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Abstract

We propose a flexible multivariate stochastic model for over-dispersed count data. Our
methodology is built upon mixed Poisson random vectors (Y1, . . . , Yd), where the {Yi}
are conditionally independent Poisson random variables. The stochastic rates of the {Yi}
are multivariate distributions with arbitrary non-negative margins linked by a copula
function. We present basic properties of these mixed Poisson multivariate distributions
and provide several examples. A particular case with geometric and negative binomial
marginal distributions is studied in detail. We illustrate an application of our model by
conducting a high-dimensional simulation motivated by RNA-sequencing data.
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1 Introduction
As multivariate count data become increasingly common across many scientific disci-
plines, including economics, finance, geosciences, biology, marketing, and others, there
is a growing need for flexible families of multivariate distributions with discrete mar-
gins. In particular, flexible models with correlated classical marginal distributions are in
high demand in many different applied areas (see, e.g., Barbiero and Ferrari (2017); Mad-
sen and Birkes (2013); Madsen and Dalthorp (2007); Nikoloulopoulos and Karlis (2009);
Xiao (2017)). With this in mind, we propose a general method of constructing discrete
multivariate distributions with certain common marginal distributions. One important
example of this construction is a discrete multivariate model with correlated negative
binomial (NB) components and arbitrary parameters. However, our approach is quite
general and can produce families with different margins, going beyond the NB case.
One way to generate multivariate distributions with particular margins is an approach

through copulas (see, e.g., Nelsen (2006)), and multivariate discrete distributions con-
structed through this method have been proposed in recent years (see, e.g., Barbiero and
Ferrari (2017); Madsen and Birkes (2013); Nikoloulopoulos (2013); Nikoloulopoulos and
Karlis (2009); Xiao (2017) and references therein). Recall that a copula is a cumulative
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distribution function (CDF) on [ 0, 1]d, describing a random vector with standard uni-
form margins. Moreover, for any random vector X = (X1, . . . ,Xd)

� with the joint CDF F
and marginal CDFs Fi there is a copula function C(u1, . . . ,ud) so that

F(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)), xi ∈ R, i = 1, . . . , d.

(1)

Further, for continuous distributions with marginal probability density functions (PDFs)
fi(x) = F ′

i(x), the copula function C is unique, and the joint PDF of the {Xi} is given by

f (x1, . . . , xd) =
⎧
⎨

⎩

d∏

i=1
fi(xi)

⎫
⎬

⎭
c(F1(x1), . . . , Fd(xd)), xi ∈ R, i = 1, . . . , d, (2)

where the function c(u1, . . . ,ud) is the PDF corresponding to the copula C(u1, . . . ,ud).
However, for discrete distributions, the copula is no longer unique and there is no ana-
logue of (2) for calculating the relevant probabilities. Using this concept, one can define a
random vector Y = (Y1, . . . ,Yd)� in R

d with arbitrary marginal CDFs Fi viz.

(Y1, . . . ,Yd) =
(
F−1
1 (U1), . . . , F−1

d (Ud)
)
, (3)

where U = (U1, . . . ,Ud)
� is a random vector with standard uniform margins and the

CDF given by

FU(u1, . . . ,un) = P(U1 ≤ u1, . . . ,Ud ≤ ud) = C(u1, . . . ,ud), (u1, . . . ,ud)� ∈[ 0, 1]d ,
(4)

with a particular copula C. While one can use any of the multitude of different copula
functions in this construction, an approach based on Gaussian copula, known as NORTA
(NORmalToAnything, see, e.g., Chen (2001); Song andHsiao (1993)), is especially popu-
lar due to its flexibility, particularly in the case of discrete distributions (see, e.g., Barbiero
and Ferrari (2017); Madsen and Birkes (2013); Nikoloulopoulos (2013)).
While our approach involves copulas as well, the latter connect with continuousmulti-

variate distributions rather than discrete, which avoids the issues with non-uniqueness of
the copula function. Additionally, compared with the direct approach (3), in our scheme
the computation of relevant probabilities is straightforward. Ourmethodology is based on
mixtures of Poisson distributions, which is a commonway of obtaining discrete analogs of
continuous distributions on nonnegative reals with a particular stochastic interpretation.
Indeed, discrete univariatemixed Poisson distributions have been proven useful stochas-
tic models in many scientific fields (see, e.g., Karlis and Xekalaki (2005), where one can
find a comprehensive review of these distributions with over 30 particular examples). This
construction can be described through a randomly stopped Poisson process. More pre-
cisely, let {N(t), t ∈ R+} be a homogeneous Poisson process with rate λ > 0, so that the
marginal distribution of N(t) is Poisson with parameter (mean) λt. Then, for any random
variable T with cumulative distribution function (CDF) FT , supported on R+, the quan-
tity Y = N(T) is an integer-valued random variable, with distribution determined viz.
standard conditioning argument as follows:

P(Y = n) =
∫

R+

e−λt(λt)n

n!
dFT (t), n ∈ N0 = {0, 1, . . .}. (5)
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Many standard probability distributions on N0 arise from this scheme. In particular, if T
has a standard gamma distribution with shape parameter r > 0, given by the PDF

f (x) = 1
�(r)

xr−1e−x, x ∈ R+, (6)

then Y = N(T) will have a NB distribution NB(r, p) with the probability mass function
(PMF)

P(Y = n) = �(n + r)
�(r)n!

pr(1 − p)n, n ∈ N0, (7)

where p = 1/(1+λ) (see Section 3.2 in the Appendix). As the NBmodel is quite important
across many applications and can be extended to more general stochastic processes (see,
e.g., Kozubowski and Podgórski (2009)), it shall serve as a basic example of our approach.
An extension of this scheme to the multivariate case can be accomplished in two differ-

ent ways, leading to mixed multivariate Poisson distributions of Kind (or Type) I and II in
the terminology of Karlis and Xekalaki (2005). The former arises viz.

