 838.1397 849.2226 8424496
Kum.-PL 4104152 828.8304 829.1556 840.2386 8334656
Lindley 419.5299 841.0598 841.0916 8439118 842.2186
Bl 426.6864 857.3729 8574689 863.0769 859.6905
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Fig. 6 Fitted pdf, cdf, survival and pp. plots of the BIIIMO-W distribution for survival times data
.

Concluding remarks

We have developed the BIIIMO-G family via the T-X family technique. We have
studied properties such as sub-models; descriptive measures based on the quan-
tiles, moments, inequality measures, stress-strength reliability and multicompo-
nent stress-strength reliability model. The BIIIMO-G family is characterized via
different techniques. The MLEs for the BIIIMO-G family have been computed. A
simulation studies is performed to illustrate the performance of the maximum
likelihood estimates (MLEs). Applications of the BIIIMO-G model to real data
sets (survival times of leukemia patients and bladder cancer patients data) are
presented to show the significance and flexibility of the BIIIMO-G family. Good-
ness of fit shows that the BIIIMO-G family is a better fit. We have demonstrated
that the BIIIMO-G family is empirically better for lifetime applications.

Abbreviations

A" Anderson-Darling; AIC: Akaike information criterion; Beta- L: Beta Lindley; Beta-W: Beta Weibull; BIC: Bayesian
information criterion; BIll: Burr Ill; BIIMO-G: Burr Ill Marshall Olkin-G; BIIIMO-L: Burr Il Marshall Olkin-Lindley; BIIMO-

W: Burr Il Marshall Olkin-Weibull; CAIC: Consistent Akaike Information Criterion; cdf: Cumulative distribution function;
GG-W: Generalized gamma Weibull; GIW-MO: Generalized inverse Weibull-Marshall Olkin; HQIC: Hannan-Quinn
information criterion; hrf: Hazard rate function; i.i.d: Independent and identically distributed; KS: Kolmogorov-Smirnov;
Kum.-L: Kumaraswamy Lindley; Kum.-PL: Kumaraswamy power Lindley; Kum.-W: Kumaraswamy Weibull; Mc-L: Mc-
Donald- Lindley; MLEs: Maximum likelihood estimators; MO-G: Marshall and Olkin; MSE: Mean square error; OBIIl-L: Odd
Burr Il Lindley; OBIII-W: Odd Burr Il Weibull; pdf: Probability density function; pp: Probability-Probability; rv: Random
variable; sd: Standard deviations; W': Cramer-von Mises; WMO-W: Weibull Marshall Olkin-Weibull; W-PL: Weibull power
Lindley

' 1 ' Ol

Fig. 7 Fitted pdf, cdf, survival and pp. plots of the BIIMO-Lindley distribution for survival times data
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