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Abstract
This paper introduces a new family of bivariate copulas constructed using a unit
Weibull distortion. Existing copulas play the role of the base or initial copulas that are
transformed or distorted into a new family of copulas with additional parameters,
allowing more flexibility and better fit to data. We present a general form for the new
bivariate copula function and its conditional and density distributions. The tail behaviors
are investigated and indicate the unit Weibull distortion may result in new copulas with
upper tail dependence when the base copula has no upper tail dependence. The
concordance ordering and Kendall’s tau are derived for the cases when the base
copulas are Archimedean, such as the Clayton and Frank copulas. The Loss-ALEA data
are analyzed to evaluate the performance of the proposed new families of copulas.

Keywords: Archimedean copula, Distortion function, Kendall’s tau, Weibull
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Introduction
Copulas serve numerous fields including insurance and finance. For example, (Frees and
Valdez 1998) demonstrated their usefulness and explored practical applications such as
estimation of joint life mortality and multi-decrement models. Nazemi and Elshorbagy
(2012) implemented copula modeling to study the interdependence among hydrological
data. The fitness of statistical models rests on its flexibility and more parameters may
better accommodate various features in data. Construction of new families of copulas
with better fitness has been of interest to researchers. In this paper, we provide a new
distortion mechanism of copula construction and start by setting forth fundamentals and
relevant literature below.
LetX and Y be continuous random variables with a joint distribution functionH(x, y) =

P(X ≤ x,Y ≤ y) and marginal cumulative distribution functions (cdf ) F(x) = P(X ≤ x)
and G(y) = P(Y ≤ y). Sklar (1959) showed that there exists a unique copula C such that
H(x, y) = C(F(x),G(y)) with joint probability density function (pdf), h(x, y), given by

h(x, y) = c (F(x),G(y)) f (x)g(y), (1)

where the copula pdf c(u, v) = ∂C(u, v)/∂u∂v, f (x) = dF(x)/dx = F ′(x), and g(y) =
dG(y)/dy = G′(y). Note the prime mark will be used to denote a derivative throughout
the paper.
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A bivariate copula can arise form a bivariate joint cdf. For example, the Gaussian cop-
ula is derived from the bivariate Gaussian distribution. Conversely, it can also be used to
generate new bivariate probability distributions via (1); see Nelsen (2006) for summaries
of methods of constructing copulas. Methods for constructing new bivariate joint dis-
tributions (Balakrishnan and Lai 2009) have also been adopted to create new copulas.
For example, the framework of the Sarmanov-Lee distribution (Lee 1996) was utilized
by Sharifonnasabi et al. (2018) and Cooray (2019) to construct new copulas. It is related
to the bivariate FGM distribution introduced by Morgenstern (1956), given by h(x, y) =
f (x)g(y)

{
1 + αh1(x)h2(y)

}
, x, y ∈ R, where h1 and h2 are two functions satisfying certain

conditions.
Distortion or transformation of existing copulas is another framework for forging new

families of copulas. Valdez and Xiao (2011)proposed three kinds of distortion approaches:
(1) distortion of the margins alone without altering the original copula structure; (2)
simultaneous distortion of the margins and the copula structure; and (3) synchronized
distortion of the copula and its margins. In this paper, we focus on the distortion of
the third kind that acts on the copula and induces the copula defined in (2). A function
T :[ 0, 1]→[ 0, 1] is said to be a distortion function if it is continuous and non-decreasing,
not necessarily convex or concave, with T(0) = 0 and T(1) = 1. It is said to be admissible
for a base or an initial copula C if the transformed copula CT (u, v) of the form

CT (u, v) = T
(
C

(
T−1(u),T−1(v)

))
, for u, v ∈ I, (2)

is also a copula. Note that, as in Valdez and Xiao (2011), T is assumed to be strictly
increasing such that T−1 exists and is continuous on [ 0, 1] .
If the initial copula is Archimedean with generator φ, then CT is Archimedean with

generator φ ◦ T−1; see Di Bernardino and Rulliere (2013) and the right composition rule
in Genest et al. (1998). A convex T is required for the admissibility; see Morillas (2005)
or Theorem 3.3.3 in Nelsen (2006). Durante et al. (2010) showed T is admissible if T ◦
exp : (−∞, 0) →[ 0, 1] is log-convex and suggested several distortion functions. The log-
convex condition will be used to obtain the admissible parameter space for the proposed
distortion. Samanthi and Sepanski (2019) constructed a new family of copulas via beta cdf
distortion. The mixture of Max-infinitely divisible approach for constructing BB1-BB7
copulas in Joe (2015) is also a distortion method. Xie et al. (2019) presented a family of
bivariate copulas by transforming an initial/base copula using two increasing functions.
For more references, see Xie et al. (2019).
In this paper, we inaugurate a distributional distortion derived by a transformation of a

Weibull random variable. This paper is organized as follows. In “Groundwork”, we first lay
some groundwork required for the derivation of properties of the new family of copulas.
“The proposed unit weibull distortion” stages the unit Weibull (UW) distortion func-
tion and the admissibility conditions on the parameters. In “Unit-Weibull distorted copu-
las”, the UW distorted copula distribution and its corresponding conditional and den-
sity distributions are formulated. Examples and possible limiting cases in parameters are
presented. “Properties” investigates properties such as the tail dependence coefficients,
tail orders, and concordance ordering. To assess its performance, the new UW-distorted
copula model is applied to the Loss-ALAE data set in “Application” sections, followed by
concluding remarks.
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Groundwork
In this section, we describe notation, definitions and some known results that would be
applied to distorted copulas; see Joe (2015) for more details.
From (1), a copula contains the dependence structure between two random variables

and links a bivariate distribution function to its univariate marginal cdf ’s. It has the fol-
lowing properties: i) C(u, 0) = C(0, v) = 0, (u, v) ∈ I2, where I =[ 0, 1]; ii) C(u, 1) = u
and C(1, v) = v, (u, v) ∈ I2; and iii) C (u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0,
for u1 ≤ u2, v1 ≤ v2, and (u1,u2), (v1, v2) ∈ I2. A copula C is Archimedean with strict
generator φ if it admits the representation of φ−1 (φ(u) + φ(v)), where φ : I →[ 0,∞] is
a continuous, strictly decreasing and convex function such that φ(1) = 0 and φ(0) = ∞.
Tail dependence coefficients are measures of extremal dependence that quantify the

dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate dis-
tribution. Let U and V be two unit uniform random variables with a joint copula cdf
C(u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ I. The lower tail dependence coefficient, λL, is defined
as the limit value of the conditional probability of U ≤ u given V ≤ u as u → 0+ and can
be calculated as lim

u→0+C(u,u)/u. The upper tail dependence coefficient, λU , is defined as

the limit value of the conditional probability of U > u given V > u as u → 1−. It can be
simplified as lim

u→1−C̄(u,u)/(1 − u), where C̄(u, v) = P(U > u,V > v).
Let T be an admissible distortion function, then the induced copula is of the form

displayed in (2). Since T is a distortion function and by L’Hopital’s rule, the lower tail
dependence coefficient for a T-distortion induced copula is given by

