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Abstract

We introduce a new distribution with support on (0,1) called unifed. It can be used as
the response distribution for a GLM and it is suitable for data aggregation. We make a
comparison to the beta regression. A link to an R package for working with the unifed is
provided.
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Introduction
We introduce the unifed distribution. It is a continuous distribution with support on the
interval (0,1). It can be characterized as the only exponential dispersion family containing
the uniform distribution. This makes it suitable to be used as the response variable of a
Generalized Linear Model (GLM).
An R (see (R Core Team 2017) and (Quijano Xacur 2019b)) package has been developed

to work with this distribution. It is called unifed and contains functions for the density,
distribution, quantiles and random generator. It also contains a family that can be used
within the glm function of R. Additionally, the package provides Stan (Stan Development
Team 2018) code for performing Bayesian analysis with the unifed including a function
for fitting Bayesian unifed GLMs. Information about the package and how to install it can
be found at https://gitlab.com/oquijano/unifed.
This is not the only model for performing regression on the unit interval. The beta

regression (see (Ferrari and Cribari-Neto 2004)) has existed for a while and it provides
more flexible shapes than the unifed GLM. One appealing property of the unifed GLM is
that it is suitable for data reduction while the beta regression is not. This is discussed in
“On the difficulties of data aggregation for the beta regression” section.
This paper is divided into 4 sections. In “Exponential dispersion families and GLMs”

section we review the definition and properties of exponential dispersion fami-
lies and GLMs. “The unifed distribution” section defines the unifed distribution. In
“An illustrative example” section we illustrate an application to an auto insurance claims
example. “Comparison between the unifed GLM and the beta regression” section reviews
the beta regression and underlines it’s differences with the unifed GLM.

Exponential dispersion families and GLMs
A reproductive Exponential Dispersion Family (EDF) is a set of distributions whose
densities are given by
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f (y|θ ,φ) = a(y,φ) exp
(
1
φ

{
yθ − κ(θ)

})
, θ ∈ �,φ ∈ �. (1)

θ and � are called the canonical parameter and canonical space, respectively and φ is
known as the dispersion parameter. For θ ∈ int (�) (here int stands for interior),

E[Y ]= κ̇(θ) and V[Y ]= φκ̈(θ), (2)

where κ̇ = κ ′ and κ̈ = κ̇ ′. (Eq. 2) allows to relate the mean and the variance and the mean
of any EDF. This motivates the following definitions (see (Jørgensen 1997) or (Jørgensen
1992)).
Definition 0.1. Given an exponential dispersion family, the mean domain of the family is
defined as

� = {μ = κ̇(θ) : θ ∈ int (�)} .
Definition 0.2. The variance function of an EDF is defined as V : � →[ 0,∞) with

V(μ) = (κ̇ ◦ κ̇−1)(μ).

Note that V[Y ]= φV(μ). The support of the members of an EDF depend only on φ

(and not on θ ). For a given family, let Cφ be the convex support of any member of the
family with dispersion parameter φ. We define the convex support of the family as

C� =
⋃
φ∈�

Cφ .

Definition 0.3. The unit deviance function of an exponential dispersion family is defined
as d : C� × � →[ 0,∞) with

d (y,μ) = 2
[
sup
θ∈�

{θy − κ(θ)} − yκ̇−1(μ) + κ
(
κ̇−1(μ)

)]
. (3)

The unit deviance function allows to re-parametrize (Eq. 1) as

f (y|μ,φ) = c(y,φ) exp
(

− 1
2φ

d(y,μ)

)
. (4)

This is known as the mean–value parametrization. When the canonical space � is open,
the EDF is said to be regular. In this case C� = � and (Eq. 3) is equivalent to

d (y,μ) = 2
[
y{κ̇−1(y) − κ̇−1(μ)} − κ

(
κ̇−1(y)

) + κ
(
κ̇−1(μ)

)]
. (5)