Y = (Y1, . . . ,Yd) = (N1(T), . . . ,Nd(T)), (8)

where the {Ni(·)} are Poisson processes with rates λi and T is, as before, a random vari-
able on R+, independent of the {Ni}. While in general the marginal distributions of
(N1(t), . . . ,Nd(t)) can be correlated multivariate Poisson (see, Johnson et al. (1997)), we
shall assume that the processes {Ni} are mutually independent. In this case, the joint
probability generating function (PGF) of the {Yi} in (8) is of the form

G(s1, . . . , sd) = E

⎧
⎨

⎩

d∏

i=1
sYii

⎫
⎬

⎭
= φT

⎛

⎝
d∑

i=1
λi −

d∑

i=1
λisi

⎞

⎠ , (s1, . . . , sd)� ∈[ 0, 1]d , (9)

where φT is the Laplace transform (LT) of T, while the relevant probabilities can be
conveniently expressed as

P(Y = y) =
d∏

i=1
gi(yi)h(y), y = (y1, . . . , yd)� ∈ N

d
0 , (10)

where the {gi} in (10) are the marginal PMFs of the {Yi}. As shown in the Appendix, the
function h is of the form

h(y) =
vT
(∑d

i=1 yi,
∑d

i=1 λi
)

∑d
i=1 vT (yi, λi)

, y = (y1, . . . , yd)� ∈ N
d
0 , (11)

where

vT (y, λ) = E

{
e−λTTy

}
, λ, y ∈ R+. (12)

In case of gamma distributed T, with shape parameter r > 0 and unit scale, the functions
v and h above can be evaluated explicitly (see the Appendix for details), and the above
distribution is know in the literature as the multivariate negative multinomial distribu-
tion (see Chapter 36 of Johnson et al. (1997) and references therein). Since the marginal
distributions in this case are NB, the distribution has also been termed multivariate NB.
In cases where the function v(·, ·) is not available explicitly, it can be easily evaluated
numerically, viz. Monte Carlo simulations.
Our main focus will be a more flexible family of mixed Poisson distributions of Kind II,

where each Poisson process {Ni(t), t ∈ R+} is randomly stopped at a different random
variable Ti, leading to
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Y = (Y1, . . . ,Yd) = (N1(T1), . . . ,Nd(Td)), (13)

where the random vector T = (T1, . . . ,Td)
� follows a multivariate distribution on R

d+.
A particular special case of this construction with the {Ti} having correlated log-normal
distributions was recently proposed in Madsen and Dalthorp (2007), where this model
was referred to as lognormal-Poisson hierarchy (L-P model). While that particular model
does not allow explicit forms for marginal PMFs, it proved useful for applications. Our
generalization, which we shall refer to as T-Poisson hierarchy, will allow T in (13) to have
any continuous distribution on R

d+, with margins not necessarily belonging to the same
parametric family. As will be seen in the sequel, the joint PMF of this more general model
can still be written as in (10), with an appropriate function h. In particular, we shall work
with families of distributions of T described by marginal CDFs {Fi} and a copula func-
tion C(u1, . . . ,ud). In this set-up, the PMF of Y, which is still of the form (10), can be
expressed as

P(Y = y) =
d∏

i=1
gi(yi)E {c(F1(X1), . . . , Fd(Xd))} , yi ∈ N0, i = 1, . . . , d, (14)

where the gi are the marginal PMFs of {Yi}, the function c(u1, . . . ,ud) is the PDF corre-
sponding to the copulaC(u1, . . . ,ud), and the {Xi} are independent random variables with
certain distributions dependent on the {yi}. This expression, which is an analogue of (2)
for discrete multivariate distributions defined through our scheme, provides a convenient
way for computing probabilities of these multivariate distributions. This computational
aspect of our construction compares favorably with a cumbersome formula for the PMF
(see, e.g., Proposition 1.1 in Nikoloulopoulos and Karlis (2009)) of the competing method
defined viz. (3).
In what follows, we explore these ideas to provide a flexible multivariate model-

ing framework for dependent count data — emphasizing computationally convenient
expressions and scaleable algorithms for high-dimensional applications. We begin by
showing how multivariate count data can be generated as mixtures of Poisson distri-
butions by developing sequences of independent Poisson processes randomly stopped
at an underlying continuous real-valued random variable T (a T−Poisson hierarchy).
Then we show how our T−Poisson hierarchy scheme gives rise to computationally
convenient joint probability mass functions (PMFs) and how particular choices of param-
eters/distributions can be used to construct well-known models such as themultivariate
negative binomial. Next, we describe a scaleable simulation algorithm using our con-
struction and copula theory. Two examples are provided: a basic example to produce
a multivariate geometric distribution and an elaborate high-dimensional simulation
study, aiming to model and simulate RNA-sequencing data. We note that our modeling
framework and computationally-convenient formulas may facilitate novel data analysis
strategies, but we do not take up that task in this current study. We conclude with an
Appendix containing selected proofs of assertions made throughout.

2 Multivariate mixtures of Poisson distributions
Our goal is to produce a random vector Y = (Y1, . . . ,Yd)� with correlated mixed
Poisson components. To this end, we start with a sequence of independent Poisson pro-
cesses {Ni(t), t ∈ R+}, i = 1, . . . , d, where the rate of the process Ni(t) is λi. Next, we let
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T = (T1, . . .Td)
� have a multivariate distribution on R

d+ with the PDF fT(t). Then, we
define

Y = (Y1, . . . ,Yd) = (N1(T1), . . . ,Nd(Td)). (15)

In the terminology of Karlis and Xekalaki (2005), this is a special case of multivariate
mixed Poisson distributions of Type II. Assuming that the {Ni(t)} are independent of T,
by standard conditioning arguments (see Lemma 7 in the Appendix) we obtain

P(Y = y) =
d∏

i=1

λ
yi
i
yi!

∫

R
d+
e−

∑d
i=1 λiti

d∏

i=1
tyii fT(t)dt. (16)

While in some cases one can obtain explicit expressions for the above joint probabilities,
in general these have to be calculated numerically. The calculations can be facilitated by
certain representations of these probabilities, discussed in the Appendix (see Lemmas 7
and 8 in the Appendix).
This procedure is quite general, and leads to a multitude of multivariate discrete dis-

tributions. Flexible models allowing for marginal distributions of different types can be
obtained by a popular approach with copulas. Assume that T has a continuous distribu-
tion onR

d+ withmarginal PDFs fi and CDFs Fi driven by a particular copulaC(u1, . . . ,ud),
so that the joint CDF of the {Ti} is given by

FT(t) = P(T1 ≤ t1, . . . ,Td ≤ td) = C(F1(t1), . . . , Fd(td)), t = (t1, . . . , td)� ∈ R
d+.

Then according to (2), the joint PDF fT is of the form

fT(t) =
⎧
⎨

⎩

d∏

i=1
fi(ti)

⎫
⎬

⎭
c(F1(t1), . . . , Fd(td)), t = (t1, . . . , td)� ∈ R

d+, (17)

where the function c(u1, . . . ,ud) is the PDF corresponding to the copula CDF
C(u1, . . . ,ud). When we substitute (17) into (16), we get

P(Y = y) =
d∏

i=1

λ
yi
i
yi!

