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generated: zero-inflated models add an additional probability mass on zero, while
hurdle models are two-part models comprised of a degenerate distribution for the
zeros and a zero-truncated distribution. Developing confidence intervals for such
models is challenging since no closed-form function is available to calculate the mean.
In this study, generalized fiducial inference is used to construct confidence intervals for
the means of zero-inflated Poisson and Poisson hurdle models. The proposed methods
are assessed by an intensive simulation study. An illustrative example demonstrates the
inference methods.
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1 Introduction
The Poisson distribution is arguably one of the most commonly used models for count
data. As such, a large number of inferential tools are available for Poisson-based models,
such as for the ratio of two Poisson rates (Gu et al. 2008), Poisson regression mod-
els (Cameron and Trivedi 1990), and Poisson point processes (Itd 2015). Assuming the
Poisson as an underlying distribution for parametric modeling can be a fairly strong
assumption since one must be willing to posit that their data are equi-dispersed. In prac-
tice, count data almost ubiquitously demonstrate over-dispersion, which can be attributed
to, for example, (spatio-)temporal dependency, unexplained heterogeneity, and/or excess
zeros (Cameron and Trivedi 2013).

One of the earliest papers to address the problem of excess zeros was (Mullahy 1986),
who proposed a two-part model that permits a more flexible data-generating process:
zeros are from a binomial distribution while positive values are from a truncated distri-

bution. Such a model can accommodate under- and over-dispersion. The model using a
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zero-truncated Poisson is often called the Poisson hurdle (PH) model. Later, the seminal
paper of (Lambert 1992) extended this phenomenon of excess zeros to the count regres-
sion setting, but also framed the problem differently with respect to Zow the zeros were
generated. Specifically, a certain number of zeros are expected to be generated accord-
ing to the assumed count distribution (random zeros) while the excess zeros are assumed
to be generated from a separate, degenerate process (structural zeros). This framework
results in a zero-inflated model, which is a two-component mixture model with one
component for the assumed count distribution and the second component a degenerate
distribution at zero. In the work of (Lambert 1992), the development was in the context
of zero-inflated Poisson (ZIP) regression models. Regardless, both PH and ZIP mod-
els accommodate the notion of excess zeros in a Poisson setting, but how the zeros are
generated is treated differently under the two models. Moreover, both models tend to
have comparable performance regarding goodness-of-fit measures, which underscores
how the application should provide the guidance in determining the way the zeros are
generated.

The more complex data setting posed by zero-inflation opens the door to additional
inference considerations, many coupled with their own challenges. For example, there
is a bevy of score tests developed for testing the presence of zero-inflation in various
count data settings; cf. van den Broek (1995); Janaskul and Hinde (2002); Janaskul and
Hinde (2008); Cao et al. (2014); Todem et al. (2018). Bhattacharya et al. (2008) used
a general Bayesian setup for detecting if zero-inflation is present in the data, however,
it is challenging to justify the selection of the prior distribution. Score-based tests are
also available for testing the presence of overdispersion, which can be caused by zero-
inflation; cf. (Ridout et al. 2001; Hall and Berenhaut 2002; Deng and Paul 2005). With
the exception of large-sample-based approaches for constructing confidence intervals on
regression parameters in zero-inflated regression and hurdle regression models, there is
no panacea for constructing reliable, accurate confidence intervals for other parameters
in their non-regression counterparts, such as the population mean of univariate ZIP and
PH distributions.