λT ,L = lim
u→0+

T
(
C

(
T−1(u),T−1(u)

))

u

= lim
u→0+

T (C(u,u))

T(u)
= lim

u→0+
t (C(u,u))

t(u)

dC(u,u)

du
, (3)

where t(u) = dT(u)/du, if the lower tail dependence coefficient λL of the initial copula C
and the limit of t (C(u,u))/t(u) at 0+ exist. Since limu→1− T(u) = 1, with the substitution
of v = T−1(u) and by L’Hopital’s rule, the upper tail dependence coefficient is given by

λT ,U = 2 − lim
u→1−

1 − T
(
C

(
T−1(u),T−1(u)

))

1 − u

= 2 − lim
v→1−

1 − T (C(v, v))
1 − T(v)

= 2 − lim
v→1−

t (C(v, v))
t(v)

dC(v, v)
dv

(4)

if the upper tail dependence coefficient λU of the initial copula C and the limit of
t (C(u,u))/t(u) at 1− exit.
Let f1 and f2 be two functions. If limu→u0 f1(u)/f2(u) = 1, we denote it by f1(u) ∼ f2(u)

as u → u0. A positive function f1 defined on (0,∞) is regularly varying at 0 with index γ ,
in which case we write f1 ∈ R(γ ), if for some real number γ it satisfies

lim
x→0

f1(sx)/f1(x) = sγ for all s > 0.

A function f1 is said to be slowly varying if γ = 0. Karamata’s Characterization Theorem
(Bingham et al. 1989) states that every regularly varying function f1 with index γ is of the
form f1(x) = xγ �(x), where � is a slowly varying function. Buldygin et al. (2006) derived
that if f1(x) is regularly varying at 0 (or ∞) with an order of γ ∈ R, then

lim
x→0+

log f1(x)
log x

= γ . (5)
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For a bivariate copula C, if C(u,u) ∼ uκL�(u) as u → 0+, where �(u) is slowly varying at
0+, then κL is referred to as the lower tail order of the copula C. Let Ĉ(u, v) = C̄(1−u, 1−
v) = u+v−1+C(1−u, 1−v) be the survival copula. The upper tail order is defined as κU
if Ĉ(u,u) ∼ uκU �∗(u) as u → 0+ for some slowly varying function �∗(u). When κL = 2
and �(u) → q as u → 0+, for some positive q, the variables are near independent in the
lower tail. If 1 < κL < 2, the variables are positively associated and have intermediate
tail dependence. The case κL = 1 corresponds to the usual tail dependence coefficient
λL ∈ (0, 1) with limu→0+ C(u,u)/u = limu→0+ �(u). Similar conclusions are made for the
upper tail and κU ; see Hua and Joe (2013) for more details.

The proposed unit weibull distortion
By the definition of a distortion function, a continuous cdf with domain I is a distortion
function. In this section, we define the unit Weibull cdf and examine its admissibility.
LetW be a non-negative continuous random variable with cdf G(.) and pdf g(·). Define

Z = exp(−W ). Then, the cdf of Z is given by

T(z) = P(Z ≤ z) = P(W ≥ − log z) = 1 − G(− log z) for z ∈ I, (6)

which is the survival function of W evaluated at − log z. It is related to the expres-
sion Ḡ(− log z), where Ḡ is a survival function, suggested by Durante et al. (2010). If
W is a Weibull random variable, we name Z as a unit Weibull (UW) random vari-
able with a support of the unit interval I. Let G be the Weibull cdf given by G(w) =
1 − exp (−bwa) , a, b > 0,w ≥ 0, then the cdf of Z is given by

T(z) = exp
(−b(− log z)a

)
. (7)

The UW quantile function and UW pdf are given by, respectively,

T−1(z) = exp
[

−
(

−1
b
log z

)1/a
]

, (8)

t(z) = ab
z

(− log z
)a−1 exp

(−b
(− log z

)a) . (9)

To find the admissibility of the distributional distortion function T, we employ the
following proposition shown in Durante et al. (2010).

Proposition 1 Let T be an increasing bijective distortion. If T ◦ exp : (−∞, 0]→[ 0, 1]
is log-convex, then the function CT in (2) is a copula.

The following corollary specifies constraints on the parameter values in the UW
distortion to ensure the admissibility.

Corollary 1 Let T(u) and T−1(u) for u ∈[ 0, 1] be the UW-distortion and quantile func-
tions in (7) and (8), respectively. Then, the function CT in (2) is a copula if 0 < a ≤ 1 and
b > 0.

Proof Note T ◦ exp is log-convex if log ◦T ◦ exp is convex. Define l(x) =
log (T[ exp(x)] ) = −b(−x)a, x ∈ (−∞, 0] . The first and second derivatives of l(·) are

l′(x) = ab(−x)a−1 and l
′′
(x) = ab(1 − a)(−x)a−2,
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respectively. Since the second derivative l′′ is non-negative if 0 < a ≤ 1 and b > 0, the
conclusion follows from Proposition 1.

Unit-Weibull distorted copulas
We below present the copula distribution, pdf, and conditional pdf, and derive limiting
cases for the proposed new family of UW distorted copulas.
Applying (7) and (8), the copula CT in (2) is of the following general form

CT (u, v) = exp
{
−b

[
− logC

(
e−(−b−1 logu)1/a , e−(−b−1 log v)1/a

)]a}
, (10)

where 0 < a ≤ 1 and b > 0. When a = 1 and b = 1, then T(u) = u, i.e., the initial copula
is not distorted. The initial copula is a member of the proposed family of copulas. When
a = 1, the UW distortion is the power distortion.
If the initial copula C is Archimedean with a strict generator function of φ, then CT is

Archimedean with generator given by

	(u) = φ
(
T−1(u)

) = φ

{

exp
[

−
(

− log u
b

)1/a
]}

, u ∈ I. (11)

Example 1 UW-Clayton copula. Consider the Clayton copula expressed as C(u, v; θ) =
(
u−θ + v−θ − 1

)−1/θ , θ > 0 with generator given by
(
t−θ − 1

)
/θ . The UW-Clayton

copula has the following expression

CT (u, v) = T
{[(

T−1(u)
)−θ + (

T−1(v)
)−θ − 1

]−1/θ
}

= exp
{

−b
[
1
θ
log

(

exp
[

θ

(
−1
b
log u

)1/a
]

+exp
[

θ

(
−1
b
log v

)1/a
]

− 1
)]a}

,

and its generator is given by 	(u) =
{
exp

[
θ

(−b−1 logu
)1/a] − 1

}
/θ . The bivariate BB3

copula derived by Joe (2015) is a special case when b = 1.

