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Abstract
We develop a cluster process which is invariant with respect to unknown affine
transformations of the feature space without knowing the number of clusters in
advance. Specifically, our proposed method can identify clusters invariant under (I)
orthogonal transformations, (II) scaling-coordinate orthogonal transformations, and (III)
arbitrary nonsingular linear transformations corresponding to models I, II, and III,
respectively and represent clusters with the proposed heatmap of the similarity matrix.
The proposed Metropolis-Hasting algorithm leads to an irreducible and aperiodic
Markov chain, which is also efficient at identifying clusters reasonably well for various
applications. Both the synthetic and real data examples show that the proposed
method could be widely applied in many fields, especially for finding the number of
clusters and identifying clusters of samples of interest in aerial photography and
genomic data.

Keywords: Dirichlet process, Ewens process, Metropolis-Hastings algorithm, Markov
chain Monte Carlo sampling, Unsupervised learning

1 Introduction
Clustering of objects invariant with respect to affine transformations of feature vectors
is an important research topic since objects may be recorded via different angles and
positions so that their coordinates may vary and their nearest neighbors may belong to
other clusters. For example, the longitude, latitude, and altitude coordinates of an object
which are recorded by devices equipped in aircrafts or satellites change across different
observational time. In this situation, distance-based clusteringmethod including k-means
(MacQueen 1967), hierarchical clustering (Ward 1963), clustering based on principal
components, spectral clustering (Ng et al. 2001), and others (Jain and Dubes 1988; Ozawa
1985) may fail to identify the correct clusters by grouping nearest points. Another cat-
egory is distribution-based clustering methods (Banfield and Raftery 1993; Fraley and
Raftery 1998; Fraley and Raftery 2002; Fraley and Raftery 2007;McCullagh and Yang 2008;
Vogt et al. 2010) which may specify a partition as a parameter in a likelihood function and
estimate it under a Bayesian framework.
In certain areas of application, the goal is to cluster objects i = 1, . . . , n into dis-

joint subsets based on their feature vectors Yi ∈ R
d. In this paper, we propose group
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invariance by considering three cases of a cluster process that are invariant with respect
to three groups of affine transformations g : Rd → R

d acting on the feature space.
The group invariance implies that the feature configurations Y and Y ′ in R

n×d deter-
mine the same clustering, or probability distribution on clusterings, if they belong to
the same group orbit that is an equivalence class. For example, if the feature space
is Euclidean and G is the group of Euclidean isometries or congruences, the clus-
tering is a function only of the maximal invariant, which is the array of Euclidean
distances Dij = ‖Yi − Yj‖. For example, image data such as the aerial photogra-
phy and three-dimensional protein structures are two motivating examples. The shape
and relative locations of data may vary due to the change of the viewer’s angle and
location.
Our goal is to develop a novel clustering method which can identify clusters of Y =

(Y1, . . . ,Yn) even when all Yi’s are mapped by an unknown affine transformation Y ′
i =

a+AYi, where a = (a1, . . . , ad) ∈ R
d and A ∈ R

d×d is nonsingular. Affine-invariant clus-
tering is important when the clusters are not well-separated in the observational space.
Although there are previous work on affine-invariant clustering methods (Fitzgibbon and
Zisserman 2002; Begelfor and Werman 2006; Shioda R. and Tunçel 2007; Brubaker. S.C.
and Vempala 2008; Kumar and Orlin 2008; Garcìa-Escudero et al. 2010; Lee et al. 2014),
these existing methods handle different problems from ours. These methods aim to clus-
ter the same item observed in different angles or mapped by different unknown affine
transformations. Instead, in our problem setting we consider only one unknown affine
transformation that is applied to all objects.
The affine transformations consist of three types: (1) index permutations, rotation, one-

scaling on all variables, and location-translation transformations that are under the first
type of covariance structures and named model I whose transformation and covariance
structure σ 2Id were also adopted by Vogt et al. (2010); (2) each variable may have dif-
ferent scaling transformations that are under the second type of covariance structures
and named model II; (3) the variables are transformed by a nonsingular matrix that is
namedmodel III, where the observed variables may be linear combinations of some latent
variables in model I. These models cover fairly general situations of clustering in nature.
McCullagh and Yang (2008) constructed a Dirichlet cluster process together with a ran-

dom partition representing the clustering. In this paper, we follow their setup and extend
their framework. We assume that the random partition of objects follows Ewens distribu-
tion (Ewens 1972), and we propose a likelihood of the responses which is invariant respect
to affine transformations.

2 Cluster process and prior distributions
In this paper, an R

d-valued cluster process (Y ,B) means a random partition B of the natu-
ral numbers, together with an infinite sequence Y1,Y2, . . . of random vectors in the state
space Rd. The restriction of such a process to a finite sample [ n]= {1, . . . , n} of units or
specimens consists of the restricted partition B[ n] accompanied by the finite sequence
Y [ n]= (Y1, . . . ,Yn). A partition B[ n] :[ n]×[ n]→ {0, 1} is the partition of the sample
units expressed as a binary cluster-factor matrix of Bi,j = 1 if Yi and Yj are of the same
cluster (denoted as i ∼ j), and Bi,j = 0 otherwise (McCullagh and Yang 2008). For exam-
ple, when n = 3, the partition {{1, 2}, 3} and the cluster labels 112 correspond to an
equivalence relation
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B =
⎛
⎜⎝

1 1 0
1 1 0
0 0 1

⎞
⎟⎠ .

Notice that the elements of B are transitional. i.e., if individuals i, j, k belong to the same
cluster, then Bi,j = 1 and Bj,k = 1 imply Bi,k = 1.
The term cluster process implies infinite exchangeability, which means that the joint

distribution pn of (Y [ n] ,B[ n] ) is symmetric (McCullagh and Yang 2006) or invariant
under permutations of indices (Pitman 2002), and pn is the marginal distribution of pn+1
under deletion of the (n + 1)th unit from the sample.
Similar to (McCullagh and Yang 2008), we construct an exchangeable Gaussian mixture

as a simple example of clustering processes. First, B ∼ p is some infinitely exchange-
able random partition. Secondly, the conditional distribution of the samples Y, which is
regarded as a matrix (Yi,r) of order n× d given B (say the cluster label cl(Yi) = l) and θ , is
Gaussian with mean and variance as follows

E
(
Yi |B,μl

) = μl , Cov
(
Yi,r ,Yj,s |B, θ

) = (
δi,j + θBi,j

)
�r,s,

where μl = (μl1, . . . ,μld) ∈ R
d is the centroid of cluster k, δ is Kronecker’s delta, that

is, δi,j = 1 if i = j and 0 if i �= j, θ > 0 is a ratio parameter connecting the within- and
between-cluster covariance matrices, and � = (