Weights and data aggregation

In many applications it is useful to include a known positive weight to each observation.
When this is done, the dispersion parameter is divided by the weight w, and (Eq. 1) and
(Eq. 4) become respectively

f (y|θ ,φ) = a(y,φ/w) exp
(
w
φ

{
yθ − κ(θ)

})
, and

f (y|μ,φ) = c(y,φ/w) exp
(

− w
2φ

d(y,μ)

)
. (6)

There is a useful property of reproductive exponential dispersion families that allows
for data aggregation. Jørgensen’s notation (from (Jørgensen 1997)) is very convenient to
express this property: given a fixed exponential family, if Y has mean μ and density given
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by (Eq. 6), we say that it is ED(μ,φ/w) distributed. The property is then as follows: if
Y1,Y2, · · · ,Yn are independent, and Yi ∼ ED(μ,φ/wi), then

Ȳ = w1Y1 + · · · + wnYn
w+

∼ ED(μ,φ/w+), w+ =
n∑

i=1
wi. (7)

GLMs

In a GLM the response variable is assumed to follow an EDF with density

f (y|θ ,φ) = a(y,φ) exp
(
w
φ

{yθ − κ(θ)}
)
. (8)

Note that φ in (Eq. 1) corresponds to φ/w in (Eq. 8) which implies that the mean and
variance can be expressed as μ = κ ′(θ) and σ 2 = φκ ′′(θ)/w, respectively. Here w ≥ 0 is
known as the weight. In applications w is usually known and φ needs to be estimated. It is
further assumed that there is a vector of explanatory variables, also known as covariates,
x = (x1 · · · xp)T , a vector of coefficients B = (B0 B1 · · ·Bp)T and a function g known as
the link function such that

g(μ) = B0 + x1B1 + · · · + xpBp. (9)

It is useful for further developments to express the canonical parameter θ in terms of the
coefficients. Since μ = κ ′(θ) ≡ κ̇(θ) then:

(g ◦ κ̇)(θ) = B0 + x1B1 + · · · + xpBp

θ = (g ◦ κ̇)−1(B0 + x1B1 + · · · + xpBp). (10)

The population can be divided into different classes according to the values of the
explanatory variables. Thus, given a sample, we can group together all the observations
that share the same values of the explanatory variables and aggregate them using (Eq. 7).
It is important to mention that with this grouping there is no loss of information for esti-
mating themean since Ȳ is a sufficient statistic for θ (but not for φ, thus some information
is lost for the estimation of φ). In this sense we say that GLMs are suitable for data aggre-
gation. At the end of “An illustrative example” section we illustrate this property with real
data for a unifed GLM.
Possibly after aggregating, let m be the number of classes and θ ∈ �m, where �m ={

θ = (θ1 · · · θm)T : θ1, . . . , θm ∈ �
}
is the set of all possible values of the vector θ . The

density of the sample can be expressed as

f (y|θ ,φ) = A(y,φ) exp
(
yTWθ − 1TWκ(θ)

φ

)
, y ∈ R

m, (11)

where κ(θ) = (
κ(θ1) · · · κ(θm)

)T ,W = diag(w1, · · · ,wm), with wi being the sum of all the
weights in the i-th class, 1 = (1 · · · 1)T and A(y,φ) = ∏m

i=1
(
a(yi, wi

φ
)
)
.

It is useful to reparameterize (Eq. 11) in terms of the mean vector μ instead of θ . Using
the mean value parametrization (this is (Eq. 4) but substituting φ for φ/w), (Eq. 11) can
be reparameterized as

f (y|μ,φ) = C(y,φ) exp
(

− 1
2φ

D(y,μ)

)
, (12)

where C(y,φ) = ∏m
i=1 c(yi,

φ
wi

), and D : �m × �m →[ 0,∞) with
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D(y,μ) =
m∑
i=1

wid(yi,μi), (13)

�m = {
(μ1 · · ·μm)T : μ1, . . . ,μm ∈ �

}
. D is called the deviance of the model. Note that

finding the maximum likelihood estimator of B is equivalent to finding what value of B
minimizes the deviance. For further details about the use and properties of the deviance
see (Jørgensen 1992).