Deriving confidence intervals for a more complex data setting, like the presence of
excess zeros, is challenging in the frequentist setting. Typically, one resorts to normal-
based theory, but finite sample properties can be highly unreliable. In particular, Wagues-
pack et al. (2020) assessed Wald-based confidence intervals for the ZIP mean. Their
simulation results showed more liberal results for smaller n. As an alternative, they pro-
posed constructing a bootstrap-based confidence interval for the ZIP mean, which had
coverage probabilities much closer to the nominal level. They also conducted a signed
likelihood ratio test (SLRT) for testing the ZIP mean, which controlled the type I error
rate satisfactorily. Bayesian approaches suffer from the challenge to justify the selection of
the prior distribution, just like we noted with the work of Bhattacharya et al. (2008) earlier.
Alternatively, one can consider fiducial inference as proposed by (Fisher 1935). Fiducial
inference struggled to gain popularity among statisticians because of perceived deficien-
cies in the general approach. However, later works have developed more sophisticated
procedures coupled with rigorous theory to mitigate such criticisms, all while reflect-
ing the core tenets of the fiducial paradigm. For example, (Weerahandi 1995) introduced
generalized confidence intervals (GCls) constructed by generalized pivotal quantities
(GPQs), and (Hannig et al. 2006) further established the connection between GCI and
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the fiducial argument of Fisher. For the purposes of our study, we turn to generalized
fiducial distributions as they often lead to attractive solution with asymptotically correct
frequentist coverage levels. Moreover, many simulation studies have shown that general-
ized fiducial solutions have very good small sample properties; see, for example, (Hannig
2009) and (E et al. 2008). There is also some work on fiducial approaches for discrete
distributions. For example, (Mathew and Young 2013) developed fiducial tolerance inter-
vals for functions of discrete random variables, while (Hannig et al. 2016) presented an
extensive summary about computing the generalized fiducial distribution for parameters
of some common discrete distributions. In this paper, we shall consider using the fiducial
inference for the mean of ZIP and PH distributions.

This paper is organized as follows. In Section 2, we give a brief sketch of generalized
fiducial inference, with emphasis on the discrete data setting. In Section 3, we derive the
respective fiducial distributions of the ZIP mean and PH mean. In Section 4, we present
a numerical study to illustrate the good coverage probabilities of GClIs for the ZIP mean
and PH mean constructed using fiducial inference, and demonstrate that the fiducial test
has comparable performance to the SLRT when conducting the ZIP mean test. An anal-
ysis of urinary tract infection data is presented in Section 5. In Section 6, we make some
concluding remarks.

2 Generalized fiducial inference
The aim of generalized fiducial inference is to define a distribution for parameters of inter-
est that contains all of the information from data. Therefore, inference on the parameters
can be made through this distribution. The tenet of generalized fiducial inference is to
switch the role of the parameters and the data. We now briefly explain the philosophy of
generalized fiducial inference.

Suppose that data Y are generated through the structural equation Y = G(§, U), where
& is a vector of parameters and U is some random variable with a known distribution inde-
pendent of the parameter £. The structural equation can be regarded as a data generation
process where the noise process U and the signal £ will produce observed data Y. Hence,
the distribution of Y can be determined via the structural equation given a fixed parame-
ter £ and the distribution U. After the data Y are observed, we can switch the position of
the data and parameters by solving the structural equation conditioned on that the solu-
tion to that equation exists. Thus, we can get £ = Q(Y, U). For more details regarding
this setup, we refer to (Hannig 2009).

2.1 Generalized fiducial inference on discrete data

Let Y now be a discrete random variable with the distribution function F(-|0). We know
that if & ~ U(0,1), data following the distribution F(:|0) can be generated through
Y = F~(U|0), where F~(alf) = inf{y : a < F(y|6)} is the inverse function. According
to the philosophy of generalized fiducial inference, we need to solve the data generating
equation to get the parameter as a function of the data and a known random distribu-
tion. Assume for each fixed y, the distribution is a nonincreasing function of 6. It follows
that Q;,r(u) = sup{f : F(y|#) = u} and QJT (v) = inf{@ : F(y_|0) = u} exist and
satisfy F (le;‘(u)) = F(y_lQ}T (1)) = u. Moreover, the closure of the inverse image is
Qy(w) =[ Qy_ (u), Q;r ()], where F(y_|0) is the left limit of the distribution function. Han-
nig et al. (2016) chose a 50-50 mixture of the upper and lower bound as the generalized
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fiducial distribution for the parameter, so that the fiducial sample of the parameter has
50% chance from either the upper or lower bound.