�r,s
)
is a positive definite matrix of order

d×d, known as the within-cluster covariance matrix. In our settings, the between-cluster
covariance matrix is simply θ�, the cluster centroids μ1, . . . ,μk are iid from N (μ, θ�),
and the mean of Y given B and μ1, . . . ,μk is

E
(
Y |B,μ1, . . . ,μk

) = (
μcl(Y1), . . . ,μcl(Yn)

)

and the covariance of Y given B can also be represented by the covariance of its vector
form Vec(Y ) = (Y11, . . . ,Y1d, . . . ,Yn1, . . . ,Ynd)ᵀ as

Cov (Vec(Y ) |B, θ) = (In + θB) ⊗ �

which is an nd × nd matrix with “⊗” indicating the Kronecker product. �, the column
covariance of Y, is assumed identical for all clusters, In + θB is assumed an exchangeable
structure for the row covariance of Y, and θ is the product of the standard deviations
of two rows. There exist competing algorithms that are affine-equivariant and do note
impose this requirement (Shioda R. and Tunçel 2007; Kumar and Orlin 2008; Garcìa-
Escudero et al. 2010; Lee et al. 2014). The identity matrix itself is also a partition in which
each cluster consists of one element.
Given the number of clusters k, the cluster sizes (n1, . . . , nk) may follow a multinomial

distribution with category probabilities π = (π1, . . . ,πk), where π follows an exchange-
able Dirichlet distribution Dir(λ/k, . . . , λ/k). After integrating out π , the partition B
follows a Dirichlet-multinomial prior

pn(B|λ, k) = k!
(k − #B)!

�(λ)
∏

b∈B �(nb + λ/k)
�(n + λ)[�(λ/k)]#B

where #B ≤ k denotes the number of clusters presented in the partition B and nb is the
size of cluster b (MacEachern 1994; Dahl 2005; McCullagh and Yang 2008). The limit as
k → ∞ is well defined and known as the Ewens’s sampling formula (ESF) with parameter
λ > 0
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pn (n1, . . . , nk|λ) = �(λ)λ#B

�(n + λ)

∏
b∈B

�(nb),

which is also known as Chinese restaurant process (CRP) (Ewens 1972; Neal 2000; Blei
and Jordan 2006; Crane 2016). McCullagh and Yang (2008) provided a framework with a
finite number of clusters and general covariance structures. In this paper, we adopt the
CRP prior for partition B which implies k = ∞ in the population with the proposed
Gaussian likelihood to get the affine-invariant clusters. Note that #B ≤ n for any given
sample size n.
We choose a proper prior distribution for the variance ratio θ , the symmetric F-family

p(θ) ∝ θα−1

(1 + θ)2α

with α > 0 allowing a range of reasonable choices (Chaloner 1987).
We propose a sampling procedure to estimate the partition B and the parameter θ from

conditional probabilities. Since the conditional distribution of θ does not have a recog-
nized form, we propose to use a discrete version

{
p(θj)

}J
j=1 , where J is a predetermined

moderately large integer. Based on our experience, J = 100 works reasonably well for the
real data examples that we have examined.

3 Affine-transformation invariant clustering
The affine-transformation invariant clustering identified in this manuscript is invariant
even when the objects are mapped by an unknown affine transformation. The conditional
distribution on partitions of [ n]= {1, . . . , n} is determined by the finite sequence Y =
(Y1, . . . ,Yn) regarded as a configuration of n labeled points in R

d . The exchangeability
condition implies that any permutation π of the sequence induces a corresponding per-
mutation in B, i.e. pn (Bπ |Y = yπ ) = pn (B |Y = y) , where yπ

i = yπ(i) and Bπ
i,j = Bπ(i),π(j).

Inmany cases, it is reasonable to assume additional symmetries involving transformations
in R

d , for example pn (B |Y ) = pn(B | − Y ). We are asking, in effect, whether two labeled
configurations Y and Y ′ which are geometrically equivalent in R

d should determine the
same conditional distribution on sample partitions.
If the state space Rd is regarded as a d-dimensional Euclidean space with the standard

Euclidean inner product and Euclidean metric, the configurations Y and Y ′ are congruent
if there exists a vector a = (a1, . . . , ad) ∈ R

d and an orthogonal matrix A ∈ R
d×d such

that Y ′
i = a+AYi for each i. Equivalently, the n× n arrays of squared Euclidean distances

Dij = ∥∥Yi − Yj
∥∥2 and D′

ij =
∥∥∥Y ′

i − Y ′
j

∥∥∥2 are equal. The configurations are geometrically
similar if Y ′

i = a + bYi for b ∈ R and b �= 0, implying that the arrays of distances are
proportional D′ = b2D.
The geometric equivalence is defined by regarding the observation Y as a group orbit

rather than a point. In general, the group is the affine group GA
(
R
d) ,G = R

d × L and L
is the collection of all d×d nonsingular matrices, with the operation (a1,A1)◦ (a2,A2) =
(a1 + A1a2,A1A2) for ai ∈ R

d ,Ai ∈ Lwith i = 1, 2, which is consistent with compositions
of affine transformations. The orbit of an element Y = (Y1, . . . ,Yn)ᵀ ∈ R

n×d is defined as

Orb(Y ) =
{
X ∈ R

n×d : ∃g ∈ G s.t.X = g 
 Y
}
, (1)
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where the group action is that G acts on R
n×d as

(a,A) 
 Y = (a + AY1, . . . ,a + AYn)ᵀ = 1naᵀ + YAᵀ (2)

where 1n is a length-n vector of 1’s. It can be verified that its vector form
Vec ((a,A) 
 Y ) = 1n ⊗ a + (In ⊗ A)Vec(Y ). If

Vec(Y ) ∼ N (1n ⊗ μ, (In + θB) ⊗ �) ,

then an element in the same orbit

Vec ((a,A) 
 Y ) ∼ N
(
1n ⊗ (a + Aμ) , (In + θB) ⊗ (

A�Aᵀ))

More specifically,

Vec ((−μ, Id) 
 Y ) ∼ N (0, (In + θB) ⊗ �))

Vec
(
(−T−1μ,T−1) 
 Y

) ∼ N (0, (In + θB) ⊗ Id)

where T is a d × d nonsingular matrix satisfying � = TTᵀ.

Theorem 1 If n ≤ d, then all Y ∈ R
n×d of full rank n belong to the same orbit. If

n = d + 1, then all Y ∈ R
n×d satisfying rank(Y ) = rank(Y − 1n1ᵀnY/n) = d belong to the

same orbit.

