Skip to main content

Table 1 Approximation of some classical probability distribution

From: Generating discrete analogues of continuous probability distributions-A survey of methods and constructions

Distribution

Abscissa

Probability

Weight

Polynomial

N(μ, σ 2)

\( \mu +\sigma\;{x}_j^{(GH)} \)

\( \frac{1}{\sqrt{\pi }}{w}_j^{(GH)} \)

exp(−x 2), − ∞ < x < ∞

GH

gamma (t, α)

\( \frac{1}{\alpha}\;{x}_j^{(GLa)} \)

\( \frac{1}{\varGamma t}{w}_j^{(GLa)} \)

\( {x}^{t-{1}^{\prime }} \exp \left(-x\right),\;0<x<\infty \)

GLa

beta (α, β)

\( \frac{\left(1+{x}_j^{(GJ)}\right)}{2} \)

\( \frac{t^{1-\alpha -\beta}\;{w}_j^{(GJ)}}{beta\;\left(\alpha, \beta \right)} \)

\( \frac{{\left(1-x\right)}^{\alpha -1}}{{\left(1+x\right)}^{1-\beta }},-1<x<1 \)

GJ

uniforn(a, b)

\( a+\frac{b-a}{2\left(1+{x}_j^{(GLe)}\right)} \)

\( \frac{1}{2}{w}_j^{(GLe)} \)

1, − 1 < x < 1

GLe