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Abstract

We propose a new stochastic model describing the joint distribution of (X ,N), where N
is a counting variable while X is the sum of N independent gamma random variables.
We present the main properties of this general model, which include marginal and
conditional distributions, integral transforms, moments and parameter estimation. We
also discuss in more detail a special case where N has a heavy tailed discrete Pareto
distribution. An example from finance illustrates the modeling potential of this new
mixed bivariate distribution.
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1 Introduction
We propose a new stochastic model describing the joint distribution of

(X,N)
d=

( N∑
i=1

Xi,N
)
, (1)

where N is an integer-valued random variable on N = {1, 2, . . .} while the {Xi} are inde-
pendent and identically distributed (IID) random variables onR+, independent ofN. Our
newmodel is a generalization of the BEG and the BGGmodels introduced in Kozubowski
and Panorska (2005) and Barreto-Souza (2012), respectively, where N was geometrically
distributed with the probability mass function (PMF)

P(N = n) = p(1 − p)n−1, n ∈ N, (2)

and the {Xi} were either exponential (BEG), with the probability density function (PDF)

f (x) = βe−βx, x ∈ R+, (3)

or gamma distributed (BGG), with the PDF

f (x) = βαxα−1

�(α)
e−βx, x ∈ R+. (4)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40488-021-00120-5&domain=pdf
http://orcid.org/0000-0002-5416-2633
mailto: tkozubow@unr.edu
http://creativecommons.org/licenses/by/4.0/


Amponsah et al. Journal of Statistical Distributions and Applications             (2021) 8:7 Page 2 of 31

Models of this kind were shown to be useful in various areas, including finance, actuarial
science, hydro-climatic studies, and others (see, e.g., Arendarczyk et al. 2018; Barreto-
Souza 2012; Barreto-Souza and Silva 2019; Biondi et al. 2005, 2008; Kozubowski and
Panorska 2005, 2010; Kozubowski et al. 2008, 2009 and reference therein). In modeling,
the vector (X,N) in (1) is often called an “episode” with magnitude X and duration N. For
example, in finance we are interested in growth/decline episodes of a certain investment,
which happen when the consecutive log-returns {Xi} are positive/negative. The sequence
of N consecutive positive log-returns is called a“growth/decline episode of duration N

and magnitude X =
N∑
i=1

Xi”.

The majority of work connected with bivariate distributions given by (1) concerned
cases where the distributions of X and N were both light-tailed, with the exception of
Arendarczyk et al. (2018), where N was (light tailed) geometric and X was heavy tailed
with Lomax distribution (also known as Pareto Type II), given by the survival function
(SF)

S(x) = P(X > x) =
(

1
1 + x/σ

)1/δ
, x ∈ R+, σ > 0, δ ≥ 0. (5)

In contrast, in our generalization studied in this paper, both X and N in (1) are heavy
tailed. We achieve this by keeping the {Xi} in (1) gamma distributed with PDF (4) as in
Barreto-Souza (2012), while changing N to be a discrete version of the continuous Pareto
distribution (5) with the same survival function (see, e.g., Buddana and Kozubowski 2014;
Krishna and Singh Pundir 2009). The PMF of this discrete Pareto (DP) distribution can be
written as

P(N = n) =
(

1
1 − δ(n − 1) log(1 − p)

) 1
δ −

(
1

1 − δn log(1 − p)

) 1
δ

, n ∈ N, (6)

where p ∈ (0, 1) is a “size” parameter and δ ∈[ 0,∞) is a tail parameter. We note that
as δ → 0+, then the DP distribution (6) converges to a geometric distribution (2). Thus,
while our model (1) with DP distributed N offers more flexibility compared with the BEG
model of Kozubowski and Panorska (2005) or the BGG model of Barreto-Souza (2012),
it turns into the latter two in the special case with δ = 0 and exponential or gamma
distributed {Xi} in (1).
In addition to presenting basic properties of the new model described above, we also

summarize fundamental properties of the entire class of such models with gamma dis-
tributed {Xi} and arbitrary distribution of the random variable N, which drives the
dependence structure of the (X,N) vector in (1). These properties include infinite divis-
ibility, the tail behavior of X, the conditional distributions of N given X = x as well as
N given X > x, and estimation. In particular, we establish the existence and uniqueness
of maximum likelihood estimators of α and β within this class of models. Our general
results concerning the conditional distributions have interesting connections with hidden
truncation (see, e.g., Arnold ) and play important role in goodness-of-fit analysis for these
models.
Our article is organized as follows. In Section 2 we present fundamental properties

of general class of bivariate distributions (1), driven by an IID gamma sequence {Xi}. In
Section 3, we summarize basic facts about the special case with discrete Pareto distributed
N, including parameter estimation. An application from finance is presented in Section 4,



Amponsah et al. Journal of Statistical Distributions and Applications             (2021) 8:7 Page 3 of 31

which is followed by concluding remarks in Section 5. The last section contains selected
proofs and technical lemmas.

2 Bivariate episodes driven by an IID gamma sequence
In this section we summarize the properties which are common to all bivariate distribu-
tions describing the episodes (1) driven by a sequence {Xi} of IID gamma variables with
the PDF (4), denoted by GAM(α,β). We assume that the variable N, which describes the
duration of an episode (X,N), is independent of the {Xi} and supported on the set of pos-
itive integers N = {1, 2, . . .}. Clearly, given N = n ∈ N, the variable X is the sum of n IID
gamma variables GAM(α,β), so it is also gamma distributed, with parameters αn and β .
Thus, the joint PDF of (X,N) in (1) is of the form

fX,N (x, n) = βαnxαn−1e−βx

�(αn)
fN (n), x ∈ R+, n ∈ N, (7)

where fN (·) is the PMF ofN. This leads to the following result, whose proof is elementary.

Proposition 1 The cumulative distribution function (CDF) and the survival functions
(SF) of (X,N) in (1) are given by

FX,N (x, n) = P(X ≤ x,N ≤ n) =
n∑

k=1

γ (αk,βx)
�(αk)

fN (k), x ∈ R+, n ∈ N,

and

SX,N (x, n) = P(X > x,N > n) =
∞∑

k=n+1

(
1 − γ (αk,βx)

�(αk)

)
fN (k), x ∈ R+,

n ∈ N0 = {0, 1, . . .},
where fN (·) is the PMF of N and

γ (α, x) =
x∫

0

tα−1e−tdt, α, x > 0,

is the (lower) incomplete gamma function.

In view of the above, we conclude that the marginal distribution of X is an infinite
mixture of gamma distributions, as the PDF of X takes on the form

fX(x) =
∞∑
n=1

βαnxαn−1e−βx

�(αn)
fN (n), x ∈ R+. (8)

Remark 1 In the special case where N is geometric (2) we recover the BivariateGamma-
Geometric (BGG) distribution of Barreto-Souza (2012). In this case, the PDF of X can be
written in terms of 2-parameter Mittag-Leffler (ML) special function

Eα,β(z) =
∞∑
n=0

zn

�(αn + β)
, z ∈ C,Re(α) > 0,Re(β) > 0, (9)

which is an entire function on the complex plain C (see, e.g., Haubold et al. 2011). Indeed,
simple algebra shows that the PDF (8) takes on the form

fX(x) = βp(βx)α−1e−βxEα,α
(
(1 − p)(βx)α

)
, x ∈ R+. (10)
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Further, in the special case α = 1, when the {Xi} in (1) are exponentially distributed, we
obtain the BEG model of Kozubowski and Panorska (2005), where the term “BEG” stands
for Bivariate distribution with Exponential and Geometric margins. Here, the ML special
function becomes the exponential function, E1,1(z) = ez, and the marginal density of X in
(10) reduces to the exponential PDF (3) with β replaced with pβ .

Let us also account for the joint Laplace transform ψ(t, s) connected with the distribu-
tion of (X,N) in (1), where

ψ(t, s) = E
(
e−tX−sN)

, t, s ∈ R+. (11)

Standard conditioning argument shows that this function can be conveniently
expressed in terms of the probability generating function (PGF) of the random variable
N, GN (s) = E(sN ), s ∈[ 0, 1].

Proposition 2 The LT of (X,N) in (1) driven by an IID gamma GAM(α,β) sequence
{Xi} is given by

ψ(t, s) = GN

{
e−s

(
β

β + t

)α}
, t, s ∈ R+, (12)

where GN (·) is the PGF of N.

Remark 2 When the variable N is geometric (2) where we have

GN (s) = ps
1 − (1 − p)s

, s ∈[ 0, 1] ,
then (12) turns into the LT of the BGG model of Barreto-Souza (2012),

ψ(t, s) = pβαe−s

(β + t)α − (1 − p)βαe−s , t, s ∈ R+.

Remark 3 As can be seen from the proof of Proposition 2, if the IID variables {Xi}
are non-negative but not necessarily gamma distributed, then the LT in (12) is given by
ψ(t, s) = GN [ e−sψX1(t)], where ψX1(·) is the LT of the {Xi}.

2.1 Moments and tail behavior

Here we consider moments and the tail behavior of the variables X and N. Clearly, if the
counting variable N is light tailed, and all of its moments E[Nη] exist for η > 0, then
the mixed moments E[XrNη] exist as well for any r, η > 0. However, this is not so if the
distribution of N is heavy tailed, and its survival function behaves like a power law,

SN (x) = P(N > x) ∼ cx−v (x → ∞), (13)

where c is a positive constant and f (x) ∼ g(x) (x → ∞) means that the ratio f (x)/g(x)
converges to 1 as x → ∞. Indeed, if the tail probability satisfies (13) for some v > 0, then
for positive η > 0 the expectation E[Nη] exists only for η < v. Moreover, in this case of
heavy tailed N, the variable X in (1) is heavy tailed as well, with essentially the same tail
behavior as N.