The unifed distribution
The unifed family is the Exponential Dispersion Family (EDF) generated by the uniform
distribution (see Chapters 2 and 3 of (Jørgensen 1997) to see how an EDF can be generated
from a moment generating function). We created the R package unifed (see (Quijano
Xacur 2019b)) that includes functions to work with the unifed. In this section we make
references to some functions in the package and we use this font format for those
references.
To express the density of the unifed distribution we need the density of the sum

of n independent uniform(0, 1) random variables. This corresponds to the Irwin-Hall
distribution (see (Johnson et al. 1995)) and its density function is

h(y; n) = 1
(n − 1)!


y�∑
k=0

(−1)k
(
n
k

)
(y − k)n−1, y ∈[ 0, n] , n ∈ N. (14)

The canonical and index spaces of the unifed family are � = R and � = {
1, 12 ,

1
3 ,

1
4 . . .

}
,

and the cumulant generator is

κ(θ) =
{
log

(
eθ−1

θ

)
if θ �= 0

0 if θ = 0
. (15)

The density of a unifed distribution with canonical parameter θ and dispersion param-
eter φ is

f (x; θ ,φ) = h(x/φ, 1/φ)

φ
exp

(
xθ − κ(θ)

φ

)
, (16)

where h and κ are as in (Eq. 14) and (Eq. 15), respectively and x ∈[ 0, 1] , θ ∈ R,φ ∈{
1, 12 ,

1
3 , . . .

}
. We denote the unifed distribution with canonical parameter θ and disper-

sion parameter φ with unifed(θ ,φ).
The unifed package does not contain an implementation of (Eq. 16). This is because we

did not find a numerically stable way to compute h. To show this, the package includes
the function dirwin.hall that computes h. Table 1 shows the results we get by calling
this function with n set to 50 and varying the values of y. The changes of sign indicate that
a float overflow is happening.

Table 1 Float overflow of the Irwin-Hall implementation

Code Result

dirwin.hall(35,50) 0.0674864

dirwin.hall(36,50) -13.12745

dirwin.hall(37,50) 45.44388

dirwin.hall(38,50) -37.44488
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The package calls unifed distribution the one-parameter special case of (Eq. 16) where
φ = 1, which we denote with unifed(θ). This simplifies the density to

f (x; θ) =
{

θ
eθ−1e

xθ if θ �= 0
1 if θ = 0

for x ∈ (0, 1). (17)

The functions dunifed, punifed, qunifed and runifed, give the density, distribu-
tion, quantile and simulation functions, respectively of this simplified version. The mean
and variance of each element of the family are given by

E[X] = κ̇(θ) =
{

(θ−1)eθ+1
θ(eθ−1) if θ �= 0

1
2 if θ = 0

, (18)

V[X] = κ̇(θ) =
{ (

e2θ−(θ+2)eθ+1
θ2(eθ−1)2

)
if θ �= 0

1
12 if θ = 0

, (19)

where κ̇ and κ̇ are the first and second derivative of κ , respectively. We have not
been able to find an analytical expression for the inverse function κ̇−1. Thus, it has
not been possible either to find analytical expressions for the variance function and
unit deviance of the unifed. Nevertheless, the unifed package contains the function
unifed.kappa.prime.inverse that uses the Newthon Raphsonmethod to implement
the inverse of κ̇ . This allows us to get a numerical solution for the variance function by
using the relationV(μ) = κ̈(κ̇−1(μ)). This is implemented in the function unifed.varf.
Similarly, since the unifed is a regular EDF (see Chapter 2 of (Jørgensen 1997)), we can

compute the unit deviance by using the relation

d(y,μ) = 2
[
y{κ̇−1(y) − κ̇−1(μ)} − κ(κ̇−1(y)) + κ(κ̇−1(μ))

]
. (20)

The function unifed.unit.deviance computes the unit deviance using (Eq. 20). As
mentioned in “Exponential dispersion families and GLMs” section, the unit deviance can
be used to reparametrize the distribution in terms of it’s mean and dispersion param-
eter. We denote with unifed∗(μ,φ) the unifed distribution with mean μ and dispersion
parameter φ and when φ = 1, we write simply unifed∗(μ).
Figure 1 shows plots of the unifed distribution for different values of its mean. We can

see that except for μ = 0.5, it is always monotone. For μ < 0.5 it is strictly decreasing
and the mode is at zero. For μ > 0.5 it is strictly increasing and the mode is at one. The R
code used for producing this plot can be found in (Quijano Xacur 2018).