For the fiducial distributions of multiple parameters, a two-stage method can be applied
based on the minimal sufficient statistics. Let the parameters of interest be & = (&1, &).
Assume that the following two conditions hold:

1 If& is known, there is a statistic S = S1(&2) that has an invertible pivotal
relationship with &;.
2 A statistic Sy exists that Sy and & have an invertible pivotal relationship.

Then we can obtain the fiducial distribution of &, followed by the fiducial distribution of

& given that &; is known.

3 Fiducial distributions for poisson data with excess zeros
3.1 Fiducial distribution of ZIP mean
The ZIP distribution has probability mass function
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where I{4)(2) is the indicator function that z belongs to the set A. The following
proposition establishes the minimal sufficient statistic for a ZIP distribution:

Proposition 3.1 Let X = (X1,Xo,... ,X)T be a random sample from a ZIP distribu-
tion. Denote the sum of the random sample as S and the number of zeros of the random
sample as K, where S = Y " | X; and K = Y [, Iioy(X;). Consequently the minimal
sufficient statistic is (S, K).

Proof First we need to prove (S,K) is sufficient. Let x = (x1,%2,...,%,)" be the
realizations of X. The joint density of (X3,..., X)) is
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where Nt = N\ {0}. According to the factorization theorem, (S, K) is sufficient.
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Now we want to show (S, K) is minimal sufficient. Assume that we have another sample
Y = (Y1,..., YT with corresponding realizations y = (y1, . . . ,y,,)T. The ratio of the two

density functions is

AXim%im XL if (x, y),

P, %) 7+ (1—m)e* Yty Doy e =321 Toy ()
pOImA) ( (1—m)e )

where f is a function that does not depend on the parameters. The ratio is free of (7, 1)

if and only if (37 i > g Lioy(x)) = (Ximq ¥ir D i1 L0y (1)) Hence (S, K) is minimal

sufficient. O

It immediately follows that K ~ Binomial(#, 7 4+ (1 — m)e™), and (S | K = k) has
the same distribution as Z:’;lk Y;, where Y; are independent Poisson(A) random variables
conditioned on the event {Y; > 1}. We also need the following proposition regarding

sums of zero-truncated Poisson distributions:

Proposition 3.2 Let Y1,Ys, ... Ym be independent Poisson(\) random variables condi-
tioned on the event {Y; > 1}. Then

P Yi=k|=—"—— —1)" ik
j=K k!(e*—l)mg<i)( "

j=1
Aem! S(k, m)
- ml{m,MH,.“}(k),
where S(k, m) = % jrio (V,n) (—=1)"7Tj* is the Stirling number of the second kind.

Proof The proof follows by mathematical induction, and can be found in Springael and
Van Nieuwenhuyse (2006). O

Denote the distribution function of the sum of m zero-truncated Poisson(i) by
Fy(k|m, 1), the distribution of Poisson with mean parameter A by Fp(k|1), and the
distribution function of Binomial(#, p) random variables by Fg(k|n, p). It follows that

m m Aj

m—i [T e )
Fi(k|m2) =P ;Yjsk :,;(_1) f(}.)@_l)mpp(m;).

We will use the inverse distribution functions as a data generating equation:
K =Fz (Uilmm 4+ (1 —m)e™) and S = F{ (Ua|n — K, 1),

where U, U, are independent U/ (0, 1). When K = #, the value of S is set as 0.
After observing k and s, and inverting the data generating equation, we see that

Bk 1(Up) <t +(1—m)e™ < Biyrui(UF) and Hy_ s 1(U3) < & < Hy_ps(U3),

where B, (1) is the quantile function of the Beta(a, b) distribution evaluated at # and
H,, s(u) is the solution (in 1) of the equation Fi (s | m,A) = u. Thus, the sample from the
fiducial distribution is obtained by sampling (U7, U/3), and using the above inequalities
to solve for w and A. Consequently, when the parameter of interest is & = (1 — )2, the
mean of the ZIP distribution, we have

Hy—ks—1(U3) (1 — Bry1,n—k(U7)) - < Hys(U3) (1 = By g1 (UY))
1 o Hutor(U3) sHR= 1 — o Hito ) ’
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ifk < n. Whenk =nthen0 < u < oo.