Proposition 3 If the variable N in (1) satisfies (13) with some c, v > 0 and the {Xi} in (1)
are IID gamma distributed GAM(α,β), then we have

SX(x) = P(X > x) ∼ c(α/β)vx−v (x → ∞).
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Under the conditions of Proposition 3, the moments E[Xr] with r > 0 are finite only
for r < v. More generally, standard calculations involving either the joint PDF (7) or
conditioning arguments viz. the representation (1) show that the joint moments E[XrNη]
with positive r, η > 0 exist only for r+η < v, and their values are provided in the following
result.

Proposition 4 Under the conditions of Proposition 3, the moments E[XrNη] with r, η >

0 are finite only for r + η < v, in which case we have

E[XrNη]= 1
βr

∞∑
n=1

nη �(r + αn)

�(αn)
fN (n), (14)

where fN (·) is the PMF of N.

If they exist, then the mean vector and the covariance matrix of (X,N) in (1) can be
deduced from Proposition 4. The result below provides relevant information concerning
this.

Proposition 5 If the variable N in (1) has a finite mean E[N], then so does X, and
we have E[X]= (α/β)E[N]. Moreover, if the variance Var[N] is finite, then so is the
covariance matrix � of (X,N), and we have

� = E[N]
[

α/β2 0
0 0

]
+ Var[N]

[
α2/β2 α/β

α/β 1

]
.

Remark 4 We note that if N is geometric (2), so that E[N]= 1/p and Var[N]= (1 −
p)/p2, we recover the mean vector and the covariance matrix of the BGGmodel of Barreto-
Souza (2012).

Remark 5 If the variance of N is finite, then the correlation of X and N is a simple
function of the parameter α and the index of dispersion of N,

ρ = 1√
1 + 1

α
E[N]
Var[N]

,

which can fall anywhere in the interval (0,∞). In the BGG case, this reduces to ρ =√
(1 − p)/(1 − p + p/α), which can be either greater than or less than

√
1 − p, as noted by

Barreto-Souza (2012). The latter is the correlation in the BEG model, arising in the special
case α = 1 of the BGG.

2.2 Conditional distributions

The derivation of basic conditional distributions in this bivariate model is straightfor-
ward. Clearly, the conditional distribution of X given N = n is GAM(αn,β), with the
PDF

fX|N=n(x) = βαn

�(αn)
xαn−1e−βx, x ∈ R+. (15)

Similarly, the PMF of the conditional distribution of N given X = x can be obtained by
dividing the joint PDF of (X,N) in (7) by themarginal PDF ofX, given by (8). Interestingly,
this conditional PMF is proportional to the product of two PMFs as follows:

fN |X=x(n) = (1/c)fN (n)fα,βx(n − 1), n ∈ N, (16)
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where c > 0 is a normalizing constant that does not involve n, fN (·) is the PMF of N, and

fα,λ(n) = λα(n+1)

�(α(n + 1))
λ−α

Eα,α(λα)
, n ∈ N0. (17)

The function Eα,α(·) in (17) is the Mittag-Leffler special function defined in (9) with
α = β > 0. The function in (17) is a genuine probability distribution on the set of non-
negative integers N0 for any choice of α, λ > 0, and it reduces to the classical Poisson
distribution with mean λ when α = 1. We shall denote the distribution with the PMF (17)
by EP(α, λ), which stands for Extended Poisson.

Remark 6 This distribution is an example of a “power-series” type distribution (see, e.g.,
Noack 1950), where we used the power series of the Mittag-Leffler special function (9) with
β = α and z = λα . A similar generalization of Poisson distribution, referred to as “hyper-
Poisson” by the authors, was considered in Bardwell and Crow (1964), where the parameter
α in (9) was taken to be α = 1, leading to the PMF

gβ ,λ(n) = λn

�(n + β)

1
E1,β(λ)

, n ∈ N0.

This reduces to the Poisson PMF with parameter λ when β = 1.

Let us note an important stochastic interpretation of an integer-valued random variable
Y with PMF proportional to the product of two PMFs.

Lemma 1 If we have that

fY (n) = (1/c)fN (n)fQ(n), n ∈ N0, (18)

where fY (·), fN (·), and fQ(·) are the PMFs of Y, N, and Q, respectively, then we have the
representation

Y d= N |N = Q, (19)

where the variables N and Q are mutually independent.

In view of the above lemma, we get the following result regarding the conditional
distribution of N given X = x.

Proposition 6 Let (X,N) have a joint distribution with the PDF (7). Then the condi-
tional distribution of N given X = x is the same as that of the random variable Y in (19),
where N and Q are independent and Q − 1 has extended Poisson distribution EP(α, λ)

with λ = βx, given by the PMF (17).

Remark 7 We note that in the special case of the BGG model, where N is geometric (2),
the PDF of N given X = x in (16) is proportional to [ (1− p)1/αβx]αn /�(αn). We conclude
that this conditional distribution is the same as that of 1 + R, where R ∼ EP(α, λ) with
λ = (1− p)1/αβx. In the special case of the BEG model, where we have α = 1, the variable
R is Poisson with mean λ = (1 − p)βx, and N |X = x is R shifted up by 1.

The information about the conditional distribution of X given N = n provided above is
useful in goodness-of-fit analysis for this bivariate model. Indeed, given data (Xi,Ni) from
the model, one can isolate the pairs with a particular value of Ni = n and check the fit
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of the theoretical conditional distribution of X|N = n against the empirical distribution
of the {Xi|Ni = n}. Unfortunately, one cannot proceed in a similar fashion using the
conditional distribution of N given X = x, since the distribution of X is continuous. With
this limitation in mind, we now derive the conditional distribution of N given X > x,
which will be more useful in goodness-of-fit analysis.
Observe that the PMF of this conditional distribution can be written as

P(N = n|X > x) = P(N = n,X > x)
P(X > x)

= H(n)fN (n)

P(X > x)
, n ∈ N, (20)

where

H(n) =
∫ ∞

x

βαn

�(αn)
tαn−1e−βtdt = P(X1 + · · · + Xn > x) (21)

and the {Xi} are IID gamma GAM(α,β) distributed random variables. This is because
the integrand above is the PDF of the sum X1 + · · · + Xn. Consider a renewal process
{N(x), x ∈ R+} defined through the sequence {Xi}, so that

N(x) ≥ n if and only if X1 + · · · + Xn ≤ x, n ∈ N, x ∈ R+.

Then, the probability on the right-hand-side of (21) coincides with the probability
P(N(x) + 1 ≤ n), which in turn is the same as the H(n) in (20), with the latter taking the
form

H(n) = P(N(x) + 1 ≤ n) = �(αn,βx)
�(αn)

, n ∈ N. (22)

The function in the numerator on the right-hand-side in (22) is the (upper) incomplete
gamma function,

�(α, x) =
∞∫
x

tα−1e−tdt, α, x > 0.

Thus, the functionH(n) above is a genuine CDF of a discrete random variableN(x)+1.
In turn, in view of (20), the conditional PMF of N given X > x is proportional to the
product of the CDF H(n) and the PMF fN (n). Distributions with such a structure have
an important stochastic representation related to the hidden truncation (see, e.g., Arnold,
2009), given below.

Lemma 2 If we have that

fY (n) = (1/c)fN (n)FQ(n), n ∈ N0,

where fY (·) and fN (·) are the PMFs of Y and N, respectively, while FQ(·) is the CDF of a
random variable Q, then we have the representation

Y d= N |N ≥ Q, (23)

where the variables N and Q are mutually independent.

In view of the above lemma, we have the following result concerning the conditional
distribution of N given X > x in our model.

Proposition 7 Let (X,N) have a joint distribution with the PDF (7). Then the condi-
tional distribution of N given X > x is the same as that of the random variable Y in (23)
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with N and Q independent and Q d= N(x) + 1, where {N(x), x ∈ R+} is a renewal process
defined through an IID gamma GAM(α,β) sequence {Xi}.

We note that in the special case where α = 1, so that the variables {Xi} in (1) are
exponential with parameter β , the renewal process {N(x), x ∈ R+} is actually a Pois-
son process, with rate β . If in addition the variable N is geometrically distributed with
the PMF (2), the distribution of (X,N) in (1) turns into the BEG model studied by
Kozubowski and Panorska (2005). We have the following new result concerning the
conditional distribution of N given X > x in this special case.

Proposition 8 Let (X,N) have a joint distribution with the PDF (7) where α = 1 and N
is geometric, so that fN (n) = p(1 − p)n−1, n ∈ N. Then the conditional distribution of N
given X > x is the same as that of the random variable Y = N + T, where T is Poisson
with parameter (1 − p)βx, independent of N.