∫

R
d+
e−

∑d
i=1 λiti

d∏

i=1

[
tyii fi(ti)

]
c(F1(t1), . . . , Fd(td))dt. (18)

Using the results presented in the Appendix (see Lemma 7 in the Appendix), one can
show that the marginal PMFs of the {Yi} are given by

P(Yi = y) = λ
y
i
y!
E

[
e−λiTiTy

i

]
= E

[
fλiTi(W )

]
, (19)

where fλiTi(·) is the PDF of λiTi and W has a standard gamma distribution with shape
parameter y + 1. With this notation, we can write (18) in the form

P(Y = y) =
d∏

i=1
P(Yi = yi)

∫

R
d+
c(F1(t1), . . . , Fd(td))g(t|y)dt, (20)

where the quantity g(t|y) in the above integral is the joint PDF of multivariate distribution
with independent margins,

g(t|y) =
d∏

i=1
gi(ti|yi) (21)

with

gi(t|y) = tye−λit fi(t)
E
[
Ty
i e−λiTi

] , t ∈ R+. (22)
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Thus, the integral in (20) can be expressed as
∫

R
d+
c(F1(t1), . . . , Fd(td))g(t|y)dt = E {c(F1(X1), . . . , Fd(Xd))} , (23)

where X = (X1, . . . ,Xd)
� has a multivariate distribution with independent components,

governed by the PDF specified by (21) - (22). This leads to the following result.

Proposition 1 In the above setting, the joint probabilities (18) admit the representation

P(Y = y) =
d∏

i=1
P(Yi = yi)E {c(F1(X1), . . . , Fd(Xd))} , y = (y1, . . . , yd)� ∈ N

d
0 , (24)

where the marginal probabilities are given by (19) and the PDF of X = (X1, . . . ,Xd)
� is

given by (21) - (22).

Let us note that the joint moments of the Y1, . . .Yd exist whenever their counterparts
of T1, . . . ,Td are finite, in which case they can be evaluated by standard conditioning
arguments. In particular, the mean and the covariance matrix of Y are related to their
counterparts connected with T in a simple way, specified by Lemma 9 in the Appendix. It
follows that EYi = λiETi and VarYi = λiETi + λ2iVarTi, so the distributions of the {Yi}
are always over-dispersed. Moreover, we have

Cov(Yi,Yj) = λiλjCov(Ti,Tj), i �= j,

so that the correlation coefficient of Yi and Yj (if it exists) is related to that of Ti and Tj as
follows:

ρYi,Yj = ci,jρTi,Tj , i �= j, (25)

where

ci,j =
√

λi
√

λj
√

λi + E(Ti)
Var(Ti)

√

λj + E(Tj)
Var(Tj)

, i �= j. (26)

Remark 1 While in general the correlation can be positive as well as negative and admits
the same range as its counterpart for Ti and Tj, the range of possible correlations of Yi
and Yj can be further restricted if the margins are fixed. The maximum and minimum
correlation can be deduced from (25) - (26) and the range of correlation corresponding to
the joint distribution of Ti and Tj. The later is provided by theminimum and themaximum
correlations, corresponding to the lower and the upper Fréchet copulas,

CL(u1,u2) = max{u1 + u2 − 1, 0}, CU(u1,u2) = min{u1,u2}, u1,u2 ∈[ 0, 1] . (27)

The upper bound for the correlation is obtained when the distribution of (Ti,Tj) is driven
by the upper Fréchet copula CU in (27), so that Ti

d= F−1
i (U) and Tj

d= F−1
j (U), where U

is standard uniform and the Fi(·), Fj(·) are the CDFs of Ti, Tj, respectively. Similarly, the
lower bound for the correlation is obtained when the distribution of (Ti,Tj) is driven by the
lower Fréchet copula CL in (27), where we have Ti

d= F−1
i (U) and Tj

d= F−1
j (1−U). While

these correlation bounds are usually not available explicitly, they can be easily obtained by
Monte-Carlo approximations viz. simulation from these (degenerate) probability distribu-
tions or by other standard approximate methods (see, e.g., Demitras and Hedeker (2011),
and references therein).
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Remark 2 We note that when a bivariate random vector Y = (Y1,Y2)� is defined viz.
(15) and the distribution of the correspondingT = (T1,T2)� is driven by one of the copulas
in (27), then the distribution of T is not absolutely continuous and the above derivations
leading to the PDF of Y need a modification. It can be shown that in this case the marginal
distributions of the Yi are still given by (19) while the joint PMF of (Y1,Y2)� is also as in
(20) with d = 2, but with the integral term replaced with

∫ 1

0
g1(u|y1)g2(u|y2)du and

∫ 1

0
g1(u|y1)g2(1 − u|y2)du (28)

under the upper and the lower Fréchet copula cases, respectively, where the gi(·|y) in (28)
are PDFs on (0, 1) given by

gi(u|y) =
e−λiF−1

i (u)
[
F−1
i (u)

]y

E
[
e−λiTiTy

i
] , u ∈ (0, 1), y ∈ N0, i = 1, 2. (29)

Again, while the integrals in (28) are rarely available explicitly, they can be easily approx-
imated by Monte-Carlo simulations in order to compute the joint PMF of Y = (Y1,Y2)�.
These two “extreme" distributional cases can also be used to derive the full range of the val-
ues for the correlation of Y = (Y1,Y2)� when the marginal distributions (19) are fixed, if
needed.

2.1 Mixed Poisson distributions with NBmargins

We now consider the case where the mixed Poisson marginal distributions of Y are NB,
so that the marginal distributions of T are gamma (see Lemma 1 in Appendix). Thus,
we shall assume that the coordinates of the random vectors T have univariate standard
gamma distributions with shape parameters ri ∈ R+, i = 1, . . . , d. There have been
numerous multivariate gamma distributions developed over the years, and we could use
any of them here. However, we follow a general approach based on copulas, discussed
above. Thus, we assume that the dependence structure of T is governed by some copula
function C(u1, . . . ,ud), which admits the PDF c(u1, . . . ,ud). In this case, the fi in (18) are
given by (6) where r = ri and the Fi are the corresponding CDFs. Here, themarginal PMFs
of the {Yi} in (19) are given by

P(Yi = y) = �(y + ri)
�(ri)y!

prii (1 − pi)y , y ∈ N0, (30)

where the NB probabilities are given by pi = 1/(1+λi) ∈ (0, 1) (so that λi = (1−pi)/pi >

0). Further, the PDF of X in Proposition 1 is still given by (21), where the marginal PDFs
gi(·|yi) now admit explicit expressions

gi(t|yi) = (1 + λi)yi+ri

�(yi + ri)
tyi+ri−1e−(1+λi)t , t ∈ R+. (31)

We recognize that these are gamma PDFs. Thus, in this special case of multivariate mixed
Poisson distributions of Type II with NB marginal distributions, the random vector X in
the representation (14) hasmultivariate gamma distribution as well, but with independent
margins. This fact is summarized in the result below.