Finally, we need to select a representative region for the fiducial sample. Following
(Hannig et al. 2016), we choose a 50-50 mixture of the upper and lower bound. In the case
of k = n, this results in a 50-50 mixture of 0 and co.

The algorithm for constructing a fiducial confidence interval for a ZIP mean is

implemented as follows:

Algorithm 1

1 Letx = (x1,%,...,%,) " beasample of size n from a ZIP distribution with Poisson

parameter A and binomial parameter 7. Calculate the number of zeros
k = X[ 10y (%;) and the sum of the sample s = X7 ,x;.
2 Generate a realization U} and U independently from 2/(0, 1). Then, calculate the

realizations
H,_j_1(U3(1-B, _ .
i} n—k,s 1( _22[( p k:r(b;i)k( 1)), Ifk <n
— — n—k,s— 2
ML — 1—e .
0, ifk=n
Hy_js(UX)(1—Bg us .
n k,s( Z)EH k,r:uli-;—l( 1))’ lfk <n
M#il — 1—e 'n—ks\H2 .
00, ifk=mn,

where B, ;, (1) is the quantile function of the Beta(a, b) distribution evaluated at u
and H,, s(u) is the solution (in A) of the equation Fi (s | m, 1) = u, where Fi(s | m, A)
is the distribution function of the sum of m zero-truncated Poisson(A).

3 Repeat step 2 B times, yielding 2B fiducial samples of the ZIP mean p, denoted by
My, MY, My, -+, M7, The 1 — a two-sided GCI of the ZIP mean will be the
lower and upper «/2 quantiles of the fiducial samples.

3.2 Fiducial distribution of PH mean
The derivation of the fiducial distribution for the PH model follows that for the ZIP model
mutatis mutandis. The PH distribution has probability mass function:

X,—A

pElm, 2) = whoy@®) + (1 —m) Za— 5

Ity ().
Note that after reparameterization, a ZIP distribution characterized by the binomial
parameter ©; and the Poisson parameter A; can be expressed as a PH distribution that is
characterized by the binomial parameter p = p; + (1 — e~*1) and the truncated Pois-
son parameter Ay = XAj. Hence, the likelihoods of the two models are equivalent. The
selection of the model should be based on how zeros are generated. Note that this equiv-
alency does not hold in the ZIP regression and PH regression settings. In those settings,
the likelihoods are based on a conditional distribution (i.e., ¥ given some covariates) for
determining the estimates of the regression parameters. While the final likelihoods will
typically be similar, they will not be equal.

The following proposition establishes the minimal sufficient statistic for a PH distribu-

tion:
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Proposition 3.3 Let X = (X1, Xa, ..., X,)T be a random sample from a PH distribution.
Denote the sum of the random sample as S and the number of zeros of the random sample
as K, where S = Zf’zl X; and K = Z:;l I10)(X;). Consequently the minimal sufficient
statistic is (S, K).

Proof The proofis identical to the proof of Proposition 3.1, and is therefore omitted. [

Immediately, we see that K ~ Binomial(#n, 77), and (S | K = k) has the same distribution
as Z;’z_lk Y;, where Y; are independent Poisson(A) random variables conditioned on the
event {Y; > 1}. We will then use the inverse distribution functions as a data generating
equation

K =Fz'(Uin,m) and S = F; ' (Ua|n — K, 1),

where U;, U; are independent ¢/ (0, 1). When K = # the value of S is again set as 0.
After observing k and s, and inverting the data generating equation, we see that

Bk,n—k—l—l(uf) =7 = Bl<+1,n—k(uik) and Hn—k,s—l(u;) A= Hn—k,s(u;)»

where B, ;(#) and H,s(u) are as defined for the ZIP setting. Thus, the sample from the
fiducial distribution is obtained by sampling (U7, U;) and using the above inequalities to

solve for = and A. Consequently, when the parameter of interest is ;. = (11__;_ )% the mean
of the PH distribution, we have
Hn—k,s—l (uik) 1- Bk+1,n—k(uik)) < < Hn—k,s(U;)(l - Bk,n—k+l (UT))
1 — o HutorU3) sHh= 1 — o Hutsl5) ’

if k < n. When k = n then we again have 0 < u < oo. Thus, it turns out that the fiducial
distribution of the mean of the ZIP and the mean of the PH are the same.