The above results are useful in goodness-of-fit analysis when our bivariate distribution
is fitted to data. Indeed, given data (Xi,Ni) from themodel, one can isolate the pairs where
Xi > x for a particular x > 0, and check the fit of the theoretical conditional distribution
of N |X > x against the empirical distribution of the {Ni} that are part of these pairs. One
simple strategy is to compare certain characteristics, such as the mean, the mode, or the
variance, of the theoretical and the empirical distributions across different values of x. For
example, in the BEG model, by Proposition 8, the conditional expectation

E(N |X > x) = EN + ET = 1/p + (1 − p)βx

is a simple linear function of x, which can be plotted against x and compared with the
corresponding plot of the sample mean of N |X > x for the same x. Then the goodness-
of-fit of the BEG model may be judged by comparing the two plots.
We finally note that the conditional distribution of N given X > x studied above is

one of the two marginal distributions in the bivariate model (X,N)|X > x. The full joint
distribution of this model can be described by the joint PDF, which can be shown to be of
the form

g(t, n) = g(t|n)fY (n), n ∈ N, t ∈ R+, (24)

where fY (·) is the PMF (20) of the distribution of N |X > x and

g(t|n) = βαn

�(αn)
tαn−1e−βtI(x,∞)(t)/H(n), t ∈ R+, (25)

withH(n) as in (21), is the PDF of gamma distribution GAM(αn,β) truncated below at x.
The joint CDF of this distribution can be written in terms of (upper) incomplete gamma
function as follows:

G(y, n) = P(X ≤ y,N ≤ n|X > x)

=
∑n

j=1
{
[�(αj,βx) − �(αj,βy)] /�(αj)

}
fN (j)∑∞

j=1
{
�(αj,βx)/�(αj)

}
fN (j)

, x ≤ y, n ∈ N.

Observe that, in view of (24), while the PDF of this distribution admits a hierarchi-
cal structure in the spirit of (7), this conditional distribution generally does not have a
stochastic representation analogous to (1). On the other hand, the bivariate distribution
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describing (X,N)|N > u, where u ∈ N0, can actually be related to (1). Indeed, it is easy to
see that the joint PDF of this distribution is of the form

fX,Ñ (x, n) = βαn

�(αn)
xαn−1e−βxfÑ (n), x ∈ R+, n ∈ N, (26)

where

fÑ (n) =
{
fN (n)/P(N > u) for n = u + 1,u + 2, . . .
0 for n ≤ u

(27)

is the PMF of Ñ d= N |N > u. Thus, this conditional distribution admits the representation
(1) with N replaced by Ñ . For any x ∈ R+ and n ≥ u, the joint survival function of this
distribution takes on the form

SX,Ñ (x, n) = P(X > x,N > n|N > u) =
∞∑

k=n+1

(
1 − γ (αk,βx)

�(αk)

)
fÑ (k) (28)

with fÑ (·) provided in (27). We note the following stochastic representation of this distri-
bution involving the excess random variable Nu

d= N − u|N > u, defined for any u ∈ N0,
which, like N, is also supported on the set of positive integers N.

Proposition 9 Let (X,N) have a joint distribution with the PDF (7) and let Nu
d= N −

u|N > u where u ∈ N0. Then we have the following stochastic representation:

(X,N)|N > u d=
⎛
⎝ u∑

j=1
X1j,u

⎞
⎠ +

⎛
⎝ Nu∑

j=1
X2j,Nu

⎞
⎠ ,

where the {Xij} are IID gamma GAM(α,β) distributed random variables, independent of
Nu.

Thus, if the support of N is the set of positive integers, then the conditional distribu-
tion of (X,N)|N > u can be expressed as a convolution of two distributions with similar
structure, one of which is degenerate and the other is also connected with a discrete dis-
tribution supported on N. In particular, if N is geometrically distributed with the PMF
(2), then due to its memoryless property, we have that Nu

d= N for each u ∈ N0, so that

(X,N)|N > u d= (Gu,u) + (X,N), (29)

where Gu is a gamma GAM(αu,β) distributed random variable, independent of (X,N).
We finish this section with a brief account for two other related conditional distribu-

tions, one of (X,N)|X ≤ x, and another of (X,N)|N ≤ u. The following result, which
is straightforward to derive, can be found in Amponsah (2017) (see equations (2.36) and
(2.38) therein) in its special case of discrete Pareto random variable N.

Proposition 10 Let u, n ∈ N and x > 0, with n ≤ u. Then the conditional CDF of (X,N)

given N ≤ u is given by

P(X ≤ x,N ≤ n|N ≤ u) =

n∑
j=1

γ (αj,βx)
�(αj) fN (j)

P(N ≤ u)
. (30)
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Similarly, for 0 < y ≤ x and n ∈ N, the conditional CDF of (X,N) given X ≤ x is given by

P(X ≤ y,N ≤ n|X ≤ x) =

n∑
j=1

γ (αj,βy)
�(αj) fN (j)

∞∑
j=1

γ (αj,βx)
�(αj) fN (j)

. (31)

2.3 Divisibility properties

It was shown in Barreto-Souza (2012) and Kozubowski and Panorska (2005) that the BGG
and BEGmodels are infinitely divisible (ID). Below, we show that this is a general property
of this model, as long as the ID property holds forN as well as the underlying IID sequence
{Xi}.
Recall that a random vector X (and its probability distribution) is said to be ID if for

each n ∈ N the vector X can be “decomposed” into the sum

X d= X(n)
1 + · · · + X(n)

n ,

where the random vectors {X(n)
i } are IID. We assume that the non-negative variables {Xi}

in (1) are ID, so that X1
d= Y (n)

1 + · · · + Y (n)
n for some IID sequence {Y (n)

i } for each n ∈ N.
In this situation, the variables Y (n)

i are also non-negative and their common LT is given by
ψn(t) =[ψX1(t)]1/n, where ψX1(·) is the LT of the {Xi}. We also assume that the variable
N − 1 is discrete ID, so that the relation N − 1 d= N (n)

1 + · · · + N (n)
n holds for each n ∈ N

with IID variables {N (n)
i } whose distribution is supported on the set N0 of non-negative

integers. This implies that N itself is ID as well, and can be decomposed into the sum of n
IID terms of the form 1/n + N (n)

i , i = 1, . . . n. Moreover, the common PGF of the {N (n)
i }

is of the form Gn(s) =[GN (s)/s]1/n, where GN (·) is the PGF of N. Under this notation, we
have the following result.

Proposition 11 Let N be an integer-valued random variable supported on N, given by
the PGF GN (·). Further, suppose that (X,N) is defined viz. (1), where the {Xi} are nonneg-
ative, IID, and ID random variables, given by LT ψX1(·), independent of N. Suppose also
that the distribution of N − 1 is discrete ID. Then, the distribution of (X,N) is ID and for
each n ∈ N we have the stochastic representation

(X,N)
d=

n∑
j=1

(R(n)
j ,V (n)

j ), (32)

where the {(R(n)
j ,V (n)

j )} are IID. Moreover, we have V (n)
j

d= 1/n+T (n)
j , where the {T (n)

j } are
IID, integer-valued random variables with the PGF Gn(s) =[GN (s)/s]1/n, and

R(n)
j =

T (n)
j∑

j=1
Xij + G(n)

j , (33)

where all the variables on the right-hand-side of (33) are mutually independent, the {G(n)
j }

are IID non-negative variables given by the LT ψn(t) =[ψX1(t)]1/n, and the {Xij} are IID
with the LT ψX1(·).
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When we restrict the above result to the case where the variables {Xi} are gamma
GAM(α,β) distributed (and thus ID), we obtain the following generalizations of the
results in Barreto-Souza (2012).

Corollary 1 Let N be an integer-valued random variable supported on N, given by
the PGF GN (·). Further, suppose that (X,N) is defined viz. (1), where the {Xi} are IID
gamma GAM(α,β) distributed, and independent of N. Suppose also that the distribu-
tion of N − 1 is discrete ID. Then, the distribution of (X,N) is ID and for each n ∈ N we
have the stochastic representation (32) where the {(R(n)

j ,V (n)
j )} are IID. Moreover, we have

V (n)
j

d= 1/n+T (n)
j , where the {T (n)

j } are IID, integer-valued random variables with the PGF
Gn(s) =[GN (s)/s]1/n, and the {R(n)

j } are given by (33), where all the variables on the right-
hand-side of (33) are mutually independent, the {G(n)

j } are IID gamma GAM(α/n,β)

distributed, and the {Xij} are IID gamma GAM(α,β) distributed.

Remark 8 In Kozubowski and Panorska (2005) and Barreto-Souza (2012), the variable
N was geometric (2) while the {Xi} were exponentially or gamma distributed, respectively.
In this case, the variables T (n)

j in (33) have negative binomial NB(r, p) distribution with
r = 1/n, whose PDF and PGF are given by

f (n) =
(
r + n − 1

n

)
pr(1 − p)n, n ∈ N0,

and

G(s) =
(

p
1 − (1 − p)s

)r
, s ∈[ 0, 1] ,

respectively. We note that in the gamma case the LT of the {(R(n)
j ,V (n)

j )} in (32) is of the
form [ψ(t, s)]1/n, where ψ(t, s) is the LT of (X,N), given by (12). More generally, the ID
property of the distribution of (X,N) established above implies that [ψ(t, s)]r is a gen-
uine LT for any r ∈ R+, and describes the marginal distribution of a bivariate Lévy
motion {(R(r),V (r)), r ∈ R+}, which is a stochastic process with independent and station-
ary increments started at the origin, built upon the distribution of (X,N). Such processes
connected with the BEG and BGG models were studied in Kozubowski et al. (2008) and
Barreto-Souza (2012), respectively. Their analogs in the more general case described above
can be studied along the same lines.