The proof of Theorem 1 is relegated to the Appendix A. According to the proof, if
n = d + 1, then rank(Y ) = d implies that rank(Y − 1n1ᵀnY/n) is either d or d − 1. The
case of d − 1 only occupies a lower-dimensional subspace.
According to Theorem 1, for n ≤ d + 1, the action is essentially transitive in the sense

that all configurations of n distinct points in R
d belong to the same orbit: all other orbits

are negligible in that they have Lebesgue measure zero. As a result, the observation Y
regarded as a group orbit GY is uninformative for clustering unless n > d + 1. We name
the orbit and group action defined above as model III.
In model I, which is the case considered in Vogt et al. (2010), the covariance between

features are proportional to an identity matrix. The group is G = R
d × R \ {0} with the

operation (a1, b1)◦(a2, b2) = (a1 + b1a2, b1b2) for ai ∈ R
d, bi ∈ R\{0}, i = 1, 2. The orbit

of an element Y ∈ R
n×d and the group action are defined similarly as in (1) and (2) with

A replaced by b. Then (a, b) 
Y = 1naᵀ + bY and Vec ((a, b) 
 Y ) = 1n ⊗a+ bVec(Y ). If

Vec(Y ) ∼ N
(
1n ⊗ μ, (In + θB) ⊗ σ 2Id

)
,

then Vec ((−μ, 1) 
 Y ) ∼ N(0, (In + θB) ⊗ σ 2Id) and Vec ((−μ/σ , 1/σ) 
 Y ) ∼
N (0, (In + θB) ⊗ Id), which correspond to elements in Orb(Y ).
In essence, the observation is not regarded as a point in R

n×d but is treated as a group
orbit generated by the group of rigid transformations, or similarity transformations if
scalar multiples are permitted. In statistical terms, this approach meshes with the sub-
model in which the matrix � in model I is a scaled identity matrix Id . An equivalent
way of saying the same thing for n > d is that the column-centered sample matrix
Ỹ = Y − 1n1ᵀnY/n determines the sample covariance matrix S = (

ỸᵀỸ
)
/(n − 1) and

hence theMahalanobis metric ‖x−x∗‖2 = (x−x∗)ᵀS−1(x−x∗) in the state space (Maha-
lanobis 1936; Gnanadesikan and Kettenring 1972). One implication is that the n×nmatrix
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D = (Dij) =
(∥∥Yi − Yj

∥∥2) of standardized inter-point Mahalanobis distances is maxi-
mal invariant, and the conditional distribution on sample partitions depends on Y only
through this matrix.
In practice, the d variables are sometimes measured on scales that are not commen-

surate with one another, so the state space seldom has a natural metric. In this case, we
assume that Y and Y ′ as equivalent configurations for each feature Y·,j if there are aj ∈ R

and bj ∈ R \ {0}, such that Y ′·,j = aj + bjY·,j . In model II, the group is the affine group
GA(R)d,G = R

d × D and D = {
diag{b1, . . . , bd} | bi �= 0, i = 1, . . . , d

}
with the opera-

tion (a1,A1) ◦ (a2,A2) = (a1 + A1a2,A1A2) for ai ∈ R
d, Ai ∈ D with i = 1, 2. The orbit

of an element Y ∈ R
n×d and the group action are defined in (1) and (2) with A ∈ D. If

Vec(Y ) ∼ N
(
1n ⊗ μ, (In + θB) ⊗ diag{σ 2

1 , . . . , σ
2
d })

then Vec ((−μ, Id) 
 Y ) ∼ N(0, (In + θB) ⊗ diag
{
σ 2
1 , . . . , σ

2
d
}
), and furthermore

Vec ((a,A) 
 Y ) ∼ N (0, (In + θB) ⊗ Id) with a = − (μ1/σ1, . . . ,μd/σd)
ᵀ and A =

diag
{
σ−1
1 , . . . , σ−1

d

}
, which correspond to elements of the group orbit. No linear combi-

nations are permitted here, so that the integrity of the variables is preserved.
Moreover, in some cases, the location information or shapes of objects from aerial

photography applications may be distorted by the viewer’s angle or position so that the
variablesmay be strongly correlated. Amore extreme approach avoids themetric assump-
tion by regarding Y and Y ′ as equivalent configurations if there exists a vector a ∈ R

d

and a non-singular matrix A ∈ R
d×d such that Y ′

i = a + AYi with AᵀA is a positive defi-
nite matrix for all i. Consequently, models I, II, III specify the structures of the covariance
matrix between features, and the partition B of Y is affine invariant and the same as the
partition B of the group orbit GY ⊂ R

n×d , which is independent of the mean.

3.1 Gaussian marginal probabilities

The distribution of the column-centered group orbit, GY , is assumed to be a Gaussian
distribution

N
(
0, (In + θB) ⊗ AᵀA

)

which depends only on In+θB andAᵀA. Actually, it can be verified that for any (a,A) ∈ G,
the two distributions of group orbits induced by N (1n ⊗ μ, (In + θB) ⊗ �) and N(1n ⊗
(a + Aμ), (In + θB) ⊗ (A�Aᵀ) respectively are the same.
McCullagh (2008) studied the d time series with an autocorrelation � and n observa-

tions in time or space following three Gaussian distribution models N(0,� ⊗ �) under
different assumptions of � as follows :

Model I:� = σ 2Id (3)

Model II:� = diag
{
σ 2
1 , · · · , σ 2

d
}

(4)

Model III:� ∈ PDd (5)

where PDd is the collection of d × d symmetric positive definite matrices. These three
models correspond to our three models of affine transformed equivalence classes which
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we discussed in the previous section. In this paper, we set (In + θB) as � and AᵀA as �.
Following (McCullagh 2008), the log-likelihood based on Y for all three models is:

l (�,�|Y ) = −1
2
log det(� ⊗ �) − 1

2
tr

(
Yᵀ�−1Y�−1)

= −d
2
log det(�) − n

2
log det(�) − 1

2
tr

(
Yᵀ�−1Y�−1) ,

Lemma 1 (In + θB)−1 = In − θWB, where W = diag
{
(1 + θN1)

−1 , . . . , (1 + θNn)
−1}

and Ni is the ith diagonal element of N = B1n.

According to Lemma 1 and its proof, which is relegated to the Appendix A, � = In +
θB is always nonsingular for θ > 0 and its inverse �−1 = (In + θB)−1 = In − θWB
can be obtained explicitly. To ensure that Yᵀ�−1Y is positive definite with probability 1
(McCullagh 2008), as well as informative group orbits (see Theorem 1 and its subsequent
discussion), we assume n > d + 1.
After plugging in the maximum likelihood estimator of � which for model III is �̂� =

Yᵀ�−1Y/n, for model II is diag
(
�̂�

)
, and for model I is tr

(
�̂�

)
Id/d (McCullagh 2008),

the profile likelihood of � is

Lp
(
�−1|GY ) =

⎧⎪⎪⎨
⎪⎪⎩

det
(
�−1)d/2

/tr
(
Yᵀ�−1Y

)nd/2 (I)

det
(
�−1)d/2

/
∏d

r=1

(
Yᵀ

(r)�
−1Y(r)

)n/2
(II)

det
(
�−1)d/2

/ det
(
Yᵀ�−1Y

)n/2
(III)

where Y(r) ∈ R
n is the rth column of Y, r = 1, . . . , d.