Maximum likelihood estimation

Suppose you have an independent and identically distributed sample X1, . . . ,Xn com-
ing from a unifed(θ) distribution and you want to compute the maximum likelihood
estimator (mle) θ̂ of θ . The derivative of the log-likelihood function is given by

	′(θ |X1, . . . ,Xn) = n
(1 − θ)eθ − 1

θ(eθ − 1)
+

n∑
i=1

Xi

= −nκ̇(θ) +
n∑

i=1
Xi.
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Fig. 1 Density of the unifed for different values of its mean μ

Making the expression above equal to zero and solving for θ , the mle for θ is given by

θ̂ = κ̇−1 (
X̄

)
, (21)

where X̄ = ∑n
i=1 Xi/n. The function unifed.mle in the unifed R package computes the

mle using (Eq. 21). It is possible to use the unifed distribution as the response distribution
of a GLM. In this case, φ must be fixed to one and the weight of each class is the number
of observations in the class. The mle B̂ of the regression coefficients can be found using
iterative weighted least squares. In Section 2.5 of (McCullagh and J.A. 1989), they show
that this method works for any response distribution whose density can be expressed as
(Eq. 8). Thus, the method also works for the unifed. The unifed R package (Quijano Xacur
2019b) provides the function unifed that returns a family object than can be used inside
the glm function.

An illustrative example
In this section we apply a unifed GLM to a publicly available dataset. The data appears
in (de Jong and Heller 2008). It is based on 67,856 one–year auto insurance policies from
2004 or 2005. The dataset can be downloaded from the companion site of the book (see
(de Jong and Heller 2008)). Table 2 shows the description of the variables as provided at
the website.
We are interested in modeling the exposure; which is the proportion of time of the year

in which the insurance policy is in-force for a given client. We use gender, agecat, area
and veh_age as the explanatory variables.
The R code used to obtain the results that follow can be found in (Quijano Xacur 2019a).
The data was aggregated using (Eq. 7) and a unifed GLM was fit to it. Table 3 (exported

from R using the package xtable (Dahl et al. 2018)) shows the summary provided by the
glm function of R.We see that all the variables included have at least one significant class.
A χ2 test for goodness of fit is commonly used for GLMs. The null hypothesis is that

the data is distributed according to the fitted GLM. Assuming the null hypothesis for
this example implies that the residual deviance reported at the bottom of Table 3 fol-
lows a χ2 distribution with 273 degrees of freedom. The p-value for this example is
P(χ2

273 ≥ 297.86) = 0.14. Now, the detail with this test is that the χ2 distribution for the
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Table 2 Vehicle insurance variables

Variable name Description

veh_value vehicle value, in $10,000s

exposure 0-1

clm occurrence of claim (0 = no, 1 = yes)

numclaims number of claims

claimcst0 claim amount (0 if no claim)

veh_body vehicle body, coded as

BUS

CONVT = convertible

COUPE

HBACK = hatchback

HDTOP = hardtop

MCARA = motorized caravan

MIBUS = minibus

PANVN = panel van

RDSTR = roadster

SEDAN

STNWG = station wagon

TRUCK

UTE - utility

veh_age age of vehicle: 1 (youngest), 2, 3, 4

gender gender of driver: M, F

area driver’s area of residence: A, B, C, D, E, F

agecat driver’s age category: 1 (youngest), 2, 3, 4, 5, 6

Table 3 Summary of Unifed GLM

Estimate Std. Error z value Pr(> ‖z|)
(Intercept) -0.3319 0.0197 -16.84 0.0000 ***

genderM 0.0288 0.0090 3.20 0.0014 **

agecat2 0.0011 0.0184 0.06 0.9518

agecat3 0.0530 0.0178 2.97 0.0029 **

agecat4 0.0583 0.0178 3.28 0.0010 **

agecat5 0.1042 0.0189 5.51 0.0000 ***

agecat6 0.0692 0.0210 3.30 0.0010 ***

areaB 0.0239 0.0135 1.77 0.0761 .