2.4 Parameter estimation

In this section we consider maximum likelihood estimation of the parameters of the
model (1) where the {Xi} are IID with gamma GAM(α,β) distribution. We shall assume
that the distribution of N depends on k unknown parameters ω1, . . . ,ωk , where ω =
(ω1, . . . ,ωk) ∈ 
 ⊂ R

k . Under this notation, our model has k + 2 unknown parameters
θi, i = 1, . . . , k + 2, where θ1 = α, θ2 = β , and θi = ωi−2 for i = 3, . . . , k + 2, with
θ = (θ1, . . . , θk+2) ∈ � = R

2+ × 
 ⊂ R
k+2. Under this notation, the PMF of the random

variable N will be denoted by fN (·;ω).
Let us start with the Fisher information matrix I(θ) corresponding to this bivariate

model. Note that the logarithm of the joint PDF in (7),

log fX,N (x, n) = αn logβ + (αn − 1) log x − βx − log�(αn) + log fN (n;ω),
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is the sum of two terms,

v1(x, n;α,β) = αn logβ+(αn−1) log x−βx−log�(αn) and v2(n;ω) = log fN (n;ω),

with each of them depending on different parameters. Consequently, if standard regular-
ity conditions for the family {fN (·;ω), ω ∈ 
} are satisfied and appropriate expectations
exist, then the Fisher information I(θ) will have a block-diagonal structure,

I(θ) =
[
W 0
0 J(ω)

]
, (34)

whereW =[wij] is a 2 by 2 matrix where

wij = −E

[
∂2

∂θi∂θj
v1(X,N ; θ1, θ2)

]
, i, j = 1, 2, (35)

and J(ω) is the Fisher information matrix connected with the family {fN (·;ω), ω ∈ 
}.
Straightforward algebra shows that the entries ofW are as follows:

w11 = E[N2ψ ′(αN)] , w12 = w21 = −E[N] /β , w22 = αE[N] /β2, (36)

where ψ(x) = d/dx log�(x) is the digamma function.

Remark 9 In the special case of the BGG model studied in Barreto-Souza (2012) the
variable N is geometric (2) so that k = 1 and ω1 = p ∈ 
 = (0, 1). Here, J(ω) in (34) is a 1
by 1 matrix [ 1/(p2(1 − p))] and E[N]= 1/p, so that by (36) we have

I(θ) = 1
p

⎡
⎢⎣
w(α, p) −1

β
0

−1
β

α
β2 0

0 0 1
p

1
1−p

⎤
⎥⎦ ,

where w(α, p) = p2
∑∞

n=1 n2(1 − p)n−1ψ ′(αn) (cf., Barreto-Souza 2012, eq. (15), p. 135).

Next, we let (X1,N1), . . . , (Xn,Nn) be a random sample from the bivariate model with
the PDF (7). By straightforward calculations, we find the log-likelihood function to be of
the form

l(θ) = R(α,β) + Q(ω) −
n∑

i=1
log(Xi), (37)

where

R(α,β) = nαN̄n log(β) − nβX̄n + α

n∑
i=1

Ni log(Xi) − 1
n

n∑
i=1

log [�(αNi)] , (38)

Q(ω) =
n∑

i=1
log

[
fN (Ni;ω)

]
, (39)

and N̄n, X̄n are the sample means of the {Ni} and {Xi}, respectively. In order to find the
maximum likelihood estimator (MLE) of θ , we need to maximize the log-likelihood func-
tion (37) with respect to θ ∈ � = R

2+ × 
 ⊂ R
k+2. Since θ = (α,β ,ω), by the special

structure of the log-likelihood function (37), we can proceed by maximizing the functions
R(α,β) and Q(ω) with respect to their arguments independently of each other. Conse-
quently, the MLE of ω is only dependent on the {Ni}, and is connected with the family
{fN (·;ω), ω ∈ 
}. Additionally, the MLEs of α and β will be of the same form regardless
of the particular distribution of N, although their asymptotic properties may depend on
the latter.
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2.4.1 TheMLEs of α and β

Our focus are the MLEs of α and β . By the above discussion, to find them one needs to
maximize the function R(α,β) in (38) with respect to (α,β) ∈ R

2+. To do this, we first
maximize the function h(β) = R(α,β) with respect to β ∈ R+ when α > 0 is held fixed.
Since h(β) is a continuous, differentiable function of β with the derivative of the form

h′(β) = nαN̄n
β

− nX̄n, β ∈ R+,

it is easy to see that h′(β) > 0 iff β < β(α) and h′(β) < 0 iff β > β(α), where

β(α) = αN̄n

X̄n
. (40)

Thus, the function h(β) has a unique maximum value on (0,∞), which is attained at
β = β(α) given by (40). Next, we optimize the function R(α,β(α)) with respect to α ∈
R+. Straightforward algebra shows that R(α,β(α)) = nN̄ng(α), where for α ∈ R+ we have

g(α) = α log(α) + α log
(
N̄n

X̄n

)
− α + α

nN̄n

n∑
i=1

Ni log(Xi) − 1
nN̄n

n∑
i=1

log [�(αNi)] .

This is a continuous, differentiable function on (0,∞), with the derivative of the form

g′(α) = log(α) − 1
nN̄n

n∑
i=1

Niψ [αNi] + log
(
N̄n
X̄n

)
+ 1

nN̄n

n∑
i=1

Ni log(Xi), (41)

where ψ(x) = d/dx log�(x) is the digamma function. The following result provides key
properties of the above function

Proposition 12 Let (X1,N1), . . . , (Xn,Nn) be IID copies of (X,N) in (1). Then, the
function (41) has the following properties:

(i) g′(α) is continuous and monotonically decreasing in α ∈ (0,∞);
(ii) limα→0+ g′(α) = ∞;

(iii) limα→∞ g′(α) = 1
nN̄n

n∑
i=1

Ni
[
log

(
Xi
Ni

)]
− log

(
X̄n
N̄n

)
≤ 0;

(iv) For n = 1, limα→∞ g′(α) = 0;
(v) For n ≥ 2, limα→∞ g′(α) < 0 almost surely.

In view of the above result, we conclude that whenever the limit in Part (iii) is negative,
which occurs with probability 1 for any finite sample of size n ≥ 2, the function g(α)

in monotonically increasing on the interval (0, α̂n) and monotonically decreasing on the
interval (α̂n,∞), where α̂n is a unique solution for α of the equation g′(α) = 0. This
establishes the existence and uniqueness of the MLEs of α and β for this model.

Corollary 2 Let (X1,N1), . . . , (Xn,Nn) be IID copies of (X,N) in (1), where n ≥ 2. Then,
the MLEs of α and β exist and are unique, where the MLE of α, α̂n, solves the equation

log(α̂n) − 1
nN̄n

n∑
i=1

Niψ
[
α̂nNi

] + 1
nN̄n

n∑
i=1

Ni log(Xi) + log
(
N̄n

X̄n

)
= 0 (42)

while the MLE of β is given by β̂n = α̂nN̄n/X̄n.
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Remark 10 When the parameter α is known, the MLE of β always exists, is unique, and
its value is provided by (40). In particular this recovers the results of the BEG model of
Kozubowski and Panorska (2005), where we have α = 1.

Remark 11 Since the function in (42) is continuous and monotonic, the solution of this
equation is straightforward to compute using standard numerical methods.

Remark 12 In the special case when the sample size is n = 1, the equation (42) does
not admit a finite solution. However, the equation is satisfied in the limiting sense, with
α̂n = ∞. What the above analysis shows is that the function R(α,β) in (38) is maximized
“at infinity”, when α → ∞ and β = β(α) is given by (40). A practical interpretation of
this is that the gamma variables that drive the model of (X,N) in (1) reduce to a point
mass at c, where c = X1/N1, so that the distribution of (X,N) is a degenerate one, with
(X,N) = (cN ,N). Similar interpretation applies when n ≥ 2 and the limit in Part (iii) in
Proposition 12 is zero, in which case the solution of (42) is also α̂n = ∞. As can be seen
from the proof of this result, this can only happen if all the ratios Xi/Ni in the sample are
equal to some c > 0. However, this degenerate case is not of a concern in practice, as this
event occurs with probability zero.

Remark 13 Compared with the results of Barreto-Souza (2012), who considered a spe-
cial case in (1) with geometrically distributed N (see eq. (14) therein), our results are
stronger and more general, as they ensure the existence and uniqueness of the MLEs of α

and β in any model of the form (1), going beyond geometrically distributed N.

Remark 14 If the family of distributions {fN (·;ω), ω ∈ 
} is such that the function
� = (ψ1, . . . ,ψk+2) with ψi = −∂/∂θi log fX,N (x, n), i = 1, . . . , k + 2, satisfies standard
regularity conditions of large-sample theory (see, e.g., conditions A0-A6 in Bickel and Dok-
sum (2015), pp. 384–385) then the MLEs of α and β are consistent, asymptotically normal,
and efficient (see, e.g., Theorem 6.2.2 in Bickel and Doksum (2015), p. 386). In particular,
due to the special structure of the Fisher informationmatrix (34), we will have the following
convergence in distribution

√
n[ (α̂n, β̂n) − (α,β)] d→ Z ∼ N2(0,W−1) as n → ∞, (43)

where Nd(μ,�) denotes d-variate normal distribution with mean vector μ and covariance
matrix � and W is the 2 by 2 matrix with entries given by (36). This asymptotic normal
distribution can be used to derive (approximate) confidence intervals for the parameters.

3 Bivariate episodes with discrete Pareto duration
Here, we illustrate the general results above with a special case studied in Amponsah
(2017), where the random variable N in (1) has discrete Pareto (DP) distribution with
parameters δ ≥ 0 and p ∈ (0, 1), given by the PMF (6) and denoted byDP(δ, p). Virtually
all the results discussed in Section 2 carry-over to this special case, where we use the PMF
(6) in place of a generic PMF fN (·). First, we provide a formal definition of this particular
stochastic model.
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Definition 1 A random vector (X,N) with the stochastic representation (1), where the
{Xi} are IID gamma variables with the PDF (4) and N is DP with the PMF (6), independent
of the {Xi}, is said to have a GMDP distribution with parameters α > 0, β > 0, δ ≥ 0, and
p ∈ (0, 1), denoted by GMDP(α,β , δ, p). The term “GMDP” stands for distribution with
Gamma-Mixture and Discrete Pareto marginals.