The conditional distribution on partitions of [ n] depends on the group orbit and the
assumptions made regarding �. For group I, with � ∝ Id in the Gaussian model, the
likelihood depends only on the distance matrix D, so the likelihood is constant on the
orbits associated with the larger group of Euclidean similarities. Therefore, for model I,
the similarity transformation can be generalized as if Y ′

i = a + AYi for AᵀA = σ 2Id and
σ �= 0, implying that the arrays of distances are proportional D′ = σ 2D. Consequently,
there is a representative element of the group orbit with feature mean vector 0, so that
Vec(Y ) ∼ N

(
0, (In + θB) ⊗ σ 2Id

)
.

Formodel II, the affine transformation can be generalized as Y ′
i = a+AYi, where a ∈ R

d

and A ∈ R
d×d with AᵀA as a diagonal matrix with positive diagonal entries for all i. As a

result, there is a representative element of the group orbit with feature mean vector 0, so
that Vec(Y ) ∼ N

(
0, (In + θB) ⊗ diag

{
σ 2
1 , . . . , σ 2

d
})
. This is to work with GA(R)d which

is the general affine group acting independently on the d columns of Y. For model III, �
is an arbitrary matrix in PDd . The group is GA

(
R
d) and n > d + 1. These three models

are nested by model I ⊂ model II ⊂ model III.
Affine invariance in R

d is a strong requirement, which comes at a small cost for mod-
erate d provided that d/n is small. When d/n ≤ 1, Yᵀ�−1Y is positive definite with
probability one (McCullagh 2008), then model III works. However, while d/n < 1 is not
small, model III may be inefficient due to some eigenvalues of Yᵀ�−1Y and det

(
Yᵀ�−1Y

)
close to zero (Dempster 1972; Stein 1975). As a result, the profile likelihood of � becomes
unstable. In contrast, model II is less computationally expensive than model III, and
model I is the most efficient one.
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4 Markov chain Monte Carlo algorithm for sampling partitions
We use the prior and posterior distributions of θ and B discussed in Section 2 through
a Markov chain Monte Carlo (MCMC) algorithm for sampling partitions. The iterative
θ is obtained by Gibbs sampling (Geman and Geman 1984) according to the conditional
distribution pn

(
θj|B,GY

) ∝ p(θj) × Lp
(
�−1|GY )

, where p(θj) ∝ θα−1
j /

(
1 + θj

)2α for
j = 1, . . . , J . For instance, α = 1 and the discrete set

{
2−3, 2−2, . . . , 210

}
for the range

of θ are used as the default setting in our experiments. For updating B, the conditional
distribution on partitions is

pn (B|θ ,GY ) ∝ pn(B|λ) × Lp
(
�−1|GY )

,

where pn(B|λ) is the Ewens distribution, and a Metropolis-Hastings algorithm (Metropo-
lis et al. 1953; Hastings 1970) is used to choose the iterative B. λ is set as 1 in the following
applications. After burning in a certain number of the resulting Markov chain, we use the
average of the partition matrix as the similarity matrix to make inference on partition.
The proposal distribution q

(
B(i+1)|B(i),GY

)
is proportional to exp(−a × dxc), where dxc

is the distance between each point and the corresponding centroid of the clusters and a is
a scale hyperparameter which was set as 2 in our experiments. More specifically, a parti-
tion candidate B∗ is generated by re-assigning the label of each point with the probability
proportional to the reciprocal of the distance between each point and the corresponding
centroid.

Algorithm 1Metropolis-Hastings algorithm
1: Initialize B and θ .
2: for i = 1 : N do� N is the number of total iterations. Suppose that the current values

are θ(i) and B(i).
3: Randomly sample θ(i+1) from pn

(
θj|B(i),GY

)
, j = 1, . . . , J .

4: Propose B∗ ∼ q
(
B(i+1)|B(i),GY

)
.

5: Calculate

R = pn (B∗|λ) Lp
(
�(θ(i+1),B∗)−1|GY )

q(B(i)|B∗,GY )

pn(B(i)|λ)Lp
(
�(θ(i+1),B(i))−1|GY )

q(B∗|B(i),GY )
.

6: Accept B(i+1) = B∗ with probability min{1,R}
7: Keep B(i+1) = B(i) with probability 1 − min{1,R}
8: end for
9: return all the B(i)’s and θ(i)’s.

Since Algorithm 1 is a Metropolis-Hastings algorithm, it satisfies the detailed balance
condition, and therefore the generated Markov chain has a stationary distribution (Chib
and Greenberg 1995; Gamerman 1997; Robert and Casella 2010). Since we leave a small
but positive probability that the partition stays the same in the Gibbs sampling and the
discrete posterior of θ stays positive always, then the transition probability

pn(θ(k+1),B(k+1)|θ(k),B(k)) > 0

where θ(k+1) = θ(k) and B(k+1) = B(k), and then the (θ ,B)-valued Markov chain
constructed by Algorithm 1 is aperiodic.



Huang and Yang Journal of Statistical Distributions and Applications            (2020) 7:10 Page 9 of 24

Lemma 2 If n > d + 1, the (θ ,B)-valued Markov chain constructed by Algorithm 1 is
aperiodic.

Since there is always a positive chance that the partition can be split further into the
simplest partition in which each element is a cluster, then all possible partitions communi-
cate with each other, so that the (θ ,B)-valuedMarkov chain constructed by Algorithm 1 is
irreducible. Given the sample size n, the size of the state space of B known as the Bell num-
ber (Bell 1934), and the size of the state space of θ are all finite, then the irreducibility also
implies positive recurrence. Consequently, the (θ ,B)-valued Markov chain constructed
by Algorithm 1 is ergodic (Isaacson and Madsen 1976; Gilks et al. 1996). The properties
are summarized as the following lemma and theorem, whose proofs are relegated to the
Appendix A.

Lemma 3 If n > d + 1, the (θ ,B)-valued Markov chain constructed by Algorithm 1 is
irreducible, and thus is positive recurrent.

Theorem 2 (Ergodic theorem) If n > d + 1, the (θ ,B)-valued Markov chain con-
structed by Algorithm 1 converges to its stationary distribution pn (θ ,B|GY ) ∝ p(θ) ×
pn(B|λ) × Lp

(
�−1|GY )

. More specifically, for any real-valued function f satisfying∑
(θ ,B) |f (θ ,B)|pn(θ ,B|GY ) < ∞, we have

1
n + 1

n∑
i=0

f
(
θ(i),B(i)

)
−→

∑
(θ ,B)

f (θ ,B)pn(θ ,B|GY )

almost surely for all initial value
(
θ(0),B(0)).