Example 2 UW-Gumbel copula. Consider the Gumbel copula expressed asC(u, v; θ) =
exp

{
−

[(− log u
)θ + (− log v

)θ
]1/θ}

, θ ≥ 1. It is Archimedean with generator

(− log t)θ . The UW-Gumbel copula has the following expression

CT (u, v) = exp
{
−

[(− log u
)θ/a + (− log v

)θ/a
]a/θ}

.

Note the parameters θ and a cannot be identified separately. Reparameterizing by setting
θ/a = δ, we see that the UW distortion of the Gumbel copula returns the Gumbel copula
and does not yield a new family of copulas.
This example prompts us to consider the UW distortion of extreme-value bivariate

copulas such that C
(
u1/m, v1/m

)m = C(u, v), for integersm ≥ 1, and are of the form

C(u, v) = exp
[
log(uv)A

(
log(v)
log(uv)

)]
, u, v ∈ (0, 1),

where A(·) is convex and satisfies certain constraints; see Gudendorf and Segers (2010).
In this case, since T−1(u) = exp

[
− (−b−1 logu

)1/a] ,

CT (u, v)=exp
[

−
{
−

[(− log u
)1/a+ (− log v

)1/a]A
(

(− log v)1/a

(− log u)1/a + (− log v)1/a

)}a]

.
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The parameter b originated from the UW distortion disappears.

Example 3 UW-independence copula. Consider the independence copula expressed as
C(u, v) = uv. The UW-independence copula has the following expression

CT (u, v) = exp
{

−b
[(

−1
b
log u

)1/a
+

(
−1
b
log v

)1/a
]a}

= exp
{
−

[(− log u
)1/a + (− log v

)1/a]a} .

Therefore distorting the independence copula results in the Gumbel copula. That is, the
proposed UW distortion gives another genesis of the Gumbel copula.

Example 4 UW-Frank copula. The Frank copula is defined as C(u, v; θ) =
−θ−1 log

{
1 + [(

e−θu − 1
) (
e−θv − 1

)]
/
(
e−θ − 1

)}
, θ �= 0, with generator function

− log
[(
e−θ t − 1

)
/
(
e−θ − 1

)]
. The UW-Frank copula has the following expression

CT (u, v) = exp
{
−b

[
− log

(
−1

θ
log

(
1 + [B(u) − 1] [B(v) − 1]

e−θ − 1

))]a}
,

where B(s) = exp
(
T−1(u)

) = exp
(
−θe−(−b−1 log s)1/a

)
. Its generator is defined as

	(u) = − log
{
[B(u) − 1] /

(
e−θ − 1

)}
.

Conditional distribution and copula density

The conditional density C(u|v) plays a key role in simulating bivariate data linked by a
copula C since the conditional distribution P(X ≤ x|Y = y) = ∂C (F(x),G(y)) /∂v and
C(u|v) = ∂C(u, v)/∂v. A general algorithm to generate draws from a bivariate copula C
using the conditional distribution approach (see Nelsen (2006)) is described as follows. (i)
Generate two independent uniform random values (u1, v) and (ii) solve C (u2|u1)− v = 0
for u2. The desired pair is (u1,u2) . We will also obtain the copula density function needed
for computing the maximum likelihood estimates of parameters.
Let x = exp

{
− [−b−1 logu

]1/a} and y = exp
{
− [−b−1 log v

]1/a} ; both are mono-
tonically increasing. The inverse transforms are u = exp

[−b
(− log x

)a] and v =
exp

[−b
(− log y

)a] . The copula CT in (10) can be rewritten as

H(x, y) = CT (u, v) = exp
{−b

[− logC(x, y)
]a} .

The conditional cdf and copula pdf can be respectively derived by

CT (v|u) = ∂H
∂x

∂x
∂u

and cT (u, v) = ∂2H
∂y∂x

∂x
∂u

∂y
∂v

. (12)

The derivatives of H with respect to x and x with respect to u are

∂H
∂x

= ab
C(x, y)

∂C(x, y)
∂x

H(x, y)
[− logC(x, y)

]a−1 ,

∂x
∂u

= x
abu

(
− log u

b

)1/a−1
.

The conditional cdf is therefore given by

CT (v|u) = xH(x, y)
b1/a−1C(x, y)

∂C(x, y)
∂x

(
(− log u)1/a

− logC(x, y)

)1−a 1
u
.
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If a = b = 1, then x = u, y = v and CT (v|u) = C(v|u) = ∂C(u, v)/∂u. The derivation of
the copula density cT (u, v) in (12) requires the calculation of ∂2H/∂y∂x, which is lengthy
and tedious therefore not presented here.
Next, we consider the case when the initial copula is Archimedean with generator φ. In

this case, let x = φ
[
T−1(u)

]
and y = φ

[
T−1(v)

]
. Note that x and y are decreasing and

map [ 0, 1] to [ 0,∞] such that φ(1) = 0 and φ(0) = ∞. Then,

CT (u, v) = e−b
[− logφ−1(φ(T−1(u))+φ(T−1(v)))

]a = e−b
[− logφ−1(x+y)

]a = H̄(x, y),

where H̄ is a bivariate survival function with univariate margins
exp

{−b
[− log

(
φ−1(x)

)]a}. Note that dT−1(u)/du = 1/t
(
T−1(u)

)
, where t(·) is defined

in (9). The conditional cdf and pdf of the UW distorted copula can be obtained from (12)
and the following:

CT (v|u) = ∂H̄
∂x

∂x
∂u

;
∂x
∂u

= ∂

∂u
[
φ

(
T−1(u)

)] = φ′ (T−1(u)
)

t
(
T−1(u)

) ;

∂H̄(x, y)
∂x

= abH̄(x, y)
φ−1(x + y)

[− log
(
φ−1(x + y)

)]a−1

φ′ (φ−1(x + y)
) = abH̄(x, y)da−1

1
d2

; (13)

∂2H̄(x, y)
∂x∂y

= abH̄(x, y)da−1
1

d2

{
abda−1

1
d2

− (a − 1)
d1d2

− 1
d2

− φ′′ (φ−1(x + y)
)

[
φ′ (φ−1(x + y)

)]2

}

;

(14)

where d1 = − log
(
φ−1(x + y)

)
and d2 = φ−1(x + y)φ′ (φ−1(x + y)

)
.