Finally, just as in the ZIP setting, the selection of a representative region for the fiducial
sample is to choose a 50-50 mixture of the upper and lower bound. In the case of k = n,
this again results in a 50-50 mixture of 0 and co. The algorithm for constructing a GCI for
a PH mean is the same as the ZIP setting, so it is omitted here.

4 Simulation study

We next assess the performance of the GCI just presented through an extensive simula-
tion study. We also compare our results to the bootstrap confidence intervals constructed
using the approach in Waguespack et al. (2020). Note that we do not include a compari-
son with the likelihood-based (i.e., Wald-based) confidence intervals since Waguespack et
al. (2020) already demonstrated the relative superior performance of the bootstrap confi-
dence intervals. The sample sizes used to assess the finite sample performance of the GCI
include n € {15, 30, 100}. For the parameters, the mixture proportion 7 is selected from
{0.2,0.5,0.8} and the mean A of the Poisson distribution is selected from {1, 5}. The sim-
ulation settings for the PH distribution are the same as for the ZIP distribution: sample
sizes n € {15,30, 100}, mixture proportions 7 € {0.2,0.5,0.8}, and mean of the Pois-
son distribution A € {1,5}. Note that when 7 = 0 in the ZIP setting or 7 = e~ in
the PH setting, the data are actually simulated from the Poisson distribution Poisson(}).
Moreover, we demonstrate the performance of our approach when there is no under-
/over-dispersion in the data. Specifically, the same values of 7 and A are considered, but no
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mixing proportion is present (or equivalently # = 0). The number of Monte Carlo sam-
ples for our simulations is set to 10,000 and the number of fiducial samples used is 1000.
We also drew 10,000 bootstrap samples to construct the bootstrap confidence intervals.
For each simulation scenario, we estimated the probability Q(X) = P(Ry(X) < M|X),
where M is the mean of the distribution. If the generalized fiducial inference were exact,
then Q(X) should follow a standard uniform distribution, which could be examined
through Q — Q plots. In the results that follow, coverage probabilities and the median
widths of the GClIs are reported. We report the median widths due to using a 50-50 mix-
ture of 0 and oo as the fiducial distribution of A, which has an expected value of co.
Furthermore, we compare type I error rates and the power for both the SLRT proposed by
Waguespack et al. (2020) and our fiducial test for testing the ZIP mean. The simulation is
set up similarly as in Waguespack et al. (2020) to enable a side-by-side comparison: sam-
ple sizes n € {30, 40, 50}, mixture proportions = € {0.1,0.3,0.5}, and mean of the Poisson
distribution A € {1,1.3,1.6,2}.

The first set of simulation results is for the ZIP distributions. The results are given in
Table 1. As we can see, for the different simulation scenarios, the coverage probabilities
for the bootstrap confidence intervals are typically liberal, especially for the sample sizes
less than 100. Meanwhile, the coverage probabilities for the GCls are all noticeably closer
to the nominal level except for the sample size n = 15 and » = 1. Under such a setting,
the simulated samples are almost all zeros, thus compromising the inference. Even though
the GClIs are conservative in this setting, they are closer to the nominal level compared
to the more liberal bootstrap confidence intervals. The median widths are, of course, nar-
rower for the bootstrap confidence intervals, but that is a result of the procedure being
noticeably liberal relative to the nominal level. The Q — Q plots for the different sample
sizes are given in Fig. 1. As the sample size # increases, the agreement between the actual
p-value and the nominal p-value improves.