Remark 15 In the special case with δ = 0, the DP distribution turns into a geomet-
ric distribution (2), and the GMDP distribution reduces to the BGG model proposed by
Barreto-Souza (2012). If in addition to δ = 0 we also have α = 1, so that the {Xi} in (1)
are IID exponential with parameter β > 0, the GMDP model turns into the BEG distribu-
tion studied in Kozubowski and Panorska (2005). The GMDPmodel offers more flexibility,
as it has an additional parameter, and can be useful for modeling heavy tailed data, as
its marginal distributions of X and N are both heavy tailed for any δ > 0, as will be seen
below.

The joint PDF of (X,N) ∼ GMDP(α,β , δ, p) is given explicitly by (7), with the DP
PMF (6) in place of fN (·). In turn, the CDF and the SF are given by the expressions in
Proposition 1. Further, by (8), we obtain the PDF of X for x ∈ R+,

fX(x) =
∞∑
n=1

βnαxnα−1

eβx�(nα)

[(
1

1 − δ(n − 1) log(1 − p)

) 1
δ −

(
1

1 − δn log(1 − p)

) 1
δ

]
,

(44)

which takes a particularly simple form in case of the BEG model (δ = 0, α = 1), where X
is exponential with parameter βp. We also note that (for x ∈ R+) the CDF of X is of the
form

FX(x) = P(X ≤ x)

=
∞∑
n=1

γ (αn,βx)
�(αn)

[(
1

1 − δ(n − 1) log(1 − p)

) 1
δ −

(
1

1 − δn log(1 − p)

) 1
δ

]
.

3.1 Laplace transform

The LT of the GMDP model follows from general theory, discussed in Proposition 2 and
the remark following it. When we take into account the particular form of the PGF con-
nected with DP distribution (see Proposition 2.6 in Buddana and Kozubowski 2014), we
obtain the following result.

Proposition 13 The LT (11) of (X,N) ∼ GMDP(α,β , δ, p) is of the form

ψ(t, s) = (
e−sψX1(t)

) − [
1 − e−sψX1(t)

] ∞∑
n=1

[
e−sψX1(t)

]n
[ 1 − δn log(1 − p)]1/δ

, t, s ∈ R+,

where ψX1(t) =[β/(β + t)]α , t ∈ R+, is the LT of gamma GAM(α,β) distribution.
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3.2 Moments and tail behavior

Recall that the SF of N ∼ DP(δ, p) is of the form (see Buddana and Kozubowski 2014,
Proposition 2.4)

S(x) = P(N > x) =
(

1
1 − δ log(1 − p)�x�

) 1
δ

, x ≥ 1,

where �x� is the floor function (the largest integer that is less than or equal to x). This
shows that DP distribution is heavy tailed with tail index v = 1/δ, that is the SF satisfies
(13) with v = 1/δ. Further the constant c in (13) is equal to c =[−δ log(1− p)]−1/δ . Thus,
by Proposition 3, we have the following result.

Proposition 14 If (X,N) ∼ GMDP(α,β , δ, p) with δ > 0 then X is heavy tailed with
index 1/δ, and we have

SX(x) = P(X > x) ∼[−δ log(1 − p)β/α]−1/δ x−1/δ (x → ∞).

In turn, by Proposition 4, the joint moments E[XrNη] with positive r, η > 0 exist only
for r + η < 1/δ, and their values are provided in (14) with fN (·) replaced by the PMF
(6) of DP distribution. Further, we also have an analog of Proposition 5, concerning the
mean vector and the covariance matrix of (X,N) ∼ GMDP(α,β , δ, p). To formulate
the result, we need the mean and the variance of N ∼ DP(δ, p), which can be deduced
from Proposition 2.7 in Buddana and Kozubowski (2014). Namely, the mean of N exists
whenever δ < 1, in which case we have

E[N]=
∞∑
n=0

(
1

1 − δ log(1 − p)n

) 1
δ = Cζ

(
1
δ
,− 1

−δ log(1 − p)

)
, (45)

where C =[−δ log(1 − p)]−1/δ and

ζ(s, q) =
∞∑
n=0

(
1

n + q

)s

is the Hurwitz-zeta special function. Similarly, the variance ofN exists whenever δ < 1/2,
in which case we have

Var[N]=
∞∑
n=1

{
(2n + 1)

[
1

1 − δn log(1 − p)

] 1
δ

}
−

[ ∞∑
n=0

(
1

1 − δn log(1 − p)

) 1
δ

]2

.

(46)

Proposition 15 Let (X,N) ∼ GMDP(α,β , δ, p). The mean vector μ of (X,N) ∼
GMDP(α,β , δ, p) exists only if δ < 1, in which case we have μ = (α/β , 1)E[N] with
E[N] given by (45). Moreover, the covariance matrix � of (X,N) exists only if δ < 1/2, in
which case we have

� = E[N]
[

α/β2 0
0 0

]
+ Var[N]

[
α2/β2 α/β

α/β 1

]
,

where E[N] and Van[N] are given by (45) and (46), respectively.

3.3 Conditional distributions

The conditional distributions of (X,N) ∼ GMDP(α,β , δ, p) follow general theory laid
out in Section 2. First, we note that the conditional distribution of X given N = n is
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gamma GAM(αn,β), with the PDF in (15). This conditional distribution is the same in
anymodel of the form (1) driven by an IID gamma sequence {Xi}, regardless of a particular
distribution of N. Second, the conditional distribution of N given X = x has the PMF
given by (16) with fN (·) replaced by the DP PMF (6), the function fα,λ(·) given by (17), and
the normalizing constant c is given by

c = (βx)−α

Eα,α[ (βx)α]

∞∑
n=1

(βx)αn

�(αn)

[(
1

1 − δ(n − 1) log(1 − p)

) 1
δ −

(
1

1 − δn log(1 − p)

) 1
δ

]
.

Moreover, according to Proposition 6, this conditional distribution is the same as that
of the random variableN |N = Q, whereN andQ are independent andQ−1 has extended
Poisson distribution EP(α, λ) with λ = βx, given by the PMF (17). Further, the condi-
tional distribution ofN |X > x has the PMF of the form (20), and, in view of Proposition 7,
is the same as the distribution of N |N ≥ Q with independent N and Q, where this time
Q d= N(x) + 1 and {N(x), x ∈ R+} is a renewal process defined through an IID gamma
GAM(α,β) sequence {Xi}. The latter distribution is one of the twomarginal distributions
in the bivariate model (X,N)|X > x. The full joint distribution of this conditional model
has the PDF of the form (24) where fY (·) is the PMF (20) of the distribution of N |X > x
and g(·|n) is the PDF of gamma distribution GAM(αn,β) truncated below at x, with the
PDF given by (25). As discussed in Section 2, the two conditional distributions, one of
X|N = n and one for N |X > x, provide useful aids in goodness-of-fit analysis when the
GMDP model is fitted to data.
We now turn to the conditional distribution of (X,N)|N > u, where u ∈ N0. As in

the general case discussed in Section 2, this conditional distribution admits representa-
tion (1) with N replaced by Ñ , where the latter has a truncated DP distribution, with the
PMF given by (27). The PDF and the SF of this distribution are given by (26) and (28),
respectively. This case is very special, since the corresponding excess random variable,
Nu

d= N−u|N > u is also DP distributed (see Proposition 3.3 in Buddana and Kozubowski
2014). In view of this result, we have the following analog of Proposition 9.

Proposition 16 If (X,N) ∼ GMDP(α,β , δ, p) then we have

(X,N)|N > u d= (Gu,u) + (Xu,Nu), (47)

where Gu and (Xu,Nu) are independent, Gu ∼ GAM(αu,β), and (Xu,Nu) ∼
GMDP(α,β , δ, pu) with

pu = 1 − e
log(1−p)

1−uδ log(1−p) .

Remark 16 By the above result, if (X,N) has GMDP distribution then the conditional
distribution of (X,N)|N > u is a convolution of two distributions, of which one is degen-
erate and the other is also a GMDP distribution, with different “size” parameter p. In the
special case when δ = 0 (so that N is geometrically distributed) the variable (Xu,Nu) in
(47) has actually the same distribution as (X,N) itself, due to the memoryless property of
the geometric distribution.

Additional two conditional distributions, (X,N)|X ≤ x and (X,N)|N ≤ u, are described
in the next result which follows from Proposition 10.
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Proposition 17 Suppose that (X,N) ∼ GMDP(α,β , δ, p).
(i) Let u, n ∈ N and x > 0, with n ≤ u. Then the conditional CDF of (X,N) ∼

GMDP(α,β , δ, p) given N ≤ u is given by (30), where fN (·) is the DP PMF (6) and

P(N ≤ u) = 1 −
(

1
1 − δn log(1 − p)

) 1
δ

.

(ii) Similarly, for 0 < y ≤ x and n ∈ N, the conditional CDF of (X,N) given X ≤ x is given
by (31), where again fN (·) is given by (6).

3.4 Infinite divisibility and stochastic representations

In this section we discuss an important stochastic representation of the GMDP distribu-
tion as well as its infinite divisibility property. Both of these are related to the fact that the
DP distribution is a mixture of geometric distributions. Indeed (see, e.g., shown in Bud-
dana and Kozubowski 2014, Proposition 3.4), the DP distribution ofN ∼ DP(δ, p) admits
the following hierarchical structure:

• Z ∼ GAM(1/δ, γ ), where γ =[−δ log(1 − p)]−1,
• N |Z = z has a geometric distribution (2) with parameter p = 1 − e−z.

Since a DP distributed random variable N is an important component of the GMDP
distribution, a similar hierarchical structure carries over to the latter, as shown in the
result below.