5 Analysis of simulated and real data
We test the proposed Bayesian cluster process with Algorithm 1 on both synthetic and
real data. Algorithm 1 with model I and point-wise updating is equivalent to the method
of (Vogt et al. 2010). If there is no prior information of the number of clusters, users
can set the initial partition B as In in which each observation is a block. In practice, we
use a randomly sampled clusters from a discrete uniform distribution of a range chosen
by users. The clustering result is represented by the average of the estimated similarity
matrix

S =
N∑

k=n0+1

B(k)

N − n0
,

where n0 is the number of burn-in iterations. Furthermore, we also define a dissimilarity
matrix D as 1n1ᵀn − S. The dissimilarity matrix, D, can be expressed by a heatmap which
represents a matrix with grayscale colors with white as 1, black as 0, and the spectrum
of gray as values between 0 and 1. The heatmap of the original similarity matrix cannot
be recognized with the naked eye and equivalence relation needs to be decoded from the
matrix B. However, in practice, users can identify clusters through including the names of
rows and columns of the similarity matrix to find which individuals are clustered together.
Additionally, the heatmap function of the stats R package can permute the order of indi-
viduals to have cluster blocks with hierarchical dendrograms. It is challenging to monitor
convergence of the Markov chain because the sampled clusters are random and may vary
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in each iteration. To determine convergence, we run Algorithm 1 ten times for each data
set and stop the chain when we observe the number of clusters remain the same in the
given chain length (Chang and Fisher 2013).

5.1 Illustrative simulated data

Four clusters on the vertices of a unit square data Three simulated data sets are gener-
ated for illustration. In the simulation study, 1000 initial burn-in iterations were discarded,
and 2000 Markov chains of B samples based on each model were used to calculate D.
We first applied the proposed cluster process with model I on the synthetic data for four
clusters centered at the four vertices of a unit square. For each vertex μk , we generate 20
points from N (μk , (1/4)I2) for k = 1, . . . , 4 (see Fig. 1, the left panel). We call the data
XI , and then apply model I to cluster XI with the average within- and between-cluster dis-
tances. The resulting heatmap successfully reveals the true clusters for most of the points
(not shown here).

Then we transform the data by XII = XI ×
(
3 0
0 1/3

)
. The transformed features seem

to have two groups (see Fig. 1, the middle panel), clusters (1, 2) and clusters (3, 4). The
cluster process with model I does not work well for this case, while the heatmap based on
model II without knowing the transformation can reveal the true clusters for most of the
points (not shown here).

Furthermore we transform the data by XIII = XI ×
(
4.1 2.1
1.9 1.1

)
. The transformed fea-

tures are aligned in a straight line (see Fig. 1, the right panel). The transformed data XIII is
more difficult to cluster than XI and XII , since the original four clusters are transformed
to be not well separated.
The resulting heatmap using model III with the initial clusters assigned randomly and

uniformly from {1, 2, 3, 4} reveals the true four clusters for most of the points (see Fig. 2).

5.2 Applications to real data

Besides the synthetic data, we also evaluate the performance of the proposed approach
by using real data. We run 3000 MCMC iterations and burn in the first 1000 iterations,

Fig. 1 The scatter plots for XI , XII , and XIII of the unit square synthetic data from the left to the right. The most
left panel is the original features which have four clusters at the vertices of the unit square with equal size 20;
the middle panel is the features which are transformed by scaling each dimension differently, clusters 1 and 2
are grouped as well as clusters 3 and 4 are grouped; the right panel shows the transformed features are
aligned as a straight line
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Fig. 2 The heatmap of the similarity matrix using model III reveals the true four clusters for most of the
transformed data XIII

and use the heatmap of matrix S to visualize the clusters. The accuracy rate is based
on the average proportion of identical elements of matrix B of the cluster and the true
matrix B, and compared the accuracy rates with k-means (MacQueen 1967) and Mclust
using R package ‘mclust’ with its default setting (Fraley and Raftery 2002). The reason
why we chose R package ‘mclust’ is that Mclust is a model-based clustering approach
using the Gaussian mixture model, which assumes a Gaussian distribution for each com-
ponent under one of the three types covariance structures (the argument of Mclust:
modelNames) 1. Spherical (EII), 2. Diagonal (VVI), and 3. General (VVV) for compar-
ing with our proposed model I, II, III, correspondingly. The main difference is that the
Mclust obtains clusters with an expectation–maximization (EM) algorithm (Dempster
1972; McLachlan and Peel 2000), but our method uses a Metropolis-Hasting algorithm
with the profile likelihood of � to sample clusters.
Model I: Gene expression data of Leukemia patients The gene expression microar-

ray data (Dua and Graff 2019) has been used to study genetic disorder such as identifying
diagnostic or prognostic biomarkers or clustering and classifying diseases (Dudoit et al.
2002). For example, (Golub et al. 1999) classified patients of acute leukemia into two sub
types, Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML). For
illustration purpose, we use the training set of the leukemia data which consists of 3051
genes and 38 tumor mRNA samples. Pretending we do not know the label information,
we would like to cluster the 38 samples according to their 3051 features (gene expression
levels). The two clusters comprise 27 ALL cases and 11 AML cases. Since the number
of features is larger than the sample size, our approach is not applicable to this dataset
directly. Therefore, we first reduce the dimension by projecting the data on the subspace
which consists of the first twenty principal components (PC) (Jolliffe 1986). Note that
these PC scores are orthonormal which satisfies the assumption of model I. The resulting
heatmap based on model I (Fig. 3) reveal the cluster of the 11 AML cases. The accuracy
rate using the proposed model I with the initial clusters assigned randomly and uniformly
from {1, 2} is 0.9164, while the accuracy rates of k-means and Mclust are 0.6994 and
0.5886, respectively. We noticed that Mclust resulted in only one cluster.
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Fig. 3 The heatmap of the similarity matrix using model I identifies the ALL group in the left upper corner
and the AML group in the right bottom corner

Model II: Geographic coordinate data of Denmark’s 3D Road Network
This three-dimensional road network dataset of geographic coordinates includes the

altitude, latitude, and longitude degrees of each road segments in North Jutland in north-
ern Denmark, which is publicly available at the UC Irvine Machine Learning Repository
(Kaul 2013; Dua and Graff 2019). Since three spatial dimensional features are orthogonal,
it satisfies the assumption of model II so that we use this dataset to demonstrate model
II. Three subjects with the road maps OSM ID 144552912 (19 observations), 125829151
(13 observations), 145752974 (14 observations) are used for the clustering analysis. Note
that each objects may have several observations measured from different angles, and the
altitude values are extracted from NASA’s Shuttle Radar Topography Mission (SRTM)
data (Jarvis et al. 2008). The accuracy rate using model II with the initial clusters assigned
randomly and uniformly from {1, 2, 3, 4, 5} is 1, while the accuracy rates of k-means with
k = 3 andMclust are 0.7486 and 0.9490, respectively. The resulting heatmap using model
II (Fig. 4) reveals 3 clusters correctly.