Example 5 UW-Clayton Copula. The Clayton copula, see Example 1, is Archimedean
with generator φ(u) = (

u−θ − 1
)
/θ and φ−1(u) = (1 + θu)−1/θ . Let x =

{
exp

[
θ(− log(u)/b)1/a

] − 1
}
/θ and y =

{
exp

[
θ

(− log(v)/b
)1/a] − 1

}
/θ . One can plug

in the following components into (13) and (14) to obtain the conditional distribution and
density of the UW-Clayton copula:

φ−1(x + y) =[ 1 + θ(x + y)]−1/θ ;

φ′ (φ−1(x + y)
) = −[ 1 + θ(x + y)]1+1/θ ;

φ′′ (φ−1(x + y)
) = (θ + 1)[ 1 + θ(x + y)]1+2/θ .

Example 6 UW-Frank Copula. The Frank copula is Archimedean with generator func-
tion φ(u) = − log

[(
e−θu − 1

)
/
(
e−θ − 1

)]
and φ−1(u) = −θ−1 log

(
1 + e−u (

e−θ − 1
))
;

see Example 4. In this case, x = − log
{[

exp
(
−θe−(− log(u)/b)1/a

)
− 1

]
/
(
e−θ − 1

)}
and

y = − log
{[

exp
(
−θe−(− log(v)/b)1/a

)
− 1

]
/
(
e−θ − 1

)}
. To use (13) and (14) to derive the

conditional distribution and density of the UW-Frank copula, the following expressions
will be required:

φ−1(x + y) = −θ−1 log
(
1 + e−(x+y) (

e−θ − 1
))

;

φ′ (φ−1(x + y)
) = θ

[
1 + ex+y (

e−θ − 1
)−1] ;

φ′′ (φ−1(x + y)
) = θ2ex+y (

e−θ − 1
)−1 [

1 + ex+y (
e−θ − 1

)−1] .
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Limiting cases

When a = 1, the UW distortion function becomes T(u) = ub, the power distortion,
and the UW distortion results in copulas of the form CT (u, v) = [

C
(
u1/b, v1/b

)]b . Propo-
sition 2 below is not applicable to the case when the initial copula is an extreme-value
copula, for the power distortion doesn’t produce a new family of copulas in this case; see
Example 2.

Proposition 2 Let CT be the unit-Weibull distorted copula in (10), where 0 < a ≤ 1
and b > 0. Then, CT approaches the independence copula when b → ∞ and a → 1.

Proof Let r = 1/b, x = e−(−r log u)1/a , y = e−(−r log v)1/a , and Ar = C(x, y). The derivative
A′
r = dAr/dr is given by

A′
r = − r1/a−1

a
{
C2|1(x, y)

[
x(− log u)1/a

] + C1|2(x, y)
[
y(− log v)1/a

]}
,

where C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. By L’Hopital’s Rule and
chain rule, the limit of the exponent term in (10) as r → 0 or b → ∞, is, if exists,

lim
r→0

− [− log Ar
]a

r
= a

[− log Ar
]a−1 A′

r
Ar

,

where C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. As b → ∞ or r → 0, we
have that x → 1, y → 1, and Ar → 1. When a → 1, limA′

r = log(uv) since C2|1 and C1|2
are conditional distributions. Therefore, limb→∞ CT (u, v) = exp(log(uv)) = uv.

Proposition 2 provides the limit of the UW copulas when b → ∞ and a → 1 with-
out specifying the initial copula. In the following, we find the limiting copulas in the
parameter θ originated from the initial copula for families of UW-Clayton and UW-Frank
copulas.

Example 7 Consider UW-Clayton copula in Example 1. By the same arguments for the
limit of the Clayton copula in Joe (2015),

lim
θ→∞C

(
T−1(u),T−1(v)

) = min
{
T−1(u),T−1(v)

}
,

lim
θ→0+C

(
T−1(u),T−1(v)

) = T−1(u)T−1(v).

Therefore, the UW-Clayton copula of the form T
(
C

(
T−1(u),T−1(v)

))
, by Example 3,

lim
θ→∞T

(
C

(
T−1(u),T−1(v)

)) = min{u, v},

lim
θ→0+T

(
C

(
T−1(u),T−1(v)

)) = exp
{
−

[(− log u
)1/a + (− log v

)1/a]a} , 0 < a ≤ 1.

The limit of UW-Clayton copulas as θ → ∞ is the Gumbel copula.
When b = 1, the UW-Clayton begets the BB3 copula. Therefore, UW-Clayton copulas

approach the comonotonicity copula when θ → ∞ or a → 0+, and the Gumbel family
when θ → 0+.
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Example 8 Consider the UW-Frank copulas in Example 4. Let x = T−1(u) and y =
T−1(v). Following the arguments in Frank (1979), we have that

−1
θ
log

(

1 +
[
e−θx − 1

] [
e−θy − 1

]

e−θ − 1

)

= x − 1
θ
log

(
e−θ(1−x) + e−θy + e−θ(y−x) − 1

e−θ − 1

)

,

(15)

	(u) = φ (x) = − log
(
e−θx − 1
e−θ − 1

)
→ − log x = − log

(
T−1(u)

)
, as θ → 0+, (16)

−1
θ
	(u) = −1

θ
φ (x) = 1 − x + 1

θ
log

(
1 − eθx

1 − eθ

)
. (17)

For 0 ≤ u ≤ v ≤ 1 and 0 ≤ x ≤ y ≤ 1, as θ → ∞, the limit of (15) is x = T−1(u).
Similarly, for 0 ≤ v ≤ u ≤ 1, as θ → ∞, the limit of (15) is y = T−1(v). Therefore, the
limit of UW-Frank copula as θ → ∞ is the comonotonicity copula min(u, v).
As θ → 0+, by (16) and the facts that e−θ ∼ 1− θ , (1+ s/n)n ∼ es as n → ∞, using the

Archimedean representation of the UW-Frank copula, the limit of the UW-Frank copula
is

T ◦ φ−1 (φ(x) + φ(y)) = T ◦ φ−1 (
log(xy)

) = exp
[
− (

(− logu)1/a + (− log v)1/a
)a] ,

which is the Gumbel copula.
As θ → −∞, by (17) and limθ→−∞ φ(x) = 0,

φ−1 (	(u) + 	(v)) = −1
θ
log

(
1 − e−φ(x)−φ(y) + exp

{
−θ

[
1 + φ(x)

θ
+ φ(y)

θ

]})

→ max(x + y − 1, 0) = max
(
T−1(u) + T−1(v) − 1, 0

)
.

We therefore conclude that the limit of the UW-Frank copula as θ → −∞ is

lim
θ→−∞T ◦ φ−1 (	(u) + 	(v)) = max

[
T

(
T−1(u) + T−1(v) − 1

)
, 0

]
.