The second set of simulation results is for the PH distributions. The results are given
in Table 2. We again obtain similar results as in the ZIP setting for different simulation
scenarios. The coverage probabilities are close to nominal for the GCIs, whereas the boot-
strap confidence intervals are again noticeably liberal. In fact, the setting with sample
size n = 15 and A = 1 appears to be doing slightly better here in the PH setting com-
pared to the analogous results in the ZIP setting. The Q — Q plots for different sample
sizes are given in Fig. 2. The same asymptotic behavior identified in the ZIP setting is also
observed from the present simulation results; specifically, as the sample size n increases,
the agreement between the actual p-value and the nominal p-value improves.

The third set of simulation results we consider is for the Poisson distribution. The
results are given in Table 3. As noted earlier, the Poisson is just a special case of the ZIP
and PH distributions such that there are no excessive zeros. Again, for different simula-
tion scenarios, the coverage probabilities are close to nominal. For » = 15 and n = 30,
there is a clear improvement using the GCIs compared to the bootstrap confidence inter-
vals, but for large #, the procedures are comparable. This illustrates that regardless if
zero-inflation is present in the data, our method is still appropriate for constructing a
confidence interval of the mean. The Q — Q plots for different sample sizes are given in
Fig. 3. Only moderate discrepancies are noticeable when the sample size is small (n = 15)
or moderate (n = 30); however, the tail behavior appears to be very good. Since we want
to construct a 95% confidence interval, it is not a concern as long as the tails are accurate,
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Table 1 Estimated coverage probabilities and median widths for the GCls and bootstrap confidence
intervals for the means generated from different ZIP distributions used in our simulation study

n N x Bootstrap Fiducial
Cov. Prob. Med. Width Cov. Prob. Med. Width
15 0.2 0.905 0.867 0.961 1.037
1 0.5 0.902 0.800 0.978 0973
0.8 0.853 0.400 0.980 0.933
0.2 0.926 2.733 0.959 2.839
5 0.5 0918 2.800 0.952 2915
0.8 0.880 2.067 0.974 2455
30 0.2 0.920 0.667 0.953 0.716
1 05 0912 0.567 0.960 0.649
0.8 0.878 0.367 0.976 0.521
0.2 0934 1.967 0.948 2.002
5 05 0.936 2.067 0.952 2.079
0.8 0918 1.533 0.957 1.636
100 0.2 0.943 0.380 0.950 0.384
1 0.5 0.941 0.330 0.950 0.343
0.8 0.936 0.230 0.958 0.248
0.2 0.950 1.100 0.952 1.101
5 05 0.944 1.150 0.947 1.147
0.8 0.943 0.870 0.952 0.876
1.00: 1.00:
80.75 80.75
© ©
7 7
20.50 =02 A=1 £20.50 =02 A=1
: SHE
O — n=0. = o n=0. =
£0.25 n=02 A=5 £0.25 n=02 i=5
n=05 r=5 n=05 L=5
n=0.8 L=5 n=0.8 L=5
0.00-~ i i ‘ ‘ 0.00-~ i i ‘ ‘
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Nominal p—value Nominal p—value
(@) (b)
1.00-
g0.75
©
T
%0'50' =02 A=1
. IR
8025 1-02 %-5
~ n=05r=5
n=08 A=5
0.00:

-
o
o

0.00 025 050 0.75
Nominal p-value

(©

Fig. 1 Q-Q plots for ZIP models with sample size of (@) n = 15, (b) n = 30,and (c) n = 100
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Table 2 Estimated coverage probabilities and median widths for the GCls and bootstrap confidence
intervals for the means generated from different PH distributions used in our simulation study