Fig. 4 The heapmat of the similarity matrix using model II correctly reveals three clusters corresponding to
the three buildings in the Denmark 3-D road map data
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Model III: Iris data
This iris dataset (Fisher 1936) contain three species–Setosa, Versicolor, and Virginica

with four features which are the measurements of the variables sepal length and width
and petal length and width in centimeters, respectively. Each species consists of 50 iris
flowers. The data points are clustered by their four features. Here, d = 4, n = 150,
k = 3. The heatmap of the similarity matrix using model III correctly reflects three clus-
ters corresponding to the three species of iris for most points (Fig. 5). The accuracy rate
using the proposed model III with the initial clusters assigned randomly and uniformly
from {1, 2, 3} is 0.9087, while the accuracy rates of k-means with k = 3 and Mclust are
0.7740 and 0.7763, respectively. We noticed that both the k-means and Mclust result in
two clusters by grouping Versicolor and Virginica as a cluster.

6 Concluding discussion
The proposed clustering method is invariant under different groups of affine transfor-
mations and computationally efficient. It identifies clusters for most samples without
knowing the number of clusters in advance, and it may group a big cluster as several small
clusters. These problems are dealt with an exchangeable partition prior which avoids
label-switching problems and the partition valued in the MCMC algorithm is invariant
under linear transformations under three types of covariance structures. The advantage of
replacing the Dirichlet-multinomial prior with its limiting process is that we do not need
to know the number of clusters in advance. The disadvantage is that it may be less efficient
computationally if the number of clusters is known. Note that the proposed approach
does not target the partition maximizing the posterior distribution. Instead, it estimates
the expected partition or the similarity matrix.
The three clustering models are based on the covariance matrix between variables.

There are guidelines of telling which model work best in practice by the experimental
design or testing its sample covarinace matrix. If the features are othornormal or orthog-
onal, then model I and model II are applicable, respectively. Models I and II run faster
than model III due to the structure of the covariance matrix. Otherwise, model III can be
used in general. It works reasonably well across various applications.

Fig. 5 The heatmap of the similarity matrix using model III correctly reveals three clusters corresponding to
the three species of iris for most points
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Since we use the profile likelihood of � in our model, we do not sample the covari-
ance matrix directly, and Lemma 1 and Theorem 1 implies as n > d + 1, the proposed
Metropolis-Hasting algorithm can work. However, the maximum likelihood estimator
(MLE) of the general unstructured covariance matrix will be less efficient if the diagonal
covariance structure is actually correct because it will tend to have small eigenvalues and
a large determinant of the inverse covariance matrix (i.e. �−1). Indeed, when using model
III and even if n > d + 1, � may be near singular. This may make the sampling less effi-
cient. i.e. the acceptance rate may become small (Roberts and Rosenthal 2001). Although
the stationary distribution of the sampled clusters’ Markov chain using Algorithm 1 is
independent of the initial clusters according to Theorem (2), we practically suggest to set
the initial clusters sampled from a discrete uniform distribution of a range given by users
instead of setting each individual as a cluster in order to obtain convergent sampled clus-
ters without using a long Markov chain. This makes the proposed Algorithm 1 sample
more efficiently from a smaller collection of partition candidates.
The proposed clustering algorithm produces the desired clusters with 2000 iterations

after 1000 burn-in iterations in our experiments. The main contributions of our work
include: 1) The proposed three clustering models with three types of covariance struc-
tures can handle general cases of affine transformations. In contrast, (Vogt et al. 2010)
only dealt with the case of model I. 2) Algorithm 1 is efficient, since it updates all individ-
uals’ clusters instead of a single individual’s cluster per iteration. It also ensures that the
resulting partition-valued Markov chain is ergodic and convergent in distribution. 3) The
experiments show the advantages of our cluster process which successfully identifies the
true clusters using the proposed distance matrix. In particular if the clusters are not well
separated, the similarity matrix with probabilistic nature can still reveal the relationships
through hierarchical approaches. The proposed method could be used to extract interest-
ing information from aerial photography, genomic data, and data with attributes under
different scales, especially when the nearest neighbors may belong to different clusters in
the feature space. The proposedmethod can be improved in the further work bymodeling
the mean of each cluster with regression on covariates or non-Gaussian distributions.

Appendix A
Proof of Theorem 1: For any Y ∈ R

n×d , denote Ỹ = Y − 1n1ᵀnY/n. Let Ỹ(n−1) be the
(n− 1) × dmatrix consisting of the first n− 1 rows of Ỹ . Since 1ᵀn Ỹ = 0, then rank(Ỹ ) =
rank(Ỹ(n−1)).
If n ≤ d+1 and rank(Ỹ(n−1)) = n−1, that is, Ỹ(n−1) is of full row rank, then there exists

an orthogonal matrix O ∈ R
d×d (column permutations), such that, Ỹ(n−1)O = (U ,V ),

where U ∈ R
(n−1)×(n−1) is of full rank, and V ∈ R

(n−1)×(d+1−n). We let

a = 1
n
Yᵀ1n, A = O

(
Uᵀ 0
Vᵀ Id+1−n

)
, Z =

(
In−1 0
−1ᵀn−1 0

)
.

It can be verified that Y = (a,A) 
 Z. That is, Y ∈ Orb(Z), where Z is a constant matrix.
If n ≤ d and rank(Y ) = n, then rank(Ỹ(n−1)) = n − 1, since Ỹ(n−1) = WY , where

W = (In−1 − 1n−11ᵀn−1/n,−1n−1/n) is of full row rank n − 1.
Suppose n = d + 1 and rank(Y ) = d = n − 1. Without any loss of generality, we

assume rank(Y(n−1)) = n − 1, where Y(n−1) consists of the first n − 1 rows of Y. Then
Yn = c1Y1 + · · · + cn−1Yn−1 for some c1, . . . , cn−1 ∈ R and Ỹ(n−1) = DY(n−1), where
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D = In−1 − 1n−11ᵀn−1/n − 1n−1cᵀ/n, and cᵀ = (c1, . . . , cn−1). It can be verified that if
c1+· · ·+cn−1 �= 1, then rank(D) = n−1 and rank(Ỹ(n−1)) = n−1; if c1+· · ·+cn−1 = 1,
then rank(D) = n−2 and rank(Ỹ(n−1)) = n−2. Note that if n = d+1 but rank(Ỹ(n−1)) =
n − 2, then Y /∈ Orb(Z). �
Proof of Lemma 1: Suppose the partition matrix B consists of k blocks with block sizes
n1, . . . , nk , where k ≥ 1, ni > 0 for i = 1, . . . , k, and n1 + · · · + nk = n.
We first assume that B = diag