areaC 0.0014 0.0121 0.11 0.9086

areaD 0.0053 0.0157 0.34 0.7337

areaE 0.0120 0.0175 0.68 0.4948

areaF 0.0879 0.0214 4.10 0.0000 ***

veh_age2 0.1708 0.0138 12.40 0.0000 ***

veh_age3 0.1613 0.0133 12.16 0.0000 ***

veh_age4 0.1549 0.0134 11.53 0.0000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for unifed family taken to be 1)

Null deviance: 585.47 on 287 degrees of freedom

Residual deviance: 297.86 on 273 degrees of freedom
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residual deviance is asymptotic on the smallest weight of all classes going to infinity (see
(Jørgensen 1992, Section 3.6)). The smallest observed weight here is 4 and it corresponds
to the class with gender=F, agecat=6, area=F and veh_age=1. Therefore the χ2 test
for this example is not reliable.
Figure 2 shows the deviance residuals of this model. It suggests a good fit since they do

not show any apparent pattern.

Verifying data aggregation:

We now fit the same model as in the previous section but without aggregating the data.
Table 4 shows the summary of the model from R. The code used to generate this table can
be found in (Quijano Xacur 2019a).
By comparing Tables 3 and 4 one can see that the estimated coefficients are the same in

both cases. Thus, even though the deviance of both models differ, they give the same mle
for the coefficients. This shows what we mean with data aggregation.

Comparison between the unifed GLM and the beta regression
The beta regression (Ferrari and Cribari-Neto 2004) is a versatile model for applications
with a response variable on the unit interval. Moreover, the well documented R package
betareg (Cribari-Neto and Zeileis 2010) makes it a practical tool in many applications.

The beta regression

The density of the beta distribution contains a large variety of shapes. In (Ferrari and
Cribari-Neto 2004) the beta density is reparameterized as

f (y) = �(φ)

�(μφ)�((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1, (22)

with 0 < μ < 1 and φ > 0, and the distribution is denoted by B(μ,φ). Under this
parametrization, if Y ∼ B(μ,φ), the mean and variance are

Fig. 2 Residuals of Unifed Regression
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Table 4 Summary of Unifed GLM without Data Aggregation

Estimate Std. Error z value Pr(> ‖z|)
(Intercept) -0.3319 0.0197 -16.84 0.0000 ***

genderM 0.0288 0.0090 3.20 0.0014 **

agecat2 0.0011 0.0184 0.06 0.9518

agecat3 0.0530 0.0178 2.97 0.0029 **

agecat4 0.0583 0.0178 3.28 0.0010 **

agecat5 0.1042 0.0189 5.51 0.0000 ***

agecat6 0.0692 0.0210 3.30 0.0010 ***

areaB 0.0239 0.0135 1.77 0.0761 .

areaC 0.0014 0.0121 0.11 0.9086

areaD 0.0053 0.0157 0.34 0.7337

areaE 0.0120 0.0175 0.68 0.4948

areaF 0.0879 0.0214 4.10 0.0000 ***

veh_age2 0.1708 0.0138 12.40 0.0000 ***

veh_age3 0.1613 0.0133 12.16 0.0000 ***

veh_age4 0.1549 0.0134 11.53 0.0000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for unifed family taken to be 1)

Null deviance: 113445 on 67855 degrees of freedom

Residual deviance: 113158 on 67841 degrees of freedom

E[Y ]= μ and V[Y ]= μ(1 − μ)

1 + φ
. (23)