n N Bootstrap Fiducial
T
Cov. Prob. Med. Width Cov. Prob. Med. Width
15 0.2 0914 0.867 0.962 1.023
1 0.5 0918 0.867 0.965 1.035
038 0.870 0.600 0.979 0.925
0.2 0.922 2733 0.956 2.828
5 0.5 0.920 2.867 0.954 2933
0.8 0.853 2.067 0.968 2443
30 02 0.931 0.667 0.953 0.708
1 0.5 0.930 0.667 0.954 0.715
0.8 0.891 0.467 0974 0.573
02 0.941 1.967 0.956 2.003
5 05 0.937 2.067 0.950 2.080
0.8 0911 1533 0.954 1.647
100 0.2 0.943 0.370 0.946 0.378
1 0.5 0.944 0.380 0.951 0.384
038 0.938 0.280 0.956 0.292
0.2 0.949 1.100 0.950 1.099
5 0.5 0.942 1.150 0.946 1.149
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Fig. 2 Q-Q plots for PH models with sample size of (@) n = 15, (b) n = 30, and (c) n = 100
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Table 3 Estimated coverage probabilities and median widths for the GCls and bootstrap confidence
intervals for the means generated from different Poisson distributions used in our simulation study

n N Bootstrap Fiducial
Cov. Prob. Med. Width Cov. Prob. Med. Width

15 1 0.897 0.933 0.960 1.055

5 0913 2133 0.962 2442
30 1 0.926 0.700 0.952 0.728

5 0.934 1.567 0.958 1.667
100 1 0.945 0.390 0.951 0.392

5 0.948 0.870 0.956 0.885

which is confirmed by our results in Table 3. The asymptotic behavior is also observed
from the simulation results: as the sample size n increases, the agreement between the
actual p-value and the nominal p-value improves.

The last set of simulation results is to estimate the type I error rates and power of the
SLRT and fiducial test for testing the following for the ZIP mean under o« = 0.05: Hy :
w < po versus H, : u > uo. The pg is assumed to be 1 — 7 and the true ZIP mean is
1 = (1 — ). Therefore, the type I error rate could be estimated when A = 1. The type I
error rates and power of the SLRT and fiducial test are reported in Table 4. Generally, the
performance of the two tests are almost identical. The type I error rates are all close to
the nominal level for both tests while the power is increasing as X or the sample size gets

larger.
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Fig. 3 Q-Q plots for Poisson models with sample size of (@) n = 15, (b) n = 30, and (¢) n = 100
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Table 4 Type | error rates and power of the SLRT and fiducial test for testing the ZIP mean under

a=005Hy:mu <poversusHg : o > po;u =0 —m)h o= (1 —m)

A n b 4 SLRT Fiducial test
1 0.1 0.048 0.046
30 0.3 0.048 0.050
0.5 0.048 0.046
0.1 0.049 0.053
40 03 0.048 0.048
05 0.046 0.050
0.1 0.045 0.050
50 03 0.046 0.053
05 0.045 0.045
1.3 0.1 0.364 0.386
30 03 0.295 0.296
0.5 0217 0.223
0.1 0479 0471
40 03 0.355 0.356
0.5 0.259 0.270
0.1 0517 0.552
50 03 0.408 0422
0.5 0.291 0.298
16 0.1 0.799 0.810
30 03 0.639 0.636
05 0.461 0470
0.1 0.890 0.894
40 0.3 0.745 0.741
05 0.560 0.562
0.1 0.943 0.947
50 03 0.820 0.821
05 0.637 0.640
2 0.1 0.984 0.982
30 03 0.906 0.905
0.5 0.732 0.737
0.1 0.997 0.996
40 03 0.960 0.959
0.5 0.838 0.833
0.1 0.999 0.999
50 03 0.983 0.983
05 0.899 0.904

5 Application: urinary tract infection data

We construct GCIs for a ZIP distribution fit to data on urinary tract infections (UTIs).

Note that our fiducial approach will generate the same GCI no matter if the data fol-

lows a ZIP or PH distribution. Therefore, the UTI data could also serve as an example

for constructing a GCI for a PH distribution. These data came from n = 98 HIV-infected

men who were treated by the Department of Internal Medicine at the Utrecht University

Hospital in the Netherlands. The frequency of times those patients had a UTI was

recorded as X. The frequency table is given in Table 5. The data were analyzed in (van den

Broek 1995), who used a score test to detect if zero-inflation exists. Later, (Bhattacharya

et al. 2008) and (Bayarri et al. 2008) applied Bayesian testing to test for zero-inflation. All
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Table 5 The frequency table of the number of UTIs recorded in the patients admitted at the
Department of Internal Medicine at the Utrecht University Hospital

X 0 1 2 3 Total
Frequency 81 9 7 1 98

of these analyses favor a ZIP distribution. Moreover, the use of a zero-inflated distribu-
tion is appropriate because the zeros are likely arising from two subgroups of men: one
group that are otherwise healthy aside from having HIV (structural zeros), and one group
that has a history of other issues with their urinary system (e.g., kidney stones) and, thus,
could be at higher risk of eventually developing a UTI (random zeros).