{
1n11

ᵀ
n1 , . . . , 1nk1

ᵀ
nk

}
, which is in its standard form. Then

B = LLᵀ with L = diag{1n1 , . . . , 1nk } ∈ R
n×k and In + θB = In + EEᵀ with E = √

θL.
According to the Sherman-Morrison-Woodbury formula (see, for example, Section

2.1.4 in Golub and Van Loan (2013)), for matrices A ∈ R
n×n and U ,V ∈ R

n×k ,
(A+UVᵀ)−1 = A−1−A−1U(I+VᵀA−1U)−1VᵀA−1 if both A and I+VᵀA−1U are non-
singular. In our case, A = In is nonsingular, U = V = E, and I + VᵀA−1U = Ik + EᵀE =
diag{1 + θn1, . . . , 1 + θnk} is also nonsingular. Thus

(In + EEᵀ)−1

= In − E
(
Ik + EᵀE

)−1 Eᵀ

= In − θL
(
Ik + θLᵀL

)−1 Lᵀ

= In − θ · diag
{

1
1 + θn1

1n11ᵀn1 , . . . ,
1

1 + θnk
1nk1

ᵀ
nk

}

= In − θ · diag
{

1
1 + θn1

In1 , . . . ,
1

1 + θnk
Ink

}
· diag

{
1n11ᵀn1 , . . . , 1nk1

ᵀ
nk

}

= In − θWB.

In general, by row-switching and column-switching transformations, we can always
transform B into its standard form. That is, there exists an orthogonal matrix O such
that Br = OBOᵀ is in standard form. Let Wr = OWOᵀ. Then (In + θB)−1 = Oᵀ(In +
θBr)−1O = Oᵀ(In − θWrBr)O = In − θ · OᵀWrO · OᵀBrO = In − θWB. �
Proof of Lemma 3: In our case, the Markov chain built by Algorithm 1 is actually a dis-
crete chain. It is irreducible since pn(θ(k+1),B(k+1)|θ(k),B(k)) > 0 for each pair of states.
As a direct conclusion of Theorem 4.1 in Gilks et al. (1996), our Markov chain is positive
recurrent. �
Proof of Theorem 2: Algorithm 1 is a Gibbs sampler plus a Metropolis-Hastings com-
ponent for sampling B(i+1). Given B(i) and θ(i+1), the Metropolis-Hastings ratio with
proposal distribution q(B|B(i),GY ) and target distribution pn(θ ,B|GY ) is

R(B(i),B∗) = pn
(
θ(i+1),B∗|GY ) · q(B(i)|B∗,GY )

pn
(
θ(i+1),B(i)|GY ) · q (

B∗|B(i),GY
)

= p
(
θ(i+1)) · pn (B∗|λ) · Lp

(
�(θ(i+1),B∗)−1|GY ) · q(B(i)|B∗,GY )

p(θ(i+1)) · pn(B(i)|λ) · Lp
(
�(θ(i+1),B(i))−1|GY ) · q (

B∗|B(i),GY
)

= pn (B∗|λ) · Lp
(
�(θ(i+1),B∗)−1|GY ) · q(B(i)|B∗,GY )

pn(B(i)|λ) · Lp
(
�(θ(i+1),B(i))−1|GY ) · q(B∗|B(i),GY )

which is exactly R in Algorithm 1. Since Metropolis-Hastings algorithms satisfy detailed
balance condition, the target distribution pn(θ ,B|GY ) is a stationary distribution. By Lem-
mas 2 and 3, the convergence statements follow as a direct conclusion of Theorems 4.3
and 4.4 in Gilks et al. (1996). �
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Appendix B journal name abbreviations for use in Boundary-Layermeteorology
Journal Name Abbreviationused in BLM

ACM Transactions of Mathematical Software ACM Trans Math
Soft

Acoustics Australia Acoust Aust

Acta Geophysica Acta Geophys

Acta Mechanica Synica Acta Mech Sinica

Acta Mechanica Supplement Acta Mech Suppl

Advances in Atmospheric Science Adv Atmos Sci

Advances in Ecological Research Adv Ecol Res

Advances in Meteorology Adv Meteorol

Advances in Science and Research Adv Sci Res

Advances in Water Resources Adv Water Resour

Aeolian Research Aeolian Res

Aerospace Science and Technology Aerosp Sci Technol

Agricultural Meteorology Agric Meteorol

Agricultural and Forest Meteorology Agric For Meteorol

Agricultural Water Management Agric Water Manag

American Institute of Aeronautics and
Astronautics

Am Inst Aeronaut
Astronaut

Annals of Glaciology Ann Glaciol

Annalen der Meteorologie Ann Meteorol

Annals of Statistics Ann Stat

Antarctic Science Antarct Sci

Annual Review of Fluid Mechanics Annu Rev FluidMech

Applied Energy Appl Energy

Applied Mechanics Review Appl Mech Rev

Applied Numerical Mathematics Appl Numer Math

Applied Physics B Appl Phys B

Applied Optics Appl Opt

Aquatic Botany Aquat Bot

Archiv fur Meteorologie Geophysik und
Bioklimatologie Serie A-Meteorologie und
Geophysik

Arch Meteorol Geo-
phys Bioklim Ser A

Archiv fur Hydrobiologie Arch Hydrobiol

Artificial Intelligence Artif Intell

Astronomy & Astrophysics Astron Astrophys

Atmospheric Measurement Techniques Atmos Meas Tech

Atmosphere-Ocean Atmos-Ocean
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Journal Name Abbreviation used in BLM

Atmospheric Research Atmos Res

Atmospheric Science Letters Atmos Sci Lett

Australian Journal of Physics Aust J Phys

Australian Journal of Botany Aust J Bot

Beitraege zur Physik der Atmosphaere Beitr Phys Atmos

Biogeosciences Biogeosciences

Biometrika Biometrika

Biosystems Engineering Biosyst Eng

Boreal Environment Research Boreal Environ Res

Boundary-Layer Meteorology Boundary-Layer
Meteorol

Building and Environment Build Environ

Bulletin of the American Meteorological Society Bull AmMeteorol Soc

Climate Research Clim Res

Cold Regions Science and Technology Cold Reg Sci Technol

Communications in Agricultural and Applied
Biological Sciences

Commun Agric Appl
Biol Sci

Communications in Mathematical Physics Commun Math Phys

Communications on Pure and Applied
Mathematics

Commun Pure Appl
Math

Comptes Rendus Physique C R Phys

Computers and Electronics in Agriculture Comput Electron Agric

Computing and Informatics Comput Inf

Computer Methods in Applied Mechanical
Engineering

Comput Methods Appl
Mech Eng

Computational Statistics and Data Analysis Comput Stat Data Anal

Contributions to Atmospheric Physics Contr Atmos Phys

Crop Protection Crop Prot

Deep Sea Research Part II Deep Sea Res II

Dynamics of Atmpsheres and Oceans Dyn Atmos Oceans

Earth System Science Data Discussions Earth Syst Sci Data
Discuss

Earth Surface Processes and Landforms Earth Surf Process
Landf

Ecological Applications Ecol Appl

Ecological Indicators Ecol Indic

Ecological Modelling Ecol Model

Ecology Ecology
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Journal Name Abbreviation used in BLM