Properties
We obtain the tail dependence coefficients and tail orders for the UW-distorted copulas,
and study the tail concordance in the parameters for the UW-Clayton copulas.

Tail dependence coefficients and tail orders

Consider the distortion T(u) = exp
[−b

(− log u
)a] , where 0 < a ≤ 1, b > 0, in (7).

When b = 1, T turns into the form suggested by Durante et al. (2010), and when b = 1
and a = 1, T is the identity distortion, i.e., no distortion is applied. Definitions of tail
orders can be found in “Groundwork” section. We note here the joint survival function
C̄(u, v) = P(U > u,V > v) = 1 − u − v + C(u, v) and Talyor’s series approximation of

(1 + u)a ∼ 1 + au, log(1 − u) ∼ −u, eu ∼ 1 + u, as u → 0. (18)

Therefore, we have that

T(1 − u) ∼ 1 − bua, T−1(1 − u) ∼ 1 − (u/b)1/a as u → 0+. (19)

Below we assume that the lower tail coefficient λL = 0 when κL > 1 and the upper
tail coefficient λU = 0 when κU > 1 for the initial copula. Let the subscript T notation
denote the properties of the UW distorted copulas, e.g., λT ,U is the lower tail coefficient
for the UW distorted copulas.
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Proposition 3 Suppose that C(u,u) ∼ uκL�(u) as u → 0+ and C̄(1 − u, 1 − u) ∼
uκU �∗(u) as u → 0+ for some slowly varying functions � and �∗ at 0+. Then, for CT in
(10), where 0 < a ≤ 1, b > 0,

(i) If κL > 1, then κT ,L = (κL)a. If κL = 1, then λT ,L = 1 for a < 1 and λT ,L = λbL for
a = 1.

(ii) κT ,U = 1 and λT ,U = 2 − (2 − λU)a.

From (3), the lower tail dependence coefficient of CT is given by

λT ,L = lim
u→0+

exp
[−b

(− log C(u,u)
)a]

exp[−b(− log u)a]

= lim
u→0+ exp

{
−b(− log u)a

[(
log C(u,u)

log u

)a
− 1

]}
. (20)

By (5), limu→0+ log C(u,u)/log u = κL. If κL > 1, then λT ,L = 0 as u → 0+ for b > 0. If
κL = 1, applying L’Hopital’s rule, the limit of the exponent in (20) is equal to

−b lim
u→0+

[(
log C(u,u)

log u

)a
− 1

]
/(− log u)−a

= b lim
u→0+u

[− logC(u,u)
]a−1

(log u)2d
[
logC(u,u)

log u

]
/du

= b lim
u→0+

[− logC(u,u)
]a−1

[
logC(u,u) − u

C(u,u)

dC(u,u)

du
log u

]
. (21)

If limu→0+ C(u,u)/u = limu→0+ dC(u,u)/du = λL ∈ (0, 1], limu→0+ [ logC(u,u) −
log(u)]= log λL, then (21) is well defined. In this case, when a < 1, the limit in (21) is
0; when a = 1 it is equal to b log λL. Thus, by (20) and (21), the lower tail dependence
coefficient of the UW induced copula is given by

λT ,L = 0 if κL > 1; 1 ifκL = 1 anda < 1; λbL ifκL = 1 anda = 1.

Proof By (4) and (9), the upper tail dependence coefficient is given by, if λU �= 0,

λT ,U = 2 − lim
u→1−

e−b([− logC(u,u)])a

e−b([− log u])a

(
logC(u,u)

log u

)a−1 u
C(u,u)

dC(u,u)

du
= 2 − (2 − λU)a,

by L’Hopital’s rule and limu→1− dC(u,u)/du = 2 − λU .

We obtain below tail orders of CT . By (5) and (18) and since T−1(u) =
exp

[
− (−b−1 logu

)1/a] and limu→0+ log �(u)/ log u = 0 (Bingham et al. 1989),

T
(
C

(
T−1(u),T−1(u)

)) = exp
{
−b

[− logC
(
T−1(u),T−1(u)

)]a}

∼ exp
{

−b
[
−κL

[
logT−1(u)

] (
1 + log �(T−1(u))

κL logT−1(u)

)]a}

∼ exp
{

−b
[−κL logT−1(u)

]a
(

1 + a
log �

(
T−1(u)

)

κL logT−1(u)

)}

∼ u(κL)a exp
{−(κL)

a−1ab1/a(− log u)1−1/a log �
(
T−1(u)

)}
.

(22)
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Note that for s > 0,

lim
u→0+

�
(
T−1(su)

)

�
(
T−1(u)

) = lim
v→0+

�
(
T−1(sT(v))

)

�(v)
= lim

v→0+
� (vq(v))

�(v)
= 1,

where T−1 (sT(v)) = exp
{
−(− log v)

[
1 − (log s)/

(
b

(− log v
)a)]1/a} , q(v) =

T−1(sT(v))/v, and limv→0+ q(v) = 1. One can then show the exponential term in (22)
is slowly varying by definition. Note that if a = 1 and b = 1, then (22) returns the
assumption that C(u,u) ∼ uκL�(u) as u → 0+. Using the approximations in (18) and (19),

[− logC
(
T−1(1 − u),T−1(1 − u)

)]a ∼
[
− logC

(
1 −

(u
b

)1/a
, 1 −

(u
b

)1/a)]a

∼
[
− log

(
1 − 2

(u
b

)1/a + C̄
(
1 −

(u
b

)1/a
, 1 −

(u
b

)1/a))]a

∼ 2au
b

[
1 − 1

2

(u
b

)(κU−1)/a
�∗

((u
b

)1/a)]a
∼ 2au

b

[
1 − a

2

(u
b

)(κU−1)/a
�∗

((u
b

)1/a)]

= E.

Therefore, for the upper tail order, by (18),

ĈT (u, v) ∼ 2u − 1 + exp(−bE) ∼ 2u − bE

∼ u
{
2 − 2a

[
1 − a

2

(u
b

)(κU−1)/a
�∗

((u
b

)1/a)]}
,

indicating that UWdistorted copulas have an upper tail order of 1 except when a = b = 1.
The following table summarizes tail orders and dependence coefficients for the family

of UW-distorted copulas with the initial copulas being BB1, Clayton, Frank, and Gaussian
copulas, where θ , δ, and ρ are the parameters in the initial copulas with formulas shown
in Joe (2015).
Density contour plots with standard normal margins for various combinations of (a, b)

are shown in Fig. 1. The parameter θ is chosen so that the initial copula has Kendall’s tau of
2/7 or -2/7. As indicated by Proposition 3 or Table 1, the family of UW-distorted copulas
not only preserves the tail dependence of the initial copula but also can accommodate
upper tail dependence. Unlike the initial Frank copula with a = b = 1, the resulting UW-
Frank copulas are asymmetric. The graphs also reflect the results in Proposition 3, the
upper tail dependence becomes stronger as a decreases.