Proposition 18 The distribution of (X,N) ∼ GMDP(α,β , δ, p) admits the following
hierarchical structure:

• Z ∼ GAM(1/δ, γ ), where γ =[−δ log(1 − p)]−1,
• (X,N)|Z = z ∼ GMDP(α,β , 0, q) with q = 1 − e−z.

Remark 17 According to the above result, a GMDP distribution can be thought of as
being conditionally a BGG distribution, which is a GMBD distribution with δ = 0, so that
the variable N in the stochastic representation is a geometric one. In other words, this N is
conditionally geometric, so that its unconditional distribution is DP, as seen above, which
is precisely why we recover the GMDP model. Another way to describe this is through the
density functions. Namely, given a gamma GAM(1/δ, γ ) distributed Z in Proposition 18,
with density given by

fZ(z) = [−δ log(1 − p)]−1/δ

�(1/δ)
z1/δ−1ez/[δ log(1−p)], z ∈ R+,

the PMF of (X,N)|Z = z in Proposition 18 will be

fX,N |Z(x, n) = βαn

�(αn)
xαn−1e−βx(1 − e−z)e−zn, x ∈ R+, n ∈ N.

Then, the distribution of (X,N) ∼ GMDP(α,β , δ, p) can be seen as the marginal
distribution of (X,N) in a trivariate model (X,N ,Z) given by the PDF

fX,N ,Z(x, n, z) = fX,N |Z(x, n)fZ(z), x, z ∈ R+, n ∈ N,

so that

fX,N (x, n) =
∫ ∞

0

βαn

�(αn)
xαn−1e−βx(1 − e−z)e−znfZ(z)dz, x ∈ R+, n ∈ N.
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Further properties of the GMDP model can be developed by means of this hierarchical
structure coupled with standard conditioning arguments.

Another consequence of the hierarchical structure of the DP distribution is its infi-
nite divisibility (cf., Corollary 3.5 in Buddana and Kozubowski 2014), which, in view of
Corollary 1, immediately implies the same property of the GMDPmodel. In the following
result we need the PGF of N ∼ DP(δ, p), which is known to be of the form (see Buddana
and Kozubowski 2014, Proposition 2.6):

GN (s) = s − (1 − s)
∞∑
n=1

(
1

1 − δ log(1 − p)n

) 1
δ

sn, s ∈ (0, 1). (48)

Corollary 3 The distribution of (X,N) ∼ GMDP(α,β , δ, p) is ID and for each n ∈ N we
have the stochastic representation (32), where the {(R(n)

j ,V (n)
j )} are IID. Moreover, we have

V (n)
j

d= 1/n + T (n)
j , where the {T (n)

j } are IID, integer-valued random variables with the
PGF Gn(s) =[GN (s)/s]1/n and GN (·) given by (48). Further, the {R(n)

j } are given by (33),
where all the variables on the right-hand-side of (33) are mutually independent, the {G(n)

j }
are IID gamma GAM(α/n,β) distributed, and the {Xij} are IID gamma GAM(α,β)

distributed.

3.5 Parameter estimation

The discussion of estimation for the general case in Section 2 generally carries over to the
special case of the GMDP distribution. Here, the variable N ∼ DP(δ, p) depends on a 2-
dimensional vector-parameter ω = (δ, p) ∈ 
, where we take the parameter space 
 to
be an open set 
 = (0,∞) × (0, 1). The PDF of N, which is given by (6), will be denoted
by fN (·;ω). Clearly, our model has four unknown parameters, which can be conveniently
described as a vector-parameter θ , where θ1 = α, θ2 = β , θ3 = δ, and θ4 = p. With this
notation, the parameter space is an open set � = (0,∞)3 × (0, 1).

3.5.1 Fisher information

According to general results in Section 2, if the appropriate expectations exist, the Fisher
information matrix I(θ) connected with the GMDP(α,β , δ, p) distribution has a block-
diagonal structure,

I(θ) =

⎡
⎢⎢⎢⎣
w11 w12 0 0
w21 w22 0 0
0 0 j11 j12
0 0 j21 j22

⎤
⎥⎥⎥⎦ , (49)

where the entries {wij}, generally given by (35), depend only on the parameters α and β ,
and the 2 × 2 matrix

J(ω) =
[
j11 j12
j21 j22

]
(50)
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is the Fisher information matrix connected with the DP(δ, p) model. Since in our
situation the expectation of N is given by (45), according to (36), we have

w11 =
∞∑
n=1

n2ψ ′(αn)

[(
1

1 − δ(n − 1) log(1 − p)

) 1
δ −

(
1

1 − δn log(1 − p)

) 1
δ

]
,

w12 = w21 = − 1
β

∞∑
n=0

(
1

1 − δ log(1 − p)n

) 1
δ

,

w22 = α

β2

∞∑
n=0

(
1

1 − δ log(1 − p)n

) 1
δ

,

where ψ(·) is the digamma function. We note that the above quantities are well defined
only when δ < 1, due to the heavy tail of the DP distribution. Indeed, clearly the two series
describing w12 = w21 and w22 converge only if 1/δ > 1, so that we must have δ < 1. In
addition, we have the asymptotic relation ψ ′(z) ∼ 1/z as z → ∞ (see, e.g., formula 6.4.12
in Abramowitz and Stegun 1972, p. 260) and the PMF of the DP distribution given by the
expression in the square bracket in the series describingw11 behaves asymptotically as the
power n−(1+1/δ) at infinity. Thus, that series also converges only if δ < 1. Further, standard
calculations produce the information matrix (50) of the DP model, which is given in the
result below.

Proposition 19 The Fisher information matrix (50) of the DP(δ, p) model is well
defined for any δ > 0 and p ∈ (0, 1), and is given by

J(ω) = D
AD (51)

where

D =
[

− 1
δ2

0
− log(1 − p) δ

1−p

]
, (52)

A =[ aij] is a symmetric matrix with entries of the form

a11 = E

{
[g(δ,p,N)−g(δ,p,N−1)]2

[fN (N ;δ,p)]2

}
,

a12 = a21 = 1
δ
E

{
[g(δ,p,N)−g(δ,p,N−1)][v(δ,p,N)−v(δ,p,N−1)]

[fN (N ;δ,p)]2

}
,

a22 = 1
δ2
E

{
[v(δ,p,N)−v(δ,p,N−1)]2

[fN (N ;δ,p)]2

}
,

the function fN (·; δ, p) is the PDF (6) of theDP(δ, p) distribution, and

g(δ, p, n) = log[ 1 − δn log(1 − p)]
[ 1 − δn log(1 − p)]1/δ

, v(δ, p, n) = n
[ 1 − δn log(1 − p)]1+1/δ ,

δ ∈ (0,∞), p ∈ (0, 1), n ∈ N0.

3.5.2 Maximum likelihood estimation

Let (X1,N1), . . . , (Xn,Nn) be a random sample from a GMDP distribution. According to
general results on estimation discussed in Section 2, maximum likelihood estimation can
be carried out separately for the two pairs, α,β , and δ, p. Regarding the former, the MLEs
of α and β always exist and are unique, and their values are provided in Corollary 2. More-
over, while the calculation of the MLEs involves solving a one-dimensional non-linear
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equation, stated in (42), the relevant function is rather well behaved and finding the solu-
tion by standard numerical methods is straightforward. Further, since the family of DP
distributions {fN (·;ω), ω ∈ (0,∞)×(0, 1)} is such that the function� = (ψ1, . . . ,ψ4)with
ψi = −∂/∂θi log fX,N (x, n), i = 1, . . . , 4, satisfies standard regularity conditions of large-
sample theory, the MLEs of α and β are consistent, asymptotically normal, and efficient.
Due to the special structure of the Fisher informationmatrix (49), we will have the conver-
gence in distribution (43) whereW is the 2×2 matrix with entries {wij} given above. This
asymptotic normal distribution can be used to derive (approximate) confidence intervals
for the two parameters.
Let us now move to estimation of parameters δ and p. According to general results on

estimation discussed in Section 2, this requires optimization of the function Q(ω) in (39)
with respect to ω = (δ, p) ∈ (0,∞) × (0, 1). Since the function

Q(δ, p) =
n∑

i=1
log

[(
1

1 − δ(Ni − 1) log(1 − p)

) 1
δ −

(
1

1 − δ(Ni) log(1 − p)

) 1
δ

]
(53)

is the log-likelihood (LL) function of an univariate random sample {Ni} from a DP dis-
tribution, one can use methods available for this distribution in order to get the MLEs.
In particular, we can proceed by solving the likelihood equations, obtained by setting
to zero the two partial derivatives of the LL function in (53). The calculation of the
derivatives is straightforward; after some algebra, we obtain the following likelihood
equations:

n∑
i=1

Ni
h(δ,p,Ni)

{[
h(δ,p,Ni)

h(δ,p,Ni−1)

] 1
δ − 1

}−1
=

n∑
i=1

Ni−1
h(δ,p,Ni−1)

{
1 −

[
h(δ,p,Ni−1)
h(δ,p,Ni)

] 1
δ

}−1
,

n∑
i=1

log h(δ, p,Ni)

{[
h(δ,p,Ni)

h(δ,p,Ni−1)

] 1
δ − 1

}−1
=

n∑
i=1

log h(δ, p,Ni − 1)
{
1 −

[
h(δ,p,Ni−1)
h(δ,p,Ni)

] 1
δ

}−1
,

where

h(δ, p, n) = 1 − δn log(1 − p), δ ∈ (0,∞), p ∈ (0, 1), n ∈ N0.