Electronic Journal of Operational Meteorology Electron J Oper
Meteorol

Enerhies Energies

Energy and Buildings Energy Buil

Energy Conversion and Management Energy Convers Manag

Environmental Fluid Mechanics Environ Fluid Mech

Environmental Modeling and Software Environ Modell Softw

Environmental Pollution Environ Pollut

Environmental Research Letters Environ Res Lett

Environmental Science and Technology Environ Sci Technol

Environmental Software Environ Softw

Eos, Transactions, American Geophysical Union Eos Trans AGU

European Journal of Forest Research Eur J For Res

Experiments in Fluids Exp Fluids

Fisheries Research Fish Res

Flow Turbulence and Combustion Flow Turbul Combust

Forestry Forestry

Freshwater Biology Freshwater Biol

Functional Ecology Funct Ecol

Acta Geodaetica et Geophysica Hungarica Geod Geophys

Geografiska Annaler Series A Geogr Ann Ser A

Geography Compass Geogr Compass

Geomorphology Geomorphology

Geophysical Research Letters Geophys Res Lett

Geoscientific Instrumentation, Methods and
Data Systems

Geosci Instrum
Method Data Syst

Geoscientific Model Development Geosci Model Dev

Global Biogeochemical Sciences Glob Biogeochem
Cycles

Glocal Change Biology Glob Change Biol

Hydrology and Earth System Sciences Hydrol Earth Syst Sci

Hydrological Processes Hydrol Proc

IEEE Journal of Ocean Engineering IEEE J Ocean Eng

IEEE Transactions on Geoscience and Remote
Sensing

IEEE Trans Geosci
Remote

International Journal of Climatology Int J Climatol

International Journal of Wildland Fire Int J Wildland Fire

International Journal of Heat and Fluid Flow Int J Heat Fluid Flow



Huang and Yang Journal of Statistical Distributions and Applications            (2020) 7:10 Page 19 of 24

Journal Name Abbreviation used in BLM

International Journal of Numerical Methods for
Fluids

Int J Numer Methods
Fluids

International Journal of Remote Sensing Int J Remote Sens

Izvestiya, Atmospheric and Oceanic Physics Izv Atmos Ocean Phys

Journal of Advances in Modeling Earth Systems J Adv Model Earth Syst

Journal of Aerosol Science J Aerosol Sci

Journal of Agricultural Engineering Research J Agric Eng Res

Journal of the Air Pollution Control Association J Air Pollut Control
Assoc

Journal of Aircraft J Aircr

Journal of Applied Meteorology and Climatology J Appl Meteorol Clim

Journal of Applied Meteorology J Appl Meteorol

Journal of Aquatic Plant Management J Aquat Plant Manag

Journal of Arid Environments J Arid Environ

Journal of Atmospheric and Oceanic Technology J Atmos OceanTechnol

Journal of Atmospheric Science J Atmos Sci

Journal of Climate J Clim

Journal of Computational Physics J Comput Phys

Journal of Earth Simulation J Earth Simul

Journal of Earth System Science J Earth Syst Sci

Journal of Environmental Engineering J Environ Eng

Journal of Experimental Botany J Exp Bot

Journal of the Faculty of Science Hokkaido
University

J Fac Sci Hokkaido Univ

Journal of Field Robotics J Field Robot

Journal of Fluid Mechanics J Fluid Mech

Journal of Geophysical Research J Geophys Res

Journal of Geophysical Research-Atmospheres J Geophys Res Atmos

Journal of Glaciology J Glaciol

Journal of Great Lakes Research J Great Lakes Res

Journal of Hazardous Materials J Hazard Mater A

Journal of Heat Transfer J Heat Transf

Journal of Hydraulic Engineering J Hydraul Eng

Journal of Hydrology J Hydrol

Journal of Hydrometeorology J Hydrometeorol

Journal of Marine Research J Mar Res

Journal of Marine Systems J Mar Syst

Journal de Mathematiques Pures et Appliquees J Math Pures Appl
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Journal Name Abbreviation used in BLM

Journal of Meteorology J Meteorol

Journal of the Meteorological Society of Japan J Meteorol Soc Jpn

Journal of Oceanography J Oceanogr

Journal of Operational Oceanography J Oper Oceanogr

Journal of the operational Research Society J Oper Res Soc

Journal of the Optical Society of America J Opt Soc Am

Journal of Plankton Research J Plankton Res

Journal of Solar Energy Engineering J Sol Energy Eng

Journal of Quantitative Spectroscopy and Radiative
Transfer

J Quant Spectrosc Radiat Transf

Journal of Renewable and Sustainable Energy J Renew Sust Energy

Journal of Scientific Statistical Computing J Sci Stat Comput

Journal of Statistical Physics J Stat Phys

Journal of Thermophysics and Heat Transfer J Thermophys Heat Transf

Journal of Tropical Ecology J Trop Ecol

Journal of Turbulence J Turbul

Journal of Wind Engineering and Industrial
Aerodynamics

J Wind Eng Ind Aerodyn

Landscape and Urban Planning Landsc Urban Plan

Limnology and Oceanography Limnol Oceanogr

Low Temperature Science Low Temp Sci

Machine Learning Mach Learn

Marine Chemistry Mar Chem

Mathematische Annalen Math Ann

Meteorological Applications Meteorol Appl

Meteorology and Atmospheric Physics Meteorol Atmos Phys

Meteorologische Zeitschrift Meteorol Z

Monthly Weather Review MonWeather Rev

Natural hazards and Earth System Sciences Nat Hazards Earth Syst Sci

Nature Climate Change Nat Clim Change

Nature Letters Nat Clim Change

Nature Geoscience Nat Geosci

Neural Computation Neural Comput

Nonlinear Processes in Geophysics Nonlin Process Geophys

New Zealand Journal of Science N Z J Sci

Oceanography Oceanography

Ocean Dynamics Ocean Dyn

Ocean Engineering Science Ocean Eng Sci
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Journal Name Abbreviation used in BLM

Ocean Modeling Ocean Model

Papers in Physical Oceanography and
Meteorology

Pap Phys Oceanogr Meteorol

Particle & Particle Systems Characterization Part Syst Charact
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