Concordance ordering

A copula is said to be positively ordered Cα ≺ Cβ if C(u, v;α) ≤ C(u, v;β) whenever
α ≤ β for all u, v ∈ I, and negatively ordered Cα 
 Cβ if C(u, v;α) > C(u, v;β) whenever
the parameters α ≤ β for all u, v ∈ I; see Nelsen (2006) for more details.

Proposition 4 If the initial copula is positively or negatively ordered by its parameter,
then the unit-Weibull distortion preserves the concordance order in the parameter of the
initial copula.

Proof If the initial copula C is positively ordered, then, for θ1 ≤ θ2,
C

(
T−1(u),T−1(v); θ1

) ≤ C
(
T−1(u),T−1(v); θ2

)
for all u, v ∈ I. Let T be the

UW-distortion or an admissible distortion function. Since T is increasing, with
fixed a and b values, T

(
C

(
T−1(u),T−1(v); θ1

)) ≤ T
(
C

(
T−1(u),T−1(v); θ2

))
, i.e.,
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Fig. 1 Examples of density contour plots with standard normal margins. The parameter θ is chosen so that
the initial copula has Kendall’s tau of 2/7 or −2/7. The first row displays contour plots of UW-Clayton copulas
with (a, b) = (1, 1), (0.75, 2), (0.5, 0.5), and (0.25, 0.75). The second and third rows display those of the
UW-Frank copulas, where the initial Frank copulas have positive and negative Kendall’s tau values, respectively

CT (u, v; θ1) ≤ CT (u, v; θ2). That is, the family of T-distortion induced copulas is also
positively (negatively) ordered by the parameter θ originated from the initial copula if the
initial copula is positively (negatively) ordered by the parameter.

To examine the concordance ordering in the parameters a and b introduced by the UW
distortion for UW-Clayton copula, we present the following corollary and lemma; see
Schweizer and Sklar (1983) or Nelsen (2006).

Corollary 2 Let C1 and C2 be Archimedean copulas with generators φ1 and φ2, respec-
tively. Then C1 ≺ C2 holds if one of the following conditions is satisfied (i) φ1 ◦ φ−1

2

Table 1 Examples of tail orders and dependence coefficients

Initial Copula κL or λL κU or λU

BB1 λL = 2−1/θδ λU = 2 − 21/δ

Clayton λL = 2−1/θ κU = 2

Frank κL = 2 κU = 2

Gaussian κL = 2/(1 + ρ) κU = 2/(1 + ρ)

UW-Copula κT ,L or λT ,L κT ,U or λT ,U

UW-BB1 λT ,L = 2−b/θδ if a = 1 λT ,U = 2 − 2a/δ

λT ,L = 1 if a < 1

UW-Clayton λT ,L = 2−b/θ if a = 1 λT ,U = 2 − 2a

λT ,L = 1 if a < 1

UW-Frank κT ,L = 2a λT ,U = 2 − 2a

UW-Gaussian κT ,L =[ 2/(1 + ρ)]a λT ,U = 2 − 2a
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is concave; (ii) φ1/φ2 is nondecreasing on (0,1); and (iii) φ1 and φ2 are continuously
differentiable on (0,1) and φ

′
1/φ

′
2 is nondecreasing on (0,1).

Example 9 Consider the family of the UW-Clayton copulas in Example 1. Below we
show the family of UW-Clayton copulas is negatively ordered by the parameter b but not
a. It is Archimedean, see Example 5, with generator and inverse generator given by

	(u; a, b) = 1
θ

[

eθ
(
− log u

b

)1/a

− 1
]

, 	−1(u; a, b) = e−b
[
θ−1 log(1+θu)

]a
,

respectively. We wish to use Corollary 2 to show the concordance order in the parameter
and b. Define hb(u) to be

hb(u) = 	(u; a, b1) ◦ 	−1(u; a, b2) = 1
θ

[
e(b2/b1)

1/a log(1+θu) − 1
]

= 1
θ

[
(1 + θu)(b2/b1)

1/a − 1
]
.

The first derivative and second derivatives of hb are give by

h′
b(u) =

(
b2b−1

1

)1/a
(1 + θu)

(
b2b−1

1

)1/a−1,

h′′
b(u) = θ

(
b2b−1

1

)1/a [(
b2b−1

1

)1/a − 1
]

(1 + θu)

(
b2b−1

1

)1/a−2,

which is negative if b2 < b1 for u ∈ (0, 1] . That is, the family of the UW-Clayton copulas
is negatively ordered by the parameter b. Define ha(u) to be

ha(u) = 	(u; a1, b) ◦ 	−1(u; a2, b) = 1
θ

[
eθ

1−a2/a1 [log(1+θu)]a2/a1 − 1
]
.

The first derivative and second derivatives of ha are give by

h′
a(u) = a2θ1−a2/a1

a1

[
eθ

1−a2/a1 [log(1+θu)]a2/a1 [
log(1 + θu)

]a2/a1−1 1
1 + θu

]
,

h′′
a(u) = θh′

a(u)

1 + θu

[
a2θ1−a2/a1

a1
[
log(1 + θu)

]a2/a1−1 + a2 − a1
a1 log(1 + θu)

− 1
]
.

(23)

The UW-Clayton is negatively ordered by the parameter a if (23) is nonpositive for
a2 < a1 and all u ∈ I. As we will see from Fig. 2, the UW-Clayton is not ordered by the
parameter a for all θ and b values.

Measures of concordance

In this section, we explore two widely known scale-invariant measures of concordance or
association: Spearman’s rho and Kendall’s tau. IfX and Y are continuous random variables
with copulaC, then the Spearman’s rho and Kendall’s tau can be expressed as, respectively,

ρS = 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3,

τ = 1 − 4
∫ 1

0

∫ 1

0

∂C
∂u

(u, v)
∂C
∂v

(u, v) dudv.