While the above equations can be solved for δ and p by standard numerical meth-
ods, the actual calculations may be computationally intensive. An alternative approach
for finding the MLEs in this case is the standard EM algorithm, as the DP distribution is
conveniently represented as a mixture of geometric distributions. Such an algorithm has
been recently developed and tested in Amponsah and Kozubowski (2021), and was found
to be working quite well in this setting. We recommend that it be used for this estimation
problem.

Remark 18 A careful analysis of the case with n = 1 shows that the likelihood equations
above do not admit any solution within the parameter space. However, the function Q(δ, p)
is maximized by δ̂n = 0 and p̂n = 1/N̄ . These values point towards the limiting geometric
distribution of N, which arises when δ = 0 in the DP model.
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Table 1 Frequencies, relative frequencies, and discrete Pareto model probabilities of all observed
growth periods’ durations

Growth period N in days 1 2 3 4 5 6 7 +

Frequency 272 106 61 31 15 12 11

Relative frequency 0.5354 0.2087 0.1201 0.0610 0.0295 0.02362 0.0217

Model probability 0.5205 0.2359 0.1136 0.0576 0.0306 0.0169 0.0250

4 An application from finance
In this section, we show an application of the GMDP model to a financial data set. We
chose the daily closing price of Bahrain all share Index, quoted in Bahrain dinar. The
data set was obtained from Investing.com, and consisted of the daily closing prices, from
May 24, 2010, to February 20, 2019. We converted our daily data to (n = 2171) daily
log-returns, which are the logarithms of the ratios of the closing prices for every two
consecutive days. Next, we computed the growth episodes and obtained (n = 508) obser-
vations (Xi,Ni), i = 1, 2, . . . , 508, where the Ni is the duration and Xi is the magnitude
(total log-return over the period of the ith episode) of the ith growth episode. Dura-
tion data from this data set was previously fitted with the DP model in Amponsah and
Kozubowski (2021). In this work we fit the bivariate GMDP model to the duration and
magnitude of the growth episodes.
Assuming the data are IID GMDP(α,β , δ, p), theMLEs computed by solving likelihood

equations (see Section 2.4) are α̂ = 0.9420, β̂ = 281.4498, δ̂ = 0.1153, and p̂ = 0.5355.
The EM algorithm of Amponsah and Kozubowski (2021) was used to compute δ̂ and
p̂. To assess the goodness-of-fit of our model to the growth episodes of the Bahrain all
share Index, we used the MLEs described above to compute the parameters of all the
marginal and conditional distributions we fit below. Considering this fact, the generally

Fig. 1 The plot of relative frequency (x-axis) versus model probability (y-axis) of durations N = 1, 2, 3, 4, 5, 6
and N ≥ 7
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Fig. 2 Histogram of positive daily log-returns overlaid with gamma PDF (the left panel) and a q-q plot of the
same data with gamma model (the right panel)

reasonable fit of the marginals and analyzed conditional models seems quite remarkable.
We analyzed the fit of the following marginal and conditional distributions: (1) marginal
of duration, (2) marginal of magnitude, (3) conditional distribution of X|N = n for n =
1, 2, 3, 4, and (4) conditional distribution of N |X > x for thresholds x = 0.0001, 0.0015,
and 0.0025.

Fig. 3 Histogram of the marginal of magnitude overlaid with mixture gamma PDF (the left panel) and q-q
plot of the same data with the mixture gamma model (the right panel)
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Fig. 4 Histogram of positive cumulative log-returns overlayed with gamma PDFs and q-q plots of the same
data with gamma models for N = 1 (top row), 2 (second row) 3 (third row), and 4 (bottom row)
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Table 2 Results of the KS test of goodness-of-fit of the conditional distributions of X|N = k

Growth period N in days 1 2 3 4

KS statistic 0.081 0.132 0.180 0.226

p-value 0.336 0.314 0.276 0.414

4.1 Goodness-of-fit analysis

We started with the fit of DP model to the marginal of duration. Table 1 contains fre-
quency, relative frequency, and model probabilities for the values of N observed in the
data, namely N = 1, 2, ..., 6, and N ≥ 7.
Figure 1 shows a plot of the DP model probabilities (the last row of Table 1) versus

the observed relative frequencies (the third row of Table 1), with a diagonal line y =
x added for visualization purposes. The DP probabilities are very close to the relative
frequencies, and the mean (absolute) percentage error is about 10.598%. A formal chi-
square goodness-of-fit test based on the information provided in Table 1 was performed
as well, resulting in the p-value of 0.27. Thus, the null hypothesis of DP Pareto distribution
ofN is not rejected at 5% significance level. Overall, this analysis shows a reasonable fit of
the DP model to the marginal of duration.
Next, we checked if the positive daily log-returns are well fit by the gamma distribu-

tion with parameter α and β . We used graphical tools (histogram, q-q plots), and formal
Kolmogorov-Smirnov (KS) test to confirm the goodness-of-fit. Figure 2 shows a his-
togram of positive daily log-returns overlayed with fitted gamma PDFs and a q-q plot of
the model and empirical quantiles. Both plots show a good fit. We also tested the fit of
the model to the positive daily log-returns. The KS statistic and its p-value are 0.0397 and
0.3905, respectively. Therefore, the null hypothesis that the positive daily log-returns fol-
low gamma distributions with parameters α and β , is not rejected at significance level of
5%. Overall, we believe that the positive log-returns may be assumed to have come from
gamma distribution with parameters α and β .

Further, we investigated the fit of the model marginal distribution of magnitude to the
data. The model marginal distribution of X is a mixture of gamma distributions with
scale parameter β and shape parameters αn, n ∈ N, with the mixing weights given by
P(N = n), where N ∼ DP(δ, p). The plot in Fig. 3 shows a histogram of the marginal of
magnitude overlaid with the gamma mixture model and the corresponding q-q plot. The
KS test statistic and p-value are 0.0453 and 0.6751, respectively. Thus, the null hypothesis
that the model marginal follows a mixture of gamma distributions with PDF (44) is not
rejected at significance level of 5%. We believe the results show a reasonable fit of the
marginal distribution.
Next, we turned to goodness-of-fit analysis of the GMDP model’s conditional distribu-

tions ofX givenN = k, which are gammawith parameters kα and β , to the corresponding
data. Figure 4 shows graphical illustration of fit via histograms overlaid with fitted gamma

Table 3 Frequencies, relative frequencies, and estimated model probabilities connected with the
conditional distribution of N given that X > 0.0001

Growth period N|X > 0.0001 in days 1 2 3 4 5 6 7 +

Frequency 262 106 61 31 15 12 11

Relative frequencies 0.5261 0.2129 0.1225 0.0622 0.0301 0.0241 0.0221

Model probabilities 0.5118 0.2401 0.1157 0.0587 0.0311 0.0172 0.0255
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Table 4 Frequencies, relative frequencies, and estimated model probabilities connected with the
conditional distribution of N given that X > 0.0015

Growth period N|X > 0.0015 in days 1 2 3 4 5 6 7 +

Frequency 168 98 61 30 15 12 11

Relative frequencies 0.4253 0.2481 0.1544 0.0759 0.0380 0.0304 0.0278

Model probabilities 0.4161 0.2756 0.1428 0.0733 0.0389 0.0215 0.0318

PDFs and q-q plots for durations N = 1, 2, 3, and 4. The plots show a reasonable fit of the
conditional distributions of the GMDP model to the corresponding data.
In addition, we performed the Kolmogorov-Smirnov goodness-of-fit test of these con-

ditional models to the data. The results of the KS tests of the null hypothesis that the
conditional distributions of X given N = k are gamma with parameters kα and β , are
given in Table 2. None of the tests rejected the null hypothesis on the significance level of
5%. We believe the results confirm a reasonable fit of the conditional distributions.
Similarly, we performed a goodness-of-fit analysis of the GMDP model’s conditional

distributions ofN |X > x for thresholds x = 0.0001, 0.0015 and 0.0025, which should have
a hidden truncated discrete Pareto distributions as described in Proposition 6.
Tables 3, 4 and 5 show the frequencies, relative frequencies and estimated model prob-

abilities of all the observed growth periods’ durations given that X > x, for the thresholds
of x = 0.0001, 0.0015, and 0.0025, respectively. Figure 5 shows plots of the model
probabilities versus the corresponding relative frequencies reported in these tables. The
estimated conditional model probabilities are very close to the relative frequencies, and
the mean of the (absolute) percentage errors for the thresholds x = 0.0001, 0.0015, and
0.0025, are 10.5728%, 10.0313% and 10.0817%, respectively. The chi-square goodness-of-
fit tests based on the information in Tables 3 - 5 resulted in the p-values of 0.45, 0.52, 0.49,
respectively. We conclude that these conditional theoretical models show reasonable fit
to the data.
Overall, we believe the GMDP model fits the growth periods of the Bahrain index

rather well. This example provides evidence for the considerable modeling potential of
the GMDP model.

5 Concluding remarks
This work provides fundamental properties of a general stochastic model describing the
joint distribution of (X,N), where N is a counting variable while X is the sum of N inde-
pendent gamma random variables. These properties include marginal and conditional
distributions, Laplace transform, moments and tail behavior, and divisibility properties.
The existence and uniqueness of maximum likelihood estimators of the relevant parame-
ters are established as well, along with their asymptotic properties. A particular example
with a heavy tailed discrete Pareto distributed N illustrates general properties of this

Table 5 Frequencies, relative frequencies, and estimated model probabilities connected with the
conditional distribution of N given that X > 0.0025

Growth period N|X > 0.0025 in days 1 2 3 4 5 6 7 +

Frequency 118 85 58 30 15 12 11

Relative frequencies 0.3587 0.2584 0.1763 0.0912 0.0456 0.0365 0.0334

Model probabilities 0.3607 0.2861 0.1609 0.0848 0.0453 0.0250 0.0372
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Fig. 5 The plot of model probabilities versus relative frequencies of duration N = 1, 2, 3, 4, 5, 6 and N ≥ 7
given X > x for thresholds x = 0.0001 (square shape), x = 0.0015 (circular shape), and x = 0.0025 (triangular
shape)

stochastic model, while a data example from finance shows the modeling potential of this
new mixed bivariate distribution.