Here φ is called the precision parameter of the distribution. In the beta regression
model it is assumed that the response variable is a vector Y = (Y1, . . . ,Ym), in which
Yi ∼ B(μi,φ) for i = 1, . . . ,m. The Y ′

i s are assumed independent to each other. The
explanatory variables are incorporated to the model through the relation

g(μi) = xiTB,

where B is a vector of parameters and xi is a vector of regressors. g : (0, 1) → R is
invertible and is called the link function.
Then (Simas et al. 2010) generalized this model to allow the precision parameter to vary

among classes in a similar way to the double generalized linear models (see (Smyth and
Verbyla 1999)). More specifically, in this case the response vector Y = (Y1, . . . ,Ym) is
such that Yi ∼ B(μi,φi), independently and

g1(μi) = xiTB,
g2(φi) = ziTγ ,

where B and γ are regression coefficients.
These regression models offer great flexibility when the response variable lies in the

interval (0, 1), and both are implemented in the R package betareg ((R Core Team 2017),
(Cribari-Neto and Zeileis 2010)).
The beta distribution is not an EDF and therefore the beta regression is not a GLM.

Nevertheless the parametrization chosen by the authors of the model along with (Eq. 23)
give it a similar look and feel.
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On the difficulties of data aggregation for the beta regression

Data aggregation gives a practical advantage when working with large datasets. For GLMs
this is straightforward due to two properties of Ȳ in (Eq. 7):

• Ȳ is a sufficient statistic for μ

• The distribution of Ȳ belongs to the same family as the Yi’s in (Eq. 7).

We do not know any statistic with these two properties for the beta distribution. For
instance, let Y1, . . . ,Yn be an i.i.d sample from a B(μ,φ) distribution. The joint likelihood
function of this sample is then

f (y) =
(

�(φ)

�(μφ)�((1 − μ)φ)

)n
( n∏
i=1

yi

)μφ−1 ( n∏
i=1

(1 − yi)
)(1−μ)φ−1

,

where y = (y1, . . . , yn). This density can be rearranged as follows

f (y) =
(

�(φ)

�(μφ)�((1 − μ)φ)

)n
[ n∏
i=1

(1 − yi)φ−1

yi

]( n∏
i=1

yi
1 − yi

)μφ

The factorization theorem (see (Hogg et al. 2019, Chapter 7)), implies that T =∏n
i=1

yi
1−yi is sufficient for μ. Now, the distribution of T, which is not beta, would be

needed to use T for data aggregation. In other words, a regression model whose response
distribution is a family that includes the distribution of T for every n would need to be
developed.

Differences between the unifed GLM and the beta regression

The unifed density does not have the variety of shapes that the beta density has. To see
this, compare the shapes shown in Figure 1 with the shapes for the beta distribution
shown in Figure 3 (Quijano Xacur 2019a). Thus, the beta regression is able to adapt to
more shapes than a unifed GLM and evenmore so if regressors are used for the dispersion
parameter.

Fig. 3 Beta Densities for Different Values of α andB
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In those cases where a beta regression and a unifed GLM give similar good fit, the
parsimony principle suggests to pick the unifed GLM, since it has one parameter less; the
dispersion parameter is known for the unifed GLM.
From a numerical point of view, the unifed GLM has the advantage that it is possible

to use (Eq. 7) for data reduction. This is a practical advantage when dealing with large
datasets specially if simulations of the response vector need to be performed.

Conclusion
This paper introduced a new distribution called unifed. It is the Exponential Dispersion
Family generated by the uniform distribution. It allows to fit a GLM for responses on the
unit interval (0,1). An R package for working with this distribution is provided.
We made a comparison to the beta regression, which is another regression model for

responses on the unit interval. It provides more flexible shapes and therefore it can give
better fit than a unifed GLM in many situations. In contrast, the unifed GLM is suitable
for data aggregation which is a practical advantage when working with large datasets.
An application using publicly available data was presented.

Abbreviations
EDF: Exponential dispersion family; GLM: Generalized linear model; mle: Maximum likelihood estimator
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