For an Archimedean copula (Genest and MacKay 1986), Kendall’s tau is also given by

τ = 1 + 4
∫ 1

0

φ(u)

φ′(u)
du. (24)



Aldhufairi and Sepanski Journal of Statistical Distributions and Applications             (2020) 7:8 Page 14 of 20

Fig. 2 Kendall’s tau for UW-Clayton copulas. With varying values for the other two parameters, the first
column shows tau values at θ = 0.25 and θ = 30, the second column a = 0.25 and a = 0.75, and the last
column b = 0.25 and b = 8

For the T-distortion induced copulas in (2), by substituting T−1(u) = x and T−1(v) = y,
Spearman’s rho and Kendall’s tau can be expressed as

ρT = 12
∫ 1

0

∫ 1

0
T (C(x, y)) t(x)t(y) dxdy − 3,

τT = 1 − 4
∫ 1

0

∫ 1

0
[ t(C(x, y))]2 C1|2(x|y)C2|1(y|x)dxdy,

where t(v) = dT(v)/dv, C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. Numer-
ical integration methods can be employed to compute the concordance measures. If the
inital copula is Archimedean with generator φ(u), from (11) and (24),	(u) = φ

(
T−1(u)

)

and 	′(u) = φ′ (T−1(u)
)
/t

(
T−1(u)

)
. The Kendall’s tau for a UW distorted copula is

given by

τT = 1 + 4
∫ 1

0

	(u)

	
′
(u)

du = 1 + 4
∫ 1

0

φ(v)
φ

′
(v)

t2(v)dv. (25)

Proposition 5 LetX and Y be random variables with copulaCT , a UWdistorted copula
of the form in (10), where the initial copula is Archimedean with generator φ(·). Then,
the Kendall’s tau between X and Y can be expressed as

1 + 4(ab)2
∫ ∞

0

φ
(
e−u)

φ
′ (e−u)u

2a−2eu−2buadu.

Proof: From (9) and (25), with substitution u = − log v, we have

τT = 1 + 4(ab)2
∫ ∞

0

φ
(
e−u)

φ
′ (e−u)u

2a−2eu−2buadu.
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Example 10 Kendall’s tau of the UW-Clayton copula. When the initial copula is the
Clayton copula, Proposition 5 gives

τT = 1 − 4(ab)2

θ

∫ ∞

0
u2a−2 (

1 − e−θu) e−2buadu, where (26)
∫ ∞

0
u2a−2e−2uadu = 1

a

∫ ∞

0
v1−1/ae−2vdv = �(2 − 1/a)

a22−1/a .

With (26), one can readily write R programs to compute Kendall’s tau values at various
parameter values. Figure 2 plots values of Kendall’s tau for various parameter values. The
plot for b = 8 indicates when θ is large, e.g., θ = 30, the family of UW-Clayton copulas is
not ordered by the parameter a as the resulting tau values are not monotone in a; see also
Example 9.

Example 11 Kendall’s tau of the UW-Frank copula. From Example 6 and Proposition 5,
with substitution v = θe−u, the Kendall’s tau of a UW-Frank copula is given by

τT = 1 − 4(ab)2
∫ θ

0

(1 − ev)
[− log (v/θ)

]2a−2

v2e2b(− log(v/θ))a
log

(
e−v − 1
e−θ − 1

)
dv (27)

for θ �= 0, 0 < a ≤ 1, and b > 0. We compute Kendall’s tau coefficients at various
parameter values using the formula in (27) and produce Fig. 3. While not mathematically
shown due to its tediousness, the plot for θ = 10 illustrates that the family of UW-Frank
copulas is not ordered by the parameter a as the resulting tau values are not monotone in
a.

Application
In this section, the Loss-ALAE insurance data set is analyzed to evaluate the performance
of the proposed UW distorted copula models. It is easily accessible from the R copula
package. The loss variable is the general liability claims and the allocated loss adjustment

Fig. 3 Kendall’s tau for UW-Frank copulas. With varying values for the other two parameters, the first column
shows tau values at θ = 0.5 and θ = 10, the second column a = 0.5 and a = 0.75 , and the last column
b = 0.75 and b = 5
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expenses (ALAE) is attributable to the settlement of individual claims (e.g., lawyer’s fees,
claims investigation expenses). The summary statistics, including the standard deviation
(SD), the first quartile (Q1) and the third quartile (Q3) are reported in Table 2.
To visualize the relationship, scatter plots in Fig. 4 are constructed on the real dollar

scale and on the log scale. There seems to be an upper tail dependence in the data.
Using the notation in (1), the log-likelihood function for the data

{
(xi, yi)

}n
i=1 is given by

L(θ , a, b,α1,α2; x, y) =
n∑

i=1
log

[
c (F (xi;α1) ,G (yi;α2))

] +
n∑

i=1

[
log f (xi;α1) + log g (yi;α2)

]
,

where α1 and α2 are the parameters in the marginal distributions, and θ , a and b are
parameters in the copula function. Rather than a full maximum likelihood estimation,
one of the more attractive estimation methods is the two-stage maximum likelihood
estimation, also know as inference function for margins (IFM); see Joe (1997). The
IFM first obtains estimates, α̂1 and α̂2, of parameters in the marginals by maximizing
∑n

i=1 log f (xi;α1) and
∑n

i=1 log g (yi;α2) , and then computes estimates of the parameters
θ , a, and b by maximizing

n∑

i=1
log

[
c (F(xi; α̂1),G (yi; α̂2))

]
. (28)

To determine the appropriate marginals for the ALAE and loss variables, (Frees and
Valdez 1998) and (Frees 2018) overlaid the fitted Pareto cdf and the empirical cdf and
found the two curves are reasonably close to each other for both variables. Since we
ignore the mild censoring in the loss variable, we reassess the fit using P-P plots. The
P-P plots in Fig. 5 indicate that the Pareto margins fit the data well. Therefore, we
model both of the marginals using the Pareto distribution with the cdf of the from
1 − [1 + (x/αi1)]−αi2 , i = 1, 2, where αi1 is the scale parameter and αi2 is the shape
parameter. From the loss marginal, α̂1 = (̂α11, α̂12) = (16228.15, 1.238), and for ALAE,
α̂2 = (̂α21, α̂22) = (15133.6, 2.223). Plugging in α̂1 and α̂2 in (28), we then ascertain esti-
mates in Table 3 by maximizing (28). Genest et al. (1998) ignored the censoring in the
loss data, so did we in this paper. The pseudo log-likelihood estimation maximizes (28)
using nonparametric, empirical distribution estimates of F and G. The results are of little
differences and therefore not reported here.
Based on the scatter plots, we select survival Clayton (SClayton) (a 180 degrees rotation

of the Clatyon copula) and Gumbel copulas, in addition to Frank and Gaussian copulas.
The two-parameter survival BB1 (SBB1) is selected by the SelectCopula() in R Vine pack-
age as the best-fit bivariate copula model. The R optim() function is employed to compute
the IFM estimates.
In addition to standard errors (SE) of the estimators, we also report the resulting log-

likelihoods (IFML) in (28) and AIC for comparison purposes. The parameter θ (and δ

for the survival BB1 copula) is the one originated from the initial copula, a and b are
parameters injected by the UW distortion. The estimate of the correlation parameter ρ in

Table 2 Summary statistics of Losses-ALEA data

n Mean Median SD Min Max Q1 Q3

ALAE 1500 12588 5471 28145.64 15 501863 2333 12572

Loss 1500 41208 12000 102747.7 10 2173595 4000 35000
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Fig. 4 Scatter plots of ALAE versus Loss

th Gaussian copula is denoted by θ̂ in Table 3. The estimate of θ resulting from fitting the
initial copula is used as a starting point in the optim() for fitting UW-distorted models
and the Beta(B)-distorted copulas (Samanthi and Sepanski 2019). The dash symbol (–) is
used for models with a lower or an upper tail dependence coefficient of 0. Note that the
sample Kendall’s tau is 0.315.
The Cramer-von Mises goodness-of-fit test statistic (CvM) for copulas in Genest et al.