Appendix
This section contains (selected) proofs and auxiliary results.

Lemma 3 For x > 0, let h(x) = log(x) − ψ(x) where ψ(x) is the digamma function,
which is the derivative of log�(x). Then h(x) is continuous and strictly decreasing on the
interval (0,∞), with

lim
x→0+ h(x) = ∞ and lim

x→∞ h(x) = 0.

Proof of Lemma 3. Since the trigamma function ψ ′(x) satisfies the inequality (see, e.g.,
Corollary 5.5 in Laforgia and Natalini 2013, p. 501)

ψ ′(x) >
1
x

for x > 0,

we conclude that

h′(x) = 1
x

− ψ ′(x) < 0 for x > 0,

which proves the monotonicity of h(x) on (0,∞). The limits follow easily from the
inequality (see, e.g., Remark 5.3 in Laforgia and Natalini 2013, p. 500)

1
2x

< log(x) − ψ(x) <
1
x
, x > 0.

This concludes the proof.
Proof of Proposition 2. By standard conditioning argument, we have

ψ(t, s) = E
(
e−tX−sN) = E

{
E

(
e−sNe−tX |N)} = E

{
e−sNH(N)

}
,



Amponsah et al. Journal of Statistical Distributions and Applications             (2021) 8:7 Page 28 of 31

where

H(n) = E

⎛
⎝e

−t
N∑
i=1

Xi |N = n

⎞
⎠ = E

⎛
⎝e

−t
n∑

i=1
Xi

⎞
⎠ =

n∏
i=1

E(e−tXi) =[ψX1(t)]n

and ψX1(·) is the LT of the {Xi}. This leads to
ψ(t, s) = E

{[
e−sψX1(t)

]N}
= GN

(
e−sψX1(t)

)
.

Since for gamma distributed {Xi} we have ψX1(t) = 1/(1 + t/β)α , the result follows.
Proof of Proposition 3. The result follows fromTheorem 3.2 in Robert and Segers (2008),

as the conditions (3.10) or (3.11) of that theorem hold for our N due to the fact that N
satisfies (13) while the {Xi} are light tailed gamma distributed.
Proof of Proposition 5. The result follows from straightforward application of Proposi-

tion 4.
Proof of Lemma 1. We proceed by showing that the PMF of the random variable on

the right-hand-side in (19) coincides with the expression on the right-hand-side in (18).
Indeed, by independence of N and Q, for any n ∈ N0, we have

P(N = n|N = Q) = P(N = n,N = Q)

P(N = Q)
= P(N = n,Q = n)

P(N = Q)
= fN (n)fQ(n)

P(N = Q)
,

so that the above probability must coincide with the PMF of Y in (18) with c = P(N = Q).
Proof of Proposition 8. We know, by Proposition 7, that N given X > x has the same

distribution as N given N ≥ N(x) + 1, where N(x) is independent of N, and, in our case,
Poisson with parameter λ = βx. The PMF of this conditional distribution is of the form

h(n) = P(N = n|N ≥ N(x) + 1) = P(N = n,N ≥ N(x) + 1)
P(N − 1 ≥ N(x))

= P(N = n)P(N(x) ≤ n − 1)
P(N − 1 ≥ N(x))

. (54)

By the independence of N and N(x), the denominator on the right-hand-side in (54) is
equal to

P(N − 1 ≥ N(x)) =
∞∑
n=1

P(N = n,N − 1 ≥ N(x))

=
∞∑
n=1

P(N = n, n − 1 ≥ N(x)) =
∞∑
n=0

p(1 − p)nP(N(x) ≤ n).

By inserting

P(N(x) ≤ n) =
n∑

j=0
P(N(x) = j) =

n∑
j=0

(βx)je−βx

j!
(55)

into the above expression and interchanging the order of the summation, followed by
summing-up the resulting geometric series, we arrive at

P(N − 1 ≥ N(x)) =
∞∑
j=0

(βx)je−βx

j!
(1 − p)j = e(1−p)βx−βx. (56)

We now calculate the PGF of Y d= N |N ≥ N(x) + 1, which, in view of (54) and (56), can
be expressed as

G(s) = E[ sY ]=
∞∑
n=1

snh(n) = sp
∑∞

n=0 sn(1 − p)nP(N(x) ≤ n)

e(1−p)βx−βx , s ∈[ 0, 1] . (57)
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By proceeding as above, and calculating the numerator in (57) by inserting there the
expression (55), followed by interchanging the order of the summation and subsequently
summing-up the resulting geometric series, we find the numerator in (57) to be

sp
∞∑
n=0

sn(1 − p)nP(N(x) ≤ n) = sp
1 − (1 − p)s

es(1−p)βx−βx.

Thus, we obtain

G(s) = sp
1 − (1 − p)s

e−(1−p)βx(1−s), s ∈[ 0, 1] .
Since this is the product of the PGF of N and the PGF of T, we obtain the result.
Proof of Proposition 9. The result follows by direct computation of the LTs on each side

in (29), and subsequence verification that they coincide.
Proof of Proposition 11. We proceed by showing that the joint LT of the expression

on the right-hand-side in (32) coincides with the LT of (X,N), with the latter given by
ψ(t, s) = GN [ e−sψX1(t)], as stated in the second remark following Proposition 2.We start
with the LT of the pair (R(n)

j ,V (n)
j ). By standard conditioning argument, we have

E

(
e−tR(n)

j −sV (n)
j

)
= E

{
E

(
e−tR(n)

j −sV (n)
j |T (n)

j

)}
= E

{
H(T (n)

j )
}
,

where

H(k) = E

⎛
⎜⎝e

−t
(

k∑
i=1

Xij+G(n)
j

)
e−s(k+1/n)

⎞
⎟⎠ =[ψX1(t)]k+1/n e−s(k+1/n)

=[ e−sψX1(t)]k [ e−sψX1(t)]1/n .

Since the PGF of {T (n)
j } is equal to Gn(s) =[GN (s)/s]1/n, we have

E

{
H(T (n)

j )
}

=[ e−sψX1(t)]1/n E
(
[ e−sψX1(t)]

T (n)
j

)

=[ e−sψX1(t)]1/n Gn[ e−sψX1(t)]=
{
GN [ e−sψX1(t)]

}1/n .
Finally, since variables under the sum in (32) are IID, the LT of the sum becomes[

E

(
e−tR(n)

j −sV (n)
j

)]n
=

[{
GN [ e−sψX1(t)]

}1/n]n = GN [ e−sψX1(t)] ,

as desired. This completes the proof.
Proof of Theorem 12. First, we re-write the function g′(α) as follows:

g′(α) = log(α) − 1
nN̄n

n∑
i=1

Niψ [αNi] + log
(
N̄n

X̄n

)
+ 1

nN̄n

n∑
i=1

Ni log(Xi)

= 1
nN̄n

n∑
i=1

[
Ni

(
log(α) − ψ [αNi] + log

(
N̄n

X̄n

)
+ log(Xi)

)]

= 1
nN̄n

n∑
i=1

[
Ni

(
log(αNi) − ψ [αNi] + log

(
N̄n

X̄n

)
+ log

(
Xi
Ni

))]

= 1
nN̄n

n∑
i=1

[
Ni

(
log(αNi) − ψ [αNi]

)] + log
(
N̄n

X̄n

)
+ 1

nN̄n

n∑
i=1

Ni

[
log

(
Xi
Ni

)]

= 1
nN̄n

n∑
i=1

[
Ni

(
log(αNi) − ψ [αNi]

)] + 1
nN̄n

n∑
i=1

Ni

[
log

(
Xi
Ni

)]
− log

(
X̄n

N̄n

)
.
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In view of the above and Lemma 3, we immediately obtain Parts (i) and (ii) as well as
the limit in Part (iii). To see that the latter is less then or equal to zero, it is enough to use
Jensen’s inequality,

n∑
i=1

aiϕ(bi) ≤ ϕ

( n∑
i=1

aibi

)
, (58)

where ϕ(·) is a concave function and the positive weights {ai} sum up to one. Indeed, we
get the result upon setting ϕ(x) = log x, ai = Ni/(nN̄n), and bi = Xi/Ni in (58). Part
(iv) is straightforward. Finally, Part (v) is obtained by noting that for a non-linear function
ϕ(·), we have an equality in (58) if and only if b1 = · · · = bn, which in our case becomes
Xi/Ni = c, i = 1, . . . , n, for some c > 0. However, this event has probability zero since the
{Xi/Ni} are IID and their distribution is continuous. This concludes the proof.
Proof of Proposition 19. Consider a re-parameterization of a DP model, where the new

parameters are τ1 = 1/δ and τ2 = −δ log(1 − p). Then, the Fisher information matrix
of the DP model in the δ, p parameterization is given by (51), where D is the Jacobian
matrix of the transformation (δ, p) → (τ1, τ2), which is given by (52), and A is the Fisher
information matrix of the DP model in the τ1, τ2 parameterization. Routine calculations
show that the entries of the latter matrix, written in terms of δ and p, are the quantities
{aij} specified in the proposition, and all the relevant expectations are finite for any δ ∈
(0,∞) and p ∈ (0, 1).
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