The fiducial sample is set to be 10,000. The 95% GCI for the average number of UTIs
that the patients have is (0.157, 0.434). The 95% SLRT confidence interval is (0.157, 0.426),
which is close to the GCI, while the bootstrap confidence interval with 10,000 bootstrap
samples is (0.143,0.398). Even though one can easily calculate the sample mean from
these data (x = 0.266) and infer that, for example, the average number is less than 1, the
approach we have presented now affords us with the additional insights that accompany
confidence interval interpretations, such as the reliability of our estimate of the mean
and how far the spread of that interval falls away from a particular value of interest. We
also know from the coverage study in the previous section that the median width of the
95% GCI will be noticeably wider than the respective 95% bootstrap confidence interval.
Practically speaking, this could have implications on the hospital’s treatment plans for
these UTIs. If treatment plans are benchmarked against the 95% bootstrap confidence
intervals, then smaller and larger values beyond the respective limits of that interval will
be omitted from such plans, whereas those values will be reflected via the 95% GCIL

6 Conclusion

In this article, generalized fiducial inference on ZIP and PH distributions was studied
for the first time and applied to a healthcare dataset. The practical contribution of this
method is that one can now easily calculate and report a confidence interval along with
an estimate of the mean if using either a ZIP or PH model. The theoretical advantage
of this method is that it achieves good small sample properties except for when the zero
proportion 7 is large and the Poisson parameter A is small. Also, it does not depend on
the selection of priors like Bayesian inference, but it only relies on the data generation
equation. A simulation study demonstrated that, for the confidence interval of the mean
of ZIP and PH distributions, the generalized fiducial inference works very well for various
scenarios. Since the Poisson distribution can be considered as a special case of ZIP or
PH distribution, the simulation also shows our method for ZIP and PH distributions can
accommodate constructing the confidence interval of the mean of a Poisson distribution.
Thus, if the goal is only to construct a confidence interval for the mean of the count
data, our approach can be applied directly since it will not be necessary to detect for
zero-inflation or decide if the data are under-/over-dispersed. Furthermore, our fiducial
approach performed equally well as the SLRT when testing the ZIP mean.

We note that there is some computational limitation of the proposed method since
it involves finding the root of a sum of factorials. When the sample size is large or the
Poisson mean parameter is large, the computational effort could become prohibitive. Uni-
formly valid approximation exists for Stirling numbers of the second kind (Temme 1993),
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which can alleviate some of the computational burden, but this can translate to worse
results for coverage probabilities. Such simulation results are not shown here. We also
note that generalized fiducial inference can be very similar to Bayesian inference when
a fiducial distribution is obtained. We highlighted earlier that (Bhattacharya et al. 2008)
used Bayesian inference to test for the presence of zero-inflation. Future research will
be focused on extending the use generalized fiducial inference for selecting the model
between Poisson distribution and ZIP/PH models. Moreover, there are broader inference
considerations when fitting ZIP/PH regression models, such as joint confidence intervals
on the regression parameters and simultaneous confidence intervals over the values of
the covariate space. The utility of such inference is underscored by the recent empha-
sis placed on marginalized ZI regression models, which focuses on modeling the mean
response across the two states (Long et al. 2014; Todem et al. 2016; Martin and Hall 2017).
These are further extensions worth considering in the generalized fiducial framework.

Abbreviations
GCl: Generalized confidence interval; GPQ: Generalized pivotal quantity; PH: Poisson hurdle; SLRT: Signed likelihood ratio
test; UTI: Urinary tract infection; ZIP: Zero-inflated poisson
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