(2009) measures the sum of square deviations between the empirical cdf and an estimated
copula cdf. Larger CvM values are less desirable. The bootstrap approach detailed in Gen-
est et al. (2009) was used to calculate p-values. Note the sample size is 1500 and we used
1000 bootstrap replications. The results, e.g., the CvM for the UW-SBB1 copula is 0.296
with a p-value of 0.127, are tabulated in Table 4. Apart from the Frank, Gaussian, and
SClayton copulas, the copulas listed in Table 4 provide an adequate fit to the data.

Fig. 5 P-P plots for ALAE and Loss
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Table 3 IFML, AIC, τ̂ , λ̂L , λ̂U , and parameter estimates with standard errors in parentheses for the
base, UW and Beta distorted copula models

Family IFML AIC τ̂ ̂λL ̂λU ̂θ â ̂b

Frank 172.6 -343.1 0.316 – – 3.11(0.17)

Gaussian 183.8 -365.7 0.319 – – 0.48(0.02)

SClayton 198.9 -395.8 0.278 – 0.41 0.77(0.05)

Gumbel 204.9 -407.8 0.306 – 0.38 1.44(0.03)

SBB1 206.2 -408.4 0.307 0.13 0.35 0.60(0.06)

SBB1 1.11 (0.03)

UW-SClayton 204.2 -402.5 0.269 – 0.36 0.53(0.10) 0.90(0.03) 0.98(0.06)

UW-Frank 205.5 -405 0.311 – 0.35 0.38(0.36) 0.72(0.03) 0.63(0.46)

UW-Gaussian 205.1 -404.2 0.319 – 0.36 0.02(0.04) 0.71(0.03) 0.14(0.36)

UW-SBB1 207.8 -407.6 0.317 1 0.32 0.24(0.15) 0.78(0.07) 0.97(0.30)

UW-SBB1 – – – – – 1.01(0.02)

B-SClayton 204.7 -403.3 0.287 – 0.53 0.89(0.72) 1.24(0.74) 0.89(0.33)

B-Frank 206.7 -407.3 0.314 – 0.40 1.35(0.25) 1.05(0.16) 0.68(0.10)

B-Gaussian 204.3 -402.6 0.216 – 0.15 0.26(0.05) 1.10(0.67) 0.89(0.13)

B-SBB1 206.6 -405.3 0.312 0.08 0.35 0.47(0.54) 1.34(0.63) 0.92(0.37)

B-SBB1 – – 1.13(0.05)

The distortion induced copulas, as expected, outperform the initial copulas in terms of
log-likelihoods. There is a sizable improvement in the log-likelihoods of the UW-Frank,
UW-Gaussian, Beta-Frank, and Beta-Gaussian copulas over the Frank and Gaussian cop-
ulas. It may due to the fact that the distorted copulas can accommodate the upper tail
dependence in the data. As indicated in Table 4, distortions can improve the goodness-
of-fit in terms of the CvM statistic. While more parameters are expected to yield better
log-likelihood results, the AIC that penalized for having more parameters indicates that
the two-parameter survival BB1 is the winner among the chosen copulas for fitting this
particular data set. However, the estimated Kendall’s tau calculated based on the esti-
mated survival BB1 model seems to deviate from the sample Kendall’s tau more than
the ones based on the estimated UW-SBB1 and B-SBB1 models. The upper tail coeffi-
cient estimates from models with better performance in terms of IFML seem to suggest
the upper tail dependence exists in the data. The standard errors of estimates from the
UW-distorted copulas are smaller than those from Beta distorted copulas, although they
perform comparably in terms of the AIC and log-likelihood.

Concluding remarks
This paper constructs a new family of copulas by employing the unit Weibull distri-
butional distortion function. With an additional two parameters in the unit Weibull
distortion, the new family of copulas allows for more modeling flexibility and versatil-
ity. Note also that the initial copula is a special case of the UW-distorted copulas and

Table 4 Cramer-von Mises statistics and p-values in parentheses for the base, UW and Beta distorted
copula models

Model Frank Gaussian SClayton Gumbel SBB1

Base 0.384(0.039) 0.381(0.043) 0.398(0.033) 0.308(0.077) 0.316(0.076)

UW-Distorted 0.297(0.075) 0.309(0.086) 0.354(0.072) 0.296(0.127)

B-Distorted 0.297(0.094) 0.339(0.061) 0.302(0.110) 0.305(0.075)
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therefore the proposed family of copulas preserves properties in the initial copula. The
UW-distortion remains Archimedean if the initial copula is Archimedean. Intuitively, and
as seen in the empirical results, the proposed UW-distorted copula outperforms its initial
copula. The family of UW-Clayton copulas, for instance, contains the following copu-
las as special cases: Clayton, Fréhet upper bound, Gumbel, and BB3 copulas. The unit
Weibull distortion can transform an existing copula without upper tail dependence, e.g.,
the Clayton and Frank copulas, into one with upper tail dependence.
The transformation mechanism in (6) that results in the unit Weibull distortion can be

applied to other random variables with different cumulative distribution functions. For
example, instead of the Weibull cdf, a Burr or Gompertz or Log-logistic distribution may
be employed in (6), which yields he following possible distortions: (i) Unit-Burr: T(u) =[
1 + (− log(u)

)b]−a
; (ii) Unit-Gompertz: T(u) = exp

[−a
(
b− log(u) − 1

)
/ log b

]
; and

(iii) Unit-Log Logistic: T(u) = [
1 + b

(− log(u)
)a]−1 . The admissibility of the above two-

parameter distortions will be further investigated and distortions of multivariate copulas
of dimension more than two may also be of interest. Moreover, naturally, the next step is
to investigate distortions of multivariate copula distributions. Unlike distortions of bivari-
ate copulas, distortions of multivariate copulas require more care and are being explored
for future publications.
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