Corollary 1 Let Y have a mixed Poisson distribution defined viz. (15), where the {Ni(·)}
are independent Poisson processes with respective rates λi and T has multivariate gamma
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distribution with standard gamma margins with shape parameters ri and CDFs Fi, gov-
erned by a copula PDF c(u). Then, the marginal PMFs of Y are given by (30) with
pi = 1/(1 + λi) ∈ (0, 1) and its joint PMF is given by (14), where X = (X1, . . . ,Xd)

� has
multivariate gamma distribution with independent gamma marginal distributions of the
{Xi} with PDFs given by (31).

Remark 3 If the expectation in (14) does not admit an explicit form in terms of the
y1, . . . , yd, one can approximate its value viz. straightforwardMonte-Carlo approximation
involving random variate generation of independent gamma random variates {Xi}.

Let us note that since the {Ti} have standard gamma distributions with shape param-
eters ri, we have E(Ti) = Var(Ti) = ri, and an application of Lemma 9 leads to the
following result.

Proposition 2 Let Y have a mixed Poisson distribution defined viz. (15), where the
{Ni(·)} are independent Poisson processes with respective rates λi and T has multivariate
gamma distribution with standard gamma margins with shape parameters ri and CDFs
Fi, governed by a copula PDF c(u). Then, E(Y) = I(λ)r, where r = (r1, . . . , rd)� and I(λ)

is a d × d diagonal matrix with the {λi} on the main diagonal. Moreover, the covariance
matrix of Y is given by

�Y = I(λ)I(r) + I(λ)�TI(λ)�,

where �T is the covariance matrix of T and I(r) is a d × d diagonal matrix with the {ri}
on the main diagonal.

Remark 4 The correlation of Yi and Yj is still given by (25), where this time

ci,j =
√

λi
1 + λi

√
λj

1 + λj
, i �= j,

since in (26) we have E(Ti) = Var(Ti). Let us note that while in principle the quantities
ci,j can assume any value in (0, 1) when we choose appropriate λi and λj, they are fixed for
particular marginal NB distributions, since in this model the NB probabilities are given by
pi = 1/(1 + λi). In the terms of the latter, we have

ci,j = √
1 − pi

√
1 − pj, i �= j.

These quantities, along with the full range of correlations for ρTi,Tj in (25), can be used
to obtain the upper and lower bounds for possible correlations of Yi and Yj in this model.
We note that the possible range of ρTi,Tj depends on the shape parameters ri and rj. If the
{Ti} are exponential (so that ri = rj = 1), then the upper limit of their correlation can be
shown to be 1. However, the full range for the correlation of Ti and Tj is usually a subset
of [−1, 1], which can be approximated by Monte-Carlo simulations (see Remarks 1-2) or
other approximate methods (see, e.g., Demitras and Hedeker (2011)).

2.2 Simulation

One particular way of defining this model, convenient for simulations, is by using the
Gaussian copula to generate T. This is a very popular methodology due to its flexibility
and ease of simulating from a required multivariate normal distribution. The Gaussian
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copula is one that corresponds to a multivariate normal distribution with standard nor-
mal marginal distributions and covariance matrix R. Since the marginals are standard
normal, this R is also the correlation matrix. If FR is the CDF of such multivariate normal
distribution, then the corresponding Gaussian copula CR is defined through

FR(x1, . . . , xd) = CR(�(x1), . . . ,�(xd)),

where �(·) is the standard normal CDF. Note that the copula CR is simply the CDF of the
random vector (�(X1), . . . ,�(Xd))

�, where (X1, . . . ,Xd)
� ∼ Nd(0,R). If the distribution

is continuous (so that R is non-singular), the copula CR admits the PDF cR, given by

cR(u1, . . . ,ud) = 1
|R|1/2 e

− 1
2 (�−1(u))T (R−1−Id)�−1(u), u = (u1, . . . ,ud)� ∈[ 0, 1]d ,

(32)

where �−1(u) = (�−1(u1), . . . ,�−1(ud))� and Id is d × d identity matrix. This cR will
then be used in equations (20), (23), and (14). Simulation of multivariate gamma T with
margins Fi based on this copula is quite simple, and involves the following steps:

(i) Generate X = (X1, . . . ,Xd)
� ∼ Nd(0,R);

(ii) Transform X to U = (U1, . . . ,Ud)
� viz Ui = �(Xi), i = 1, . . . , d;

(iii) Return T = (T1, . . . ,Td)
�, where Ti = F−1

i (Ui), i = 1, . . . , d;

Remark 5 This strategy of using Gaussian copula to generate multivariate distributions
is quite popular indeed, and it became known in the literature as the NORTA (NORmal
To Anything) method (see, e.g., Chen (2001); Song and Hsiao (1993)). This methodology
has been recently used to generate multivariate discrete distributions, see, e.g., Barbiero
and Ferrari (2017), Madsen and Birkes (2013), or Nikoloulopoulos (2013) and references
therein. The standard approach discussed in these papers proceeds by simulating the vector
U from the Gaussian copula following the steps (i) - (ii) above and then transforming the
coordinates of U directly viz. the inverse CDFs of the components of the target random
vector Y = (Y1, . . . ,Yd)�, which can be described as

(iii)’ Return Y = (Y1, . . . ,Yd)�, where Yi = G−1
i (Ui), i = 1, . . . , d;

Here, the Gi are the CDFs of the Yi. If the distributions of the Yi are discrete (such as NB),
the inverse CDF is defined in the standard way as

G−1(u) = inf{y : G(y) ≥ u}.
The difference of our approach and the one discussed in the literature as described above
is in the final step, regardless of the particular copula c that is used. In the standard
approach one first simulates random U from c and then proceeds viz. (iii)’ above to get the
target random vector Y (having a multivariate distribution with CDFs Gi). On the other
hand, our proposal is to first generate T viz. step (iii) above and then obtain the target
variable viz. (15). While our methodology involves an extra step compared with this direct
method, it offers a simple way of calculating the joint probabilities, which is not available
in the other approach. Additionally, our methodology offers a stochastic explanation of the
resulting distributions viz. mixing mechanism and its relation to the underlying Poisson
processes, which is lacking in the somewhat artificial standard approach. Another advan-
tage of the approach viz. mixed Poisson are possible extensions to more general stochastic
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processes in the spirit of the NB process studied by Kozubowski and Podgórski (2009). On
the other hand, its disadvantage is the fact that not all discrete marginal distributions can
be obtained, only those that are mixed Poisson to begin with.

Remark 6 Let us note that the mixed Poisson approach to generate multivariate distri-
butions was used in Madsen and Dalthorp (2007), where Y was obtained viz. (15) with
standard Poisson processes and where T = eX with X being multivariate normal with
meanμ = (μ1, . . . ,μd)

� and covariancematrix� =[ σi,j]. Since in this case themarginals
of T have log-normal distributions, the authors referred to this construction as lognormal-
Poisson hierarchy. This can be seen as a special case our scheme, where we have λi = eμi

and the marginal CDFs of Ti of the form Fi(t) = �(log ti/σii). The copula PDF of the {Ti}
is the Gaussian copula (32) where R is the correlation matrix corresponding to �.

An important aspect of this problem is how to set the parameters of the underlying copula
function so that the distribution of Y has given characteristics, such as the means and the
covariances (and correlations). In the case where a Gaussian copula is used, this has to
do with determining the correlation matrix R. This problem arises in the general scheme
(i)—(iii) as well — and has been discussed in the literature (see, e.g., Barbiero and Ferrari
(2017); Xiao (2017); Xiao and Zhou (2019)). Generally, there is no simple relation between
R and the correlation matrix of T in (i)—(iii). However, other measure of associations -
such as Kendall’s τ or Spearman’s ρ do transfer directly and may be preferred to use in
our set-up. These issues will be the subject of further research.

3 Examples
We provide two examples. The first example describes the T-Poisson hierarchy approach
to construct a multivariate geometric distribution. Second, we demonstrate how the T-
Poisson hierarchy can be used to conduct a high-dimensional (d = 1026) simulation study
inspired by RNA-sequencing data — a challenging computational task.

3.1 Multivariate geometric distributions

Suppose that the random vector T in (15) has marginal standard exponential distribu-
tions, so that the marginal CDFs of the {Ti} are of the form

Fi(t) = 1 − e−t , t ∈ R+. (33)

In this case, the {Yi} have geometric distributions with parameters pi = 1/(1+λi), so that

P(Yi = y) = pi(1 − pi)y, y ∈ N0. (34)

One can then obtain a multitude of multivariate distributions with geometric margins
by selecting various copulas for the underlying distributions of T. As an example, con-
sider the case with Farlie-Gumbel-Morgenstern (FGM) copula driven by a parameter
θ ∈[−1, 1], given by

C(u) =
d∏

i=1
ui

⎛

⎝1 + θ

d∏

i=1
(1 − ui)

⎞

⎠ , u = (u1, . . . ,ud)� ∈[ 0, 1]d . (35)



Knudson et al. Journal of Statistical Distributions and Applications             (2021) 8:6 Page 11 of 21

Consider a two dimensional case with d = 2, where the PDF corresponding to (35) is of
the form

c(u) = 1 + θ(1 − 2u1)(1 − 2u2), u = (u1,u2)� ∈[ 0, 1]2 . (36)

In this case, the random vector X = (X1,X2)� in Corollary 1 has independent gamma
margins (31) with shape parameters yi +1 and scale parameters 1+λi, i = 1, 2. Using this
fact, coupled with (33), one can evaluate the expectation in (14), leading to

E {c(F1(X1), F2(X2))} = 1 + θ

[

1 − 2
(

1
1 + p1

)y1+1
][

1 − 2
(

1
1 + p2

)y2+1
]

. (37)

In view of Corollary 1, this leads to the following expression for the joint probabilities of
bivariate geometric distribution defined by our scheme viz. FGM copula:

P(Y = y) =
2∏

i=1
pi(1−pi)yi

{

1 + θ

2∏

i=1

[

1 − 2
(

1
1 + pi

)yi+1
]}

, y = (y1, y2)� ∈ N
2
0.

(38)

We shall denote this distribution byGEO(p1, p2, θ). When θ = 0, the {Yi} are independent
geometric variables with parameters pi ∈ (0, 1), i = 1, 2. Otherwise, Y1,Y2 are correlated,
with

Cov(Y1,Y2) = θ

4
1 − p1
p1

1 − p2
p2

, (39)

as can be verified by routine, albeit tedious, algebra. In turn, the correlation of Y1,Y2
becomes

ρY1,Y2 = θ

4
√
1 − p1

√
1 − p2, (40)

and can generally take any value in the range (−1/4, 1/4).

3.2 Simulating RNA-seq data

This section describes how to simulate data using a T-Poisson hierarchy, aiming to
replicate the structure of high-dimensional dependent count data. In fact, simulating
RNA-sequencing (RNA-seq) data is a one of the primary motivating applications of the
proposed methodology, seeking scaleable Monte Carlo methods for realistic multivariate
simulation (for example, see Schissler et al. (2018)).
The RNA-seq data generating process involves counting how often a particular messen-

ger RNA (mRNA) is expressed in a biological sample. Since this is a counting process with
no upper bound, many modeling approaches use discrete random variables with infinite
support. Often the counts exhibit over-dispersion and so the negative binomial arises as
a sensible model for the expression levels (gene counts). Moreover, the counts are corre-
lated (co-expressed) and cannot be assumed to behave independently. RNA-seq platforms
quantify the entire transcriptome in one experimental run, resulting in high-dimensional
data. In humans, this results in count data corresponding to over 20,000 genes (cod-
ing genomic regions) or even over 77,000 isoforms when alternating spliced mRNA are
counted. This suggests simulating high-dimensional multivariate NB with heterogeneous
marginals would be useful tool in the development and evaluation of RNA-seq analytics.
In an illustration of our proposed methodology applied to real data, we seek to simulate

RNA-sequencing data by producing simulated random vectors generated from the Type II
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T-Poisson framework (as in Eq. (13)). Our goal is to replicate the structure of a breast can-
cer data set (BRCA: breast cancer invasive carcinoma data set from The Cancer Genome
Atlas). For simplicity, we begin by filtering to retain the top 5% highest expressing genes
of the 20,501 gene measurements from N = 1212 patients’ tumor samples, resulting in
d = 1026 genes. All these genes exhibit over-dispersion and, so, we proceed to estimate
the NB parameters (ri, pi), i = 1, . . . , d, to determine the target marginal PMFs gi(yi) (via
method of moments). Notably, the p̂′

is are small — ranging in [ 3.934×10−6, 1.217×10−2].
To complete the simulation algorithm inputs, we estimate the Pearson correlation matrix
RY and set that as the target correlation.
With the simulation targets specified, we proceed to simulate B = 10, 000 random vec-

tors Y= (Y1, . . . ,Yd)� with target Pearson correlation RY and marginal PMFs gi(yi) using
a T-Poisson hierarchy of Kind II. Specifically, we first employ the direct Gaussian copula
approach to generate B random vectors following a standard multivariate Gamma distri-
bution T with shape parameters ri equal to the target NB sizes and Pearson correlation
matrix RT. Care must be taken when setting the specifying R (refer to Eq. (32)) — we
employ Eq. (25) to compute the scaling factors ci,j and adjust the underlying correlations
to ultimately match the target RY. Notably, of the 525,825 pairwise correlations from the
1026 genes, no scale factor was less than 0.9907, indicating the model can produce essen-
tially the entire range of possible correlations. Here we are satisfied with approximate
matching of the specified Gamma correlation and set R = RT in our Gaussian copula
scheme (R indicating the specified multivariate Gaussian correlation matrix). Finally, we
generate the desired random vector Yi = Ni(Ti) by simulating Poisson counts with
expected value μi = λi × Ti, for i = 1, . . . , d, (with λi = (1−pi)

pi ) and repeat B = 10, 000
times.

Fig. 1 The T-Poisson strategy produces simulated random vectors from a multivariate negative binomial (NB)
that replicate the estimated structure from an RNA-seq data set. The dashed red lines indicated equality
between estimated parameters (vertical axes; derived from the simulated data) and the specified target
parameters (horizontal axes)
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Figure 1 shows the results of our simulation by comparing the specified target parame-
ter (horizontal axes) with the corresponding quantities estimated from the simulated data
(vertical axes). The evaluation shows that the simulated counts approximately match the
target parameters and exhibit the full range of estimated correlation from the data. Utiliz-
ing 15 CPU threads in a MacBook Pro carrying a 2.4 GHz 8-Core Intel Core i9 processor,
the simulation completed in less than 30 seconds.

Appendix
Gamma-Poissonmixtures

For the convenience of the reader, we include a short proof of the well-known fact stating
that Poisson distribution with gamma-distributed parameter is NB (see, e.g., Solomon
(1983)).

Lemma 1 If {N(t), t ∈ R+} is a homogeneous Poisson process with rate λ = (1− p)/p >

0 and T is an independent standard gamma variable with shape parameter r, then the
randomly stopped process, Y = N(T), has a NB distribution NB(r, p) with the PMF (7).

Proof Suppose that T has a standard gamma distribution with the PDF (6) and the
corresponding CDF FT . When we substitute the latter into (5), we obtain

P(Y = n) =
∫

R+

e−λt(λt)n

n!
1

�(r)
tr−1e−tdt.

After some algebra, this produces

P(Y = n) = �(n + r)
�(r)n!

λn

(1 + λ)n+r

∫

R+

(1 + λ)n+r

�(n + r)
tn+r−1e−t(1+λ)dt.

Since the integrand above is the PDF of gamma distribution with shape n + r and scale
1 + λ, the integral becomes 1 and we have

P(Y = n) = �(n + r)
�(r)n!

(
1

1 + λ

)r (
λ

1 + λ

)n
,

which we recognize as the NB probability from (7) with p = (1+ λ)−1. The result follows
when we set λ = (1 − p)/p in the above analysis.

Mixedmultivariate Poisson distributions of type I

Here we provide basic distributional facts about mixed multivariate Poisson distributions
of Type I, which are the distributions of Y = (Y1, . . . ,Yd)� = (N1(T), . . . ,Nd(T))�,
where the {Ni(·)} are independent Poisson processes with rates λi and T is a random
variable on R+, independent of the {Ni}.

Lemma 2 In the above setting, the PGF of Y is given by

G(s) = E

⎧
⎨

⎩

d∏

i=1
sYii

⎫
⎬

⎭
= φT

⎛

⎝
d∑

i=1
λi −

d∑

i=1
λisi

⎞

⎠ , s = (s1, . . . , sd)� ∈[ 0, 1]d ,

where φT is the LT of T.
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Proof By using standard conditioning argument, we have

G(s) = E

⎧
⎨

⎩

d∏

i=1
sYii

⎫
⎬

⎭
=
∫

R+
E

⎧
⎨

⎩

d∏

i=1
sYii

∣
∣
∣
∣
∣
∣
T = t

⎫
⎬

⎭
dFT (t). (41)

Since given T = t the variables {Yi} are independent and Poisson distributed with means
{λit}, respectively, we have

E

⎧
⎨

⎩

d∏

i=1
sYii

∣
∣
∣
∣
∣
∣
T = t

⎫
⎬

⎭
=

d∏

i=1
E
{
sYi
∣
∣T = t

} =
d∏

i=1
e−λit(1−si) = e−t

(∑d
i=1 λi−∑d

i=1 λisi
)

.

When we substitute the above into (41) we conclude that the PGF of Y is indeed of the
form stated above.

Remark 7 Note that in the dimensional case d = 1, we recover the well-known formula
for the PGF of Y = N(T),

G(s) = φT (λ(1 − s)), s ∈[ 0, 1] , (42)

where λ > 0 is the rate of the Poisson process {N(t), t ∈ R+}. If we further assume that T
is standard gamma distributed with shape parameter r > 0, so that

φT (t) =
(

1
1 + t

)r
, t ∈ R+,

and we take λ = (1 − p)/p, we obtain

G(s) =
(

p
1 − (1 − p)s

)r
, s ∈[ 0, 1] . (43)

We recognize this as the PGF of the NB distribution NB(r, p), as it should be according to
Lemma 1. Similarly, the PGF of a d-dimensional mixed Poisson distribution with such a
gamma distributed T takes on the form

G(s) =
(

1
Q −∑d

i=1 Pisi

)r

, s = (s1, . . . , sd)� ∈[ 0, 1]d ,

where Pi = λi and Q = 1 + ∑d
i=1 Pi. This is a general form of multivariate negative

multinomial distribution (see Chapter 36 of Johnson et al. (1997)). Since the PGF of the
marginal distributions of Yi in this setting is of the form (43) with p = (1 + λi)−1, all
marginal distributions are NB. Due to this property, discrete multivariate distributions
with the above PGFs have been termed multivariate NB distributions (for more details, see
Johnson et al. (1997)).

Remark 8 Let us note that changing a scaling factor of the variable T in this model
has the same effect as adjusting the rate parameters connected with the Poisson processes
{Ni(·)}. Namely, it follows from Lemma 2 that if we let T̃ = cT in the above setting, then
we have the following equality in distribution:

(
N1
(
T̃
)
, . . . ,Nd

(
T̃
))� d= (

Ñ1(T), . . . , Ñd(T)
)� , (44)

where the {Ñi(·)} are independent Poisson processes with rates cλi, respectively. Thus, with-
out loss of generality, we may assume that the scale parameter of the variable T in this
model is set to unity.
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Lemma 3 In the above setting, the PMF of Y is given by

P(Y = y) =
d∏

i=1
gi(yi)h(y), y = (y1, . . . , yd)� ∈ N

d
0 ,

where

gi(y) = λ
y
i
y!
vT (y, λi), y ∈ N0,

are the marginal PMFs of the {Yi},
vT (y, λ) = E

{
Tye−λT

}
, λ, y ∈ R+,

and the function h is given by

h(y) =
vT
(∑d

i=1 yi,
∑d

i=1 λi
)

∏d
i=1 vT (yi, λi)

, y = (y1, . . . , yd)� ∈ N
d
0 .

Proof Since given T = t the variables {Yi} are independent and Poisson distributed with
means {λit}, respectively, by using standard conditioning argument, followed by some
algebra, we have

P(Y = y) =
d∏

i=1

λ
yi
i
yi!

∫

R+
e−t

∑d
i=1 λi t

∑d
i=1 yidFT (t) =

⎡

⎣
d∏

i=1

λ
yi
i
yi!

⎤

⎦

⎡

⎣vT

⎛

⎝
d∑

i=1
yi,

d∑

i=1
λi

⎞

⎠

⎤

⎦ .

(45)

Similarly, the marginal PMFs are given by

P(Yi = y) = λ
y
i
y!

∫

R+
e−tλi tydFT (t) = λ

y
i
y!
vT (y, λi) . (46)

By combining (45) and (46), we obtain the result.

Remark 9 Note that the joint PMF of Y can be also written as

P(Y = y) = vT

⎛

⎝
d∑

i=1
yi,

d∑

i=1
λi

⎞

⎠
d∏

i=1

λ
yi
i
yi!

, (47)

which is a convenient expression for approximating these probabilities by Monte Carlo
simulations if the function vT (·, ·) is not available explicitly and the random variable T
is straightforward to simulate. We also note that whenever the marginal PMFs of Yi are
explicit, then so is the function vT (·, ·), which is clear from Lemma 3. For example, if T is
standard gamma with shape parameter r, then we have

vT (y, λ) = �(r + y)
�(r)

(
1

1 + λ

)r+y
= y!

λy
P(Y = y), λ, y ∈ R+,

where Y has a NB distribution with parameters r and p = 1/(1 + λ).

Next, we present an alternative expression for the joint probabilities P(Y = y), which
provides a convenient formula for their computation whenever the variable T is difficult
to simulate but its PDF is easy to compute. This representation involves a multinomial
random vector N = (N1, . . . ,Nd)

� with parameters n and p = (p1, . . . , pd)�, denoted
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by MUL(n,p), where n ∈ N represents the number of trials, the {pi} represent event
probabilities that sum up to one, and

P(N = y) = n!
y1! · · · yd!p

y1
1 · · · pydd , y ∈

⎧
⎨

⎩
k = (k1, . . . , kd)d ∈ N

d
0 :

d∑

i=1
ki = n

⎫
⎬

⎭
. (48)

Lemma 4 In the above setting, the PMF of Y is given by

P(Y = y) = P(N = y)E
(
fλT (W )

)
, y = (y1, . . . , yd)� ∈ Nd

0 , (49)

where λ = ∑d
i=1 λi, N ∼ MUL(n,p) with n = ∑d

i=1 yi and pi = λi/λ, the quantity fλT is
the PDF of λT, and W has standard gamma distribution with shape parameter n + 1.

Proof Proceeding as in the proof of Lemma 3, we obtain

P(Y = y) =
d∏

i=1

λ
yi
i
yi!

n!
λn

1
λ

∫

R+

λn+1

n!
t(n+1)−1e−λt fT (t)dt. (50)

Since the integrand is the product of fT (t) and the density of gamma random variable X
with shape parameter n + 1 and scale λ, we have

1
λ

∫

R+

λn+1

n!
t(n+1)−1e−λt fT (t)dt = E

[
1
λ
fT (X)

]

= E

[
1
λ
fT
(
W
λ

)]

,

where W = λX has standard gamma distribution with shape parameter n + 1 (and scale
1). To conclude the result, observe that the expression

d∏

i=1

λ
yi
i
yi!

n!
λn

in (50) coincides with the multinomial probablity (48) with pi = λi/λ while
1
λ
fT
(w

λ

)
= fλT (w).

Remark 10 Note that in one dimensional case where d = 1 the multinomial probability
in (49) reduces to 1, and we obtain

P(Y = y) = E
(
fλT (W )

)
, y ∈ N0, (51)

where Y d= N(T), {N(t), t ∈ R+} is a Poisson process with rate λ, the quantity fλT is the
PDF of λT, the variable W has standard gamma distribution with shape parameter y + 1,
and T is independent of the Poisson process.

Finally, we present well-known results concerning the mean and the covariance struc-
ture of mixed multivariate Poisson distributions of Type I, which are easily derived
through standard conditioning arguments. Generally, whenever the mean of T exists
then so does the mean of each Yi, and we have E(Yi) = λiE(T). Moreover, the vari-
ance of each Yi is finite whenever T has a finite second moment, in which case we have
Var(Yi) = λiE(T) + λ2iVar(T). Thus, the variance of Yi is greater than the mean, and the
distribution of Yi is over-dispersed. Finally, under the latter assumption, the covariance of
Yi and Yj exists and equals Cov(Yi,Yj) = λiλjVar(T). The result below summarizes these
facts.
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Lemma 5 In the above setting, the mean vector of Y exists whenever the mean of T is
finite, in which case we have E(Y) = λE(T), where λ = (λ1, . . . , λd)�. Moreover, if T has
a finite second moment, then the covariance matrix of Y is well defined and is given by

� = E(T)I(λ) + Var(T)λλ�,

where I(λ) is a d × d diagonal matrix with the {λi} on the main diagonal.

Remark 11 By the above result, if it exists, the correlation coefficient of Yi and Yj is given
by

ρi,j =
√

λi
√

λj
√

λi + E(T)
Var(T)

√

λj + E(T)
Var(T)

.

The correlation is always positive, and can generally fall anywhere within the boundaries
of zero and one.

Mixedmultivariate Poisson distributions of type II

Here we provide basic distributional facts about mixed multivariate Poisson distributions
of Type II, which are the distributions of Y = (Y1, . . . ,Yd)� = (N1(T1), . . . ,Nd(Td))

�,
where the {Ni(·)} are independent Poisson processes with rates λi and T = (T1, . . .Td)

�

is a random vector in R
d+ with the PDF fT, independent of the {Ni}.

Lemma 6 In the above setting, the PGF of Y is given by

G(s) = E

⎧
⎨

⎩

d∏

i=1
sYii

⎫
⎬

⎭
= φT(I(λ)(1 − s)), s = (s1, . . . , sd)� ∈[ 0, 1]d , (52)

where φT is the LT of T, I(λ) is a d×d diagonal matrix with the {λi} on the main diagonal,
and 1 is a d-dimensional column vector of 1s.

Proof By using standard conditioning argument, we have

G(s) = E

⎧
⎨

⎩

d∏

i=1
sYii

⎫
⎬

⎭
=
∫

R
d+
E

⎧
⎨

⎩

d∏

i=1
sYii

∣
∣
∣
∣
∣
∣
T = t

⎫
⎬

⎭
dFT(t). (53)

Since given T = t the variables {Yi} are independent and Poisson distributed with means
{λiti}, respectively, we have

E

⎧
⎨

⎩

d∏

i=1
sYii

∣
∣
∣
∣
∣
∣
T = t

⎫
⎬

⎭
=

d∏

i=1
E
{
sYi
∣
∣T = t

} =
d∏

j=1
e−λitj(1−sj) = e−t�I(λ)(1−s).

When we substitute the above into (53) we conclude that the PGF of Y is as stated in the
lemma.

Remark 12 Note that the expression (52) is a generalization of (42) to the multivariate
case of mixed Poisson. Additionally, observe that if the components of T coincide, that is
Ti = T for i = 1, . . . d, we have

φT(t) = E

(
e−t�T

)
= E

(
e−(t1+···+td)T

)
= φT (t1 + · · · + td),

and the PGF in (52) reduces to its counterpart provided in Lemma 2, as it should.
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Remark 13 Let us note that changing scaling factors of the variables Ti in this model
has the same effect as adjusting the rate parameters connected with the Poisson processes
{Ni(·)}. Namely, it follows from Lemma 6 that if we let T̃i = ciTi in the above setting, then
we have the following equality in distribution:

(
N1(T̃1), . . . ,Nd(T̃d)

)� d= (
Ñ1(T1), . . . , Ñd(Td)

)� , (54)

where the {Ñi(·)} are independent Poisson processes with rates ciλi, respectively. Thus,
without loss of generality, we may assume that the scale parameters of the variables Ti in
this model are set to unity.

Next, we provide a convenient formula for the PMF of multivariate mixed Poisson dis-
tributions of Type II, which is an extension of that given in Lemma 3. To state the result,
we extend the definition of the function vT described by (12) to vector-valued arguments
and random vectors T in R

d+. Namely, for a = (a1, . . . , ad)�, b = (b1, . . . , bd)� ∈ R
d+ we

set

ab =
d∏

i=1
abii (55)

and define

vT(y,λ) = E

{
Tye−λ�T

}
, λ, y ∈ R

d+. (56)

Lemma 7 In the above setting, the PMF of Y is given by

P(Y = y) =
d∏

i=1
gi(yi)h(y), y = (y1, . . . , yd)� ∈ N

d
0 ,

where

gi(y) = λ
y
i
y!
vTi(y, λi), y ∈ N0,

are the marginal PMFs of the {Yi} and the function h is given by

h(y) = vT(y,λ)
∏d

i=1 vTi(yi, λi)
, y = (y1, . . . , yd)� ∈ N

d
0 .

Proof By using standard conditioning argument, we have

P(Y = y) =
∫

R
d+
P(N1(T1) = y1, . . . ,Nd(Td) = yd|T = t)fT(t)dt, (57)

where y = (y1, . . . , yd)� and t = (t1, . . . , td)�. Further, by independence, we have

P(N1(T1) = y1, . . . ,Nd(Td) = yd|T = t) =
d∏

i=1
P(Ni(ti) = yi). (58)

Since the Ni(ti) are Poisson with parameters λiti, we have

P(Ni(ti) = yi) = e−λiti(λiti)yi
yi!

, i = 1, . . . , d. (59)

When we now substitute (58) - (59) into (57), then after some algebra we get

P(Y = y) =
d∏

i=1

λ
yi
i
yi!

∫

R
d+
e−

∑d
i=1 λiti

d∏

i=1
tyii fT(t)dt =

⎡

⎣
d∏

i=1

λ
yi
i
yi!

⎤

⎦
[
vT(y,λ)

]
. (60)
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Similarly, the marginal PMFs are given by

P(Yi = y) = λ
y
i
y!

∫

R+
e−tλi tydFTi(t) = λ

y
i
y!
vTi (y, λi) . (61)

By combining (60) and (61), we obtain the result.

We now present an alternative expression for the joint probabilities P(Y = y), which
facilitates their computation if the random vector T is difficult to simulate but its PDF is
readily available.

Lemma 8 In the above setting, the PMF of Y is given by

P(Y = y) = E
(
fI(λ)T(W)

)
, y = (y1, . . . , yd)� ∈ N

d
0 , (62)

where the quantity fI(λ)T is the PDF of I(λ)T = (λ1T1, . . . , λdTd)
� and W =

(W1, . . . ,Wd)
� with mutually independentWi having standard gamma distributions with

shape parameters yi + 1.

Proof Proceeding as in the proof of Lemma 4, we obtain

P(Y = y) =
d∏

i=1

1
λi

∫

R
d+

d∏

i=1

{
λ
yi+1
i
yi!

t(yi+1)−1
i e−λiti

}

fT(t)dt. (63)

Note that the product under the integral above is the PDF of X = (X1, . . . ,Xd)
�, where

the Xi are mutually independent gamma random variables with shape parameters yi + 1
and scale parameters λi. This allows us to conclude that

P(Y = y) = E

⎡

⎣
d∏

i=1

1
λi
fT(X)

⎤

⎦ = E

⎡

⎣
d∏

i=1

1
λi
fT
(
W1
λ1

, . . . ,
Wd
λd

)
⎤

⎦ ,

whereW = (W1, . . . ,Wd)
� = I(λ)X has independent standard gamma components with

shape parameters yi + 1. To conclude the result, observe that

d∏

i=1

1
λi
fT
(
W1
λ1

, . . . ,
Wd
λd

)

= fI(λ)T(W).

Finally, let us summarize standard results concerning the mean and the covariance
structure of mixed multivariate Poisson distributions of Type II, which parallel the results
for Type I, and are easily derived through standard conditioning arguments. Gener-
ally, whenever the means of {Ti} exist then so do the means of the {Yi}, and we have
E(Yi) = λiE(Ti). Similarly, the variance of each Yi is finite whenever Ti has a finite second
moment, in which case we have Var(Yi) = λiE(Ti) + λ2iVar(Ti). Again, the distribution
of Yi is always over-dispersed. Finally, for any i �= j, the covariance of Yi and Yj exists and
equals Cov(Yi,Yj) = λiλjCov(Ti,Tj) whenever the covariance of Ti and Tj exists. These
facts are summarized in the result below.

Lemma 9 In the above setting, the mean vector of Y exists whenever the mean of T is
finite, in which case we have E(Y) = I(λ)E(T), where λ = (λ1, . . . , λd)� and I(λ) is a d×d
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diagonal matrix with the {λi} on the main diagonal. Moreover, if T has a finite covariance
matrix �T then the covariance matrix of Y is well defined as well and is given by

�Y = I(λ)I(E(T)) + I(λ)�TI(λ)�,

where I(E(T)) is a d × d diagonal matrix with the diagonal entries {E(Ti